首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We examined the effects of photobiomodulation (PBM) independently and combined with curcumin on stereological parameters and basic fibroblast growth factor (bFGF), hypoxia-inducible factor-1α (HIF-1α), and stromal cell-derived factor-1α (SDF-1α) gene expressions in an excisional wound model of rats with type one diabetes mellitus (T1DM). T1DM was induced by an injection of streptozotocin (STZ) in each of the 90 male Wistar rats. One round excision was generated in the skin on the back of each of the 108 rats. The rats were divided into six groups (n = 18 per group): control (diabetic), untreated group; vehicle (diabetic) group, which received sesame oil; PBM (diabetic) group; curcumin (diabetic) group; PBM + curcumin (diabetic) group; and a healthy control group. On days 4, 7, and 15, we conducted both stereological and quantitative real-time PCR (qRT-PCR) analyses. The PBM and PBM + curcumin groups had significantly better inflammatory response modulation in terms of macrophages (P < .01), neutrophils (P < .001), and increased fibroblast values compared with the other groups at day 4 (P < .001), day 7 (P < .01), and day 15 (P < .001). PBM treatment resulted in increased bFGF gene expression on days 4 (P < .001) and 7 (P < .001), and SDF-1α gene expression on day 4 (P < .001). The curcumin group had increased bFGF (P < .001) expression on day 4. Both the PBM and PBM + curcumin groups significantly increased wound healing by modulation of the inflammatory response, and increased fibroblast values and angiogenesis. The PBM group increased bFGF and SDF-1α according to stereological and gene expression analyses compared with the other groups. The PBM and PBM + curcumin groups significantly increased the skin injury repair process to more rapidly reach the proliferation phase of the wound healing in T1DM rats.  相似文献   

2.
Atherosclerosis is a chronic inflammatory disease related to a massive accumulation of cholesterol in the artery wall. Photobiomodulation therapy (PBMT) has been reported to possess cardioprotective effects but has no consensus on the underlying mechanisms. Here, we aimed to investigate whether PBMT could ameliorate atherosclerosis and explore the potential molecular mechanisms. The Apolipoprotein E (ApoE)−/− mice were fed with western diet (WD) for 18 weeks and treated with PBMT once a day in the last 10 weeks. Quantification based on Oil red O-stained aortas showed that the average plaque area decreased 8.306 ± 2.012% after PBMT (P < .05). Meanwhile, we observed that high-density lipoprotein cholesterol level in WD + PBMT mice increased from 0.309 ± 0.037 to 0.472 ± 0.038 nmol/L (P < .05) compared with WD mice. The further results suggested that PBMT could promote cholesterol efflux from lipid-loaded primary peritoneal macrophages and inhibit foam cells formation via up-regulating the ATP-binding cassette transporters A1 expression. A contributing mechanism involved in activating the phosphatidylinositol 3-kinases/protein kinase C zeta/specificity protein 1 signalling cascade. Our study outlines that PBMT has a protective role on atherosclerosis by promoting macrophages cholesterol efflux and provides a new strategy for treating atherosclerosis.  相似文献   

3.
The present study was designed to investigate the effect of MSCs-conditioned media (CM) on quality buffalo embryo production in vitro. MSCs were harvested from Wharton’s jelly of 2-3 month old fetus and MSCs CM was collected. Immunocytochemistry and western blot assay revealed that MSCs secrete several important growth factors viz. FGF-2, IGF-1, LIF, TGF-β, and VEGF. Slaughterhouse derived culture grade cumulus oocyte complexes (COCs) were matured and fertilized in vitro. Presumptive zygotes were divided in four groups and cultured in vitro in respective media viz. group I (100% mSOF), Group II (100% Knockout Media DMEM+SR), Group III (50% CM + 50% mSOF), and group IV (100% CM). It was found that though the cleavage rate did not changed significantly (p < 0.05), but blastocyst rate was increased significantly (p < 0.05) in Group III and IV (24.24 ± 1.34 and 23.29 ± 1.25, respectively) compared to group I and II (16.04 ± 1.46 and 17.72 ± 0.94, respectively). Similarly, TCN was significantly (p < 0.05) higher in 50% CM and 100% CM replacement group (93.33 ± 1.91 and 92.13 ± 1.04, respectively) than the other two groups. It can be concluded from the study that MSCs secrete several important growth factors and MSCs-CM can be effectively used for enhancement of quality buffalo embryo production in vitro.  相似文献   

4.
This study examined the effects of co-feeding Artemia and commercial feeds on survival, growth and fatty acid composition of silver therapon Leiopotherapon plumbeus early juveniles. Triplicate groups of 36 days post hatch (DPH) early juveniles (17.09 ± 1.69 mm; 0.07 ± 0.02 g) were stocked in nine glass aquaria at 25 individuals per aquarium and reared for 60 days on three feeding regimes: (A) Artemia + powdered commercial tilapia feed (35% crude protein (CP)); (B) Artemia + powdered commercial prawn feed (38% CP); and (C) Artemia nauplii only as the control group. Early juveniles co-fed Artemia and commercial feeds had significantly higher survival (97%) than those fed Artemia alone (86%). Except for the condition factors that were similar to the control group, higher mean total length (30.2 ± 1.3 mm and 27.6 ± 1.2 mm), body weight (401 ± 64 mg and 339 ± 46 mg), length- (SGRL; 0.95 ± 0.07%/day and 0.80 ± 0.07%/day) and weight-specific growth rates (SGRW; 2.85 ± 0.27%/day and 2.58 ± 0.22%/day) were also observed in the co-feeding groups, independent of protein, fat and other nutrient levels in commercial feeds. Higher levels of long-chain polyunsaturated fatty acids were reflected in early juveniles co-fed Artemia and commercial feeds than those fed exclusively on Artemia contributing, in part, to the higher growth and survival observed in the co-feeding groups. Together, these results suggest that co-feeding strategy showed best results in terms of growth and survival, and that commercial feed with 35% protein and 6% crude fat levels may be beneficial in supplementing live feed with essential nutrients to optimize production of silver therapon fry during nursery culture.  相似文献   

5.
Photobiomodulation therapy (PBMT) in the infrared spectrum exerts positive effects on glucose metabolism, but the use of PBMT at the red spectrum has not been assessed. Male Swiss albino mice were divided into low‐fat control and high‐fat diet (HFD) for 12 weeks and were treated with red (630 nm) PBMT or no treatment (Sham) during weeks 9 to 12. PBMT was delivered at 31.19 J/cm2, 60 J total dose per day for 20 days. In HFD‐fed mice, PBMT improved glucose tolerance, insulin resistance and fasting hyperinsulinemia. PBMT also reduced adiposity and inflammatory infiltrate in adipose tissue. Phosphorylation of Akt in epididymal adipose tissue and rectus femoralis muscle was improved by PBMT. In epididymal fat PBMT reversed the reduced phosphorylation of AS160 and the reduced Glut4 content. In addition, PBMT reversed the alterations caused by HFD in rectus femoralis muscle on proteins involved in mitochondrial dynamics and β‐oxidation. In conclusion, PBMT at red spectrum improved insulin resistance and glucose metabolism in HFD‐fed mice.   相似文献   

6.
microRNAs (miRNAs) play a critical role in implantation and development of mouse embryos. In this study, we aim to evaluate the possibility of miRNAs as potential biomarkers in the blastocyst culture to assess embryo quality. We also intend to investigate whether improved clinical outcomes of vitrified embryos agree with altered miRNA expressions. Mouse embryos from in vitro fertilization were vitrified at the two-cell stage. After thawing, the embryos were individually cultured and developed to the blastocyst stage. We used quantitative real-time polymerase chain reaction to evaluate miRNA expression levels in both vitrified and fresh groups, and culture medium (CM). The fibronectin binding assay was performed to examine for blastocyst attachment. The findings showed reduced expressions of miR-16-1 (0.2 ± 0.06) and miR-Let-7a (0.65 ± 0.1) after vitrification compared to fresh embryos. We observed significant upregulation of the target genes Vav3 (4.33 ± 0.25), integrin β-3 (Itg β3; 4.73 ± 0.2), and Bcl2 (2.29 ± 0.16) in the vitrified embryos compared to the fresh groups. Evaluation of blastocyst CM showed upregulation of miR-Let-7a (15.68 ± 0.89), miR-16-1 (16.18 ± 0.75), and miR-15a (13.36 ± 0.73) in the vitrified group in comparison to the fresh blastocysts (P < .05). The expression levels of miR-16-1 (3.28 ± 0.63), miR-15a (5.91 ± 0.38), and miR-Let-7a (9.07 ± 0.6) in CM of the vitrified blastocysts conducted on fibronectin were significantly higher than the fresh group (P < .05).This study showed that vitrification of embryos changes implantation and proliferation biomarkers. In addition, upregulated miRNAs in CM could be potentially used for noninvasive early assessment of embryo quality.  相似文献   

7.
8.
Taste signalling molecules are found in the gastrointestinal (GI) tract suggesting that they participate to chemosensing. We tested whether fasting and refeeding affect the expression of the taste signalling molecule, α‐transducin (Gαtran), throughout the pig GI tract and the peptide content of Gαtran cells. The highest density of Gαtran‐immunoreactive (IR) cells was in the pylorus, followed by the cardiac mucosa, duodenum, rectum, descending colon, jejunum, caecum, ascending colon and ileum. Most Gαtran‐IR cells contained chromogranin A. In the stomach, many Gαtran‐IR cells contained ghrelin, whereas in the upper small intestine many were gastrin/cholecystokinin‐IR and a few somatostatin‐IR. Gαtran‐IR and Gαgust‐IR colocalized in some cells. Fasting (24 h) resulted in a significant decrease in Gαtran‐IR cells in the cardiac mucosa (29.3 ± 0.8 versus 64.8 ± 1.3, < 0.05), pylorus (98.8 ± 1.7 versus 190.8 ± 1.9, < 0.0 l), caecum (8 ± 0.01 versus 15.5 ± 0.5, < 0.01), descending colon (17.8 ± 0.3 versus 23 ± 0.6, < 0.05) and rectum (15.3 ± 0.3 versus 27.5 ± 0.7, < 0.05). Refeeding restored the control level of Gαtran‐IR cells in the cardiac mucosa. In contrast, in the duodenum and jejunum, Gαtran‐IR cells were significantly reduced after refeeding, whereas Gαtran‐IR cells density in the ileum was not changed by fasting/refeeding. These findings provide further support to the concept that taste receptors contribute to luminal chemosensing in the GI tract and suggest they are involved in modulation of food intake and GI function induced by feeding and fasting.  相似文献   

9.
10.
This study tested the hypothesis that combined therapy with human umbilical cord-derived mesenchymal stem cells (HUCDMSCs) and hyperbaric oxygen (HBO) was superior to either one on preserving neurological function and reducing brain haemorrhagic volume (BHV) in rat after acute intracerebral haemorrhage (ICH) induced by intracranial injection of collagenase. Adult male SD rats (n = 30) were equally divided into group 1 (sham-operated control), group 2 (ICH), group 3 (ICH +HUCDMSCs/1.2 × 106 cells/intravenous injection at 3h and days 1 and 2 after ICH), group 4 (ICH +HBO/at 3 hours and days 1 and 2 after ICH) and group 5 (ICH +HUCDMSCs-HBO), and killed by day 28 after ICH. By day 1, the neurological function was significantly impaired in groups 2-5 than in group 1 (P < .001), but it did not differ among groups 2 to 5. By days 7, 14 and 28, the integrity of neurological function was highest in group 1, lowest in group 2 and significantly progressively improved from groups 3 to 5 (all P < .001). By day 28, the BHV was lowest in group 1, highest in group 2 and significantly lower in group 5 than in groups 3/4 (all P < .0001). The protein expressions of inflammation (HMGB1/TLR-2/TLR-4/MyD88/TRAF6/p-NF-κB/IFN-γ/IL-1ß/TNF-α), oxidative stress/autophagy (NOX-1/NOX-2/oxidized protein/ratio of LC3B-II/LC3B-I) and apoptosis (cleaved-capspase3/PARP), and cellular expressions of inflammation (CD14+, F4/80+) in brain tissues exhibited an identical pattern, whereas cellular levels of angiogenesis (CD31+/vWF+/small-vessel number) and number of neurons (NeuN+) exhibited an opposite pattern of BHV among the groups (all P < .0001). These results indicate that combined HUCDMSC-HBO therapy offered better outcomes after rat ICH.  相似文献   

11.
The effect of exogenous spermine (SPM) on Castilleja tenuiflora shoots developing under nitrogen deficiency (ND) stress was evaluated. Shoots cultivated in a temporary immersion system were subjected to four experimental treatments: (1) control; (2) exogenous SPM; (3) ND; and (4) ND+SPM. Shoots were longer in the ND+SPM treatment (6.3 ± 0.5 cm) than in the ND treatment (4.2 ± 0.5 cm). The total chlorophyll content was similar in the control and SPM treatments (0.41 µg mg?1 FM) and the highest values of total phenolic content were detected at 21 days in the ND+SPM treatment (84.1 ± 0.05 GAE g?1 DM). In the ND+SPM treatment, the phenylalanine ammonia lyase activity increased earlier than in ND treatment, and reached its maximum at day 21 (3.9 ± 0.2 µmol E‐CIN h?1 mg?1 protein). Compared with the control, the ND and ND+SPM treatments resulted in increased secondary metabolites contents in both root and aerial parts. The strongest effect was in the roots, where the SPM and ND+SPM treatments both resulted in increased quercetin content (4.3‐fold that in the control). Our results showed that SPM partially counteract the damage caused by ND and results in increased contents of valuable bioactive compounds.  相似文献   

12.
Background aimsWe tested the hypothesis that sitagliptin is capable of increasing blood flow in the rat critical limb ischemia (CLI) model by enhancement of angiogenesis.MethodsAdipose tissue from adult-male Fischer 344 rats (n = 6) were cultured in endothelial progenitor cell culture medium for 14 d with (25 μmol/L) or without sitagliptin. CLI was induced by ligation of the left femoral artery. Rats (n = 32) were equally separated into four groups: untreated controls (group 1), sitagliptin (4 mg/kg per day; group 2), CLI (group 3) and CLI with sitagliptin (group 4).ResultsIn vitro, 7 and 14 d after cell culture, endothelial progenitor cell biomarkers assessed by flow cytometry (Sca-1/CD31+, CXCR4+, c-kit+ and CD34+ cells) and Western blot (vascular endothelial growth factor, CXCR4 and stromal-derived factor [SDF]-1α) were remarkably higher in group 4 than in the other groups (all P < 0.01). In vivo, 2 and 14 d after the CLI procedure, circulating angiogenic cell (Sca-1/CD31+, Sca-1+ and CD31+) numbers were significantly higher in group 4 than in the other groups (all P < 0.001). Additionally, the messenger RNA and protein expression of angiogenic biomarkers (CXCR4, SDF-1α and vascular endothelial growth factor), immunofluorescent staining of angiogenic cells (CXCR4+, SDF-1α+, CD31+, von Willebrand factor + cells) and immunohistochemical staining of small vessel numbers in the ischemic area were significantly higher in group 4 than in the other groups (all P < 0.01). Furthermore, laser Doppler showed that the ratio of ischemic/normal blood flow was remarkably higher group 4 than in group 3 by days 14 and 28 after the CLI procedure (all P < 0.01).ConclusionsSitagliptin therapy enhances circulating angiogenic cell numbers, angiogenesis and blood flow in the CLI area.  相似文献   

13.
Stromal cell-derived factor 1α (SDF-1) is not only a major chemotactic factor, but also an inducer of angiogenesis. The effects of SDF-1α on the left ventricular remodeling in a rat myocardial infarction (MI) model were analyzed. Myocardial infarction was induced by ligation of the left coronary artery in rats. 0.5 × 1010 pfu/ml AdV-SDF-1 or 0.5 × 1010 pfu/ml Adv-LacZ were immediately injected into the infarcted myocardium, 120 μl cell-free PBS were injected into the infarcted region or the myocardial wall in control, and sham group, respectively. We found that AdV-SDF-1 group had higher LVSP and ±dP/dtmax, lower LVEDP compared to control or Adv-LacZ group. The number of c-Kit+ stem cells, and gene expression of SDF-1, VEGF and bFGF were obviously increased, which was associated with reduced infarct size, thicker left ventricle wall, greater vascular density and cardiocytes density in infarcted hearts of AdV-SDF-1 group. Furthermore, the expression of collagen type I and type III mRNA, and collagen accumulation in the infarcted area was lower, which was associated with decreased TGF-β1, TIMP-1 and TIMP-2 expression in AdV-SDF-1 group. Conclusion: SDF-1α could improve cardiac structure and function after Myocardial infarction through angiogenic and anti-fibrotic actions.  相似文献   

14.
Mesenchymal stem cells (MSCs) are proposed as a promising source for cell-based therapies in neural disease. Although increasing numbers of studies have been devoted to the delineation of factors involved in the migration of MSCs, the relationship between the chemotactic response and the differentiation status of these cells is still unclear. In the present study, we demonstrated that MSCs in varying neural differentiation states display various chemotactic responses to stromal cell-derived factor-1α (SDF-1α). The chemotactic responses of MSCs under different differentiation stages in response to SDF-1α were analyzed by Boyden chamber, and the results showed that cells of undifferentiation, 24-h preinduction, 5-h induction, and 18-h maintenance states displayed a stronger chemotactic response to SDF-1α, while 48-h maintenance did not. Further, we found that the phosphorylation levels of PI3K/Akt, ERK1/2, SAPK/JNK, and p38MAPK are closely related to the differentiation states of MSCs subjected to SDF-1α, and finally, inhibition of SAPK/JNK signaling significantly attenuates SDF-1α-stimulated transfilter migration of MSCs of undifferentiation, 24-h preinduction, 18-h maintenance, and 48-h maintenance, but not MSCs of 5-h induction. Meanwhile, interference with PI3K/Akt, p38MAPK, or ERK1/2 signaling prevents only cells at certain differentiation state from migrating in response to SDF-1α. Collectively, these results demonstrate that MSCs in varying neural differentiation states have different migratory capacities, thereby illuminating optimization of the therapeutic potential of MSCs to be used for neural regeneration after injury.  相似文献   

15.
Activated matrix metalloproteinases (MMPs) cause cardiomyocyte injury during acute pulmonary thromboembolism (APT). However, the functional consequences of this alteration are not known. We examined whether doxycycline (a MMP inhibitor) improves right ventricle function and the cardiac responses to dobutamine during APT. APT was induced with autologous blood clots (350 mg/kg) in anaesthetized male lambs pre‐treated with doxycycline (Doxy, 10 mg/kg/day, intravenously) or saline. Non‐embolized control lambs received doxycycline pre‐treatment or saline. The responses to intravenous dobutamine (Dob, 1, 5, 10 μg/kg/min.) or saline infusions at 30 and 120 min. after APT induction were evaluated by echocardiography. APT increased mean pulmonary artery pressure and pulmonary vascular resistance index by ~185%. Doxycycline partially prevented APT‐induced pulmonary hypertension (P < 0.05). RV diameter increased in the APT group (from 10.7 ± 0.8 to 18.3 ± 1.6 mm, P < 0.05), but not in the Doxy+APT group (from 13.3 ± 0.9 to 14.4 ± 1.0 mm, P > 0.05). RV dysfunction on stress echocardiography was observed in embolized lambs (APT+Dob group) but not in embolized animals pre‐treated with doxycycline (Doxy+APT+Dob). APT increased MMP‐9 activity, oxidative stress and gelatinolytic activity in the RV. Although doxycycline had no effects on RV MMP‐9 activity, it prevented the increases in RV oxidative stress and gelatinolytic activity (P < 0.05). APT increased serum cardiac troponin I concentrations (P < 0.05), doxycycline partially prevented this alteration (P < 0.05). We found evidence to support that doxycycline prevents RV dysfunction and improves the cardiac responses to dobutamine during APT.  相似文献   

16.
In this study, we used a large non‐human primate model, the baboon, to establish a step‐wise protocol to generate CD34+ endothelial progenitor cells (EPCs) from embryonic stem cells (ESCs) and to demonstrate their reparative effects. Baboon ESCs were sequentially differentiated from embryoid body cultures for 9 days and then were specified into EPCs by culturing them in monolayer for 12 days. The resulting EPCs expressed CD34, CXCR4 and UEA‐1, but neither CD31 nor CD117. The EPCs were able to form intact lumen structures when seeded on Matrigel, took up Dil‐LDL, and responded to TNF‐α. Angioblasts specified in EGM‐2 medium and ECGS medium had 6.41 ± 1.16% (n = 3) and 9.32 ± 3.73% CD34+ cells (n = 3). The efficiency of generating CD34+ EPCs did not differ significantly from ECGS to EGM‐2 culture media, however, angioblasts specified in ECGS medium expressed a higher percentage of CD34+/CXCR4+ cells (3.49 ± 1.32%, n = 3) than those specified in EGM‐2 medium (0.49 ± 0.52%, n = 3). To observe their reparative capacity, we purified CD34+ progenitors after specification by EGM‐2 medium; inoculated fluorescently labelled CD34+ EPCs into an arterial segment denuded of endothelium in an ex vivo system. After 14 days of ex vivo culture, the grafted cells had attached and integrated to the denuded surface; in addition, they had matured further and expressed terminally differentiated endothelial markers including CD31 and CD146. In conclusion, we have proved that specified CD34+ EPCs are promising therapeutic agents for repairing damaged vasculature.  相似文献   

17.
We investigated global and regional effects of myocardial transplantation of human induced pluripotent stem cell (iPSC)‐derived mesenchymal stem cells (iMSCs) in infarcted myocardium. Acute myocardial infarction (MI) was induced by ligation of left coronary artery of severe combined immunodeficient mice before 2 × 105 iMSCs or cell‐free saline were injected into peri‐infarcted anterior free wall. Sham‐operated animals received no injection. Global and regional myocardial function was assessed serially at 1‐week and 8‐week by segmental strain analysis by using two dimensional (2D) speckle tracking echocardiography. Early myocardial remodelling was observed at 1‐week and persisted to 8‐week with global contractility of ejection fraction and fractional area change in saline‐ (32.96 ± 14.23%; 21.50 ± 10.07%) and iMSC‐injected (32.95 ± 10.31%; 21.00 ± 7.11%) groups significantly depressed as compared to sham control (51.17 ± 11.69%, P < 0.05; 34.86 ± 9.82%, P < 0.05). However, myocardial dilatation was observed in saline‐injected animals (4.40 ± 0.62 mm, P < 0.05), but not iMSCs (4.29 ± 0.57 mm), when compared to sham control (3.74 ± 0.32 mm). Furthermore, strain analysis showed significant improved basal anterior wall strain (28.86 ± 8.16%, P < 0.05) in the iMSC group, but not saline‐injected (15.81 ± 13.92%), when compared to sham control (22.18 ± 4.13%). This was corroborated by multi‐segments deterioration of radial strain only in saline‐injected (21.50 ± 5.31%, P < 0.05), but not iMSC (25.67 ± 12.53%), when compared to sham control (34.88 ± 5.77%). Improvements of the myocardial strain coincided with the presence of interconnecting telocytes in interstitial space of the infarcted anterior segment of the heart. Our results show that localized injection of iMSCs alleviates ventricular remodelling, sustains global and regional myocardial strain by paracrine‐driven effect on neoangiogenesis and myocardial deformation/compliance via parenchymal and interstitial cell interactions in the infarcted myocardium.  相似文献   

18.
目的:研究DC-CIK细胞治疗对晚期肝细胞癌患者甲胎蛋白、免疫功能及循环肿瘤细胞数的影响。方法:选取2013年至2015年我院收治的26例肝细胞癌并伴有复发或转移的患者,对其治疗前后甲胎蛋白、免疫功能及循环肿瘤细胞数的数据进行分析,比较DC-CIK细胞治疗前后甲胎蛋白、循环肿瘤细胞、免疫功能的变化。根据细胞治疗次数分为1次组及1次组,比较两组免疫功能的变化。结果:DC-CIK细胞治疗前甲胎蛋白为(603.32±155.78)ng/mL细胞回输后为(571.24±147.49)ng/mL差异无统计学意义(P0.05)。DC-CIK细胞治疗前及细胞回输后CTC检测阳性率分别为81.8%、36.4%治疗前及回输后循环肿瘤细胞数量分别为(8.36±10.642)、(1.55±2.464),细胞治疗前后比较差异均有统计学意义(P0.05)。细胞治疗前1天T细胞亚群CD3+、CD3~+CD4~+、CD3~+CD8~+、CD4/CD8分别为(66.05±15.31)%、(41.89±12.33)%、(23.15±8.05)%、(2.10±0.77),回输后分别为(69.69±12.91)%、(44.80±11.11)%、(23.13±7.12)%、(2.29±0.91)治疗前后比较差异无统计学意义(P0.05)。细胞治疗次数1次组和1次组免疫功能变化差异无统计学意义(P0.05)。结论:DC-CIK细胞治疗可减少肝细胞癌伴复发或转移患者循环肿瘤细胞的数量,但对甲胎蛋白和免疫功能无明显影响。  相似文献   

19.
The study aim was to determine the optimum age, wet body weight (WBW) and total length (TL) of the crucian carp, Carassius carassius (L.), to ensure the effectiveness of weaning directly without a gradual transfer from live food to a compound feed. Moreover, the state of development of the digestive tract was analyzed histologically based on the height of enterocytes. Experimental rearing was conducted between days 5 and 45 post hatch (DPH). Initial WBW of fish was 2.2 ± 0.6 (n = 30) mg and TL 6.1 ± 0.1 (n = 30) mm. Rearing was carried out at 27 ± 0.5°C, with fish divided into six groups: one control (C) fed with Artemia sp. nauplii, and five groups initially fed with Artemia sp. but later replaced by a compound feed. Weaning with the compound diet started at 15, 20, 25, 30 and 35 DPH in groups labeled F15, F20, F25, F30, F35, respectively. Larvae were fed three times per day (08.00 h, 13.00 h, 18.00 h) in equal portions (4% of larvae biomass per day, converted to the dry matter of the feed). Daily biomass growth was adopted as 15%. Each group was triplicated (n = 50 individuals per replicate). Highest values of TL 42.1 ± 0.7 (n = 30) mm and WBW 905.3 ± 50.3 (n = 30) mg were recorded in the control group at 45 DPH; lowest survival rate of 45 DPH was in group F15 (90.7 ± 1.2%, n = 30). The highest value of the enterocyte epithelial length was observed in individuals within groups F30, 34.8 ± 1.2 μm (n = 30) and F35, 35.4 ± 3.6 μm (n = 30), respectively, 30 and 35 DPH; highest percentage of deformations on the final day of the experiment was in group F15 (100 ± 0.0%, n = 30). The results indicate that an effective direct transfer from live food to prepared diets (with no gradual transfer) cannot be performed with crucian carp larvae before 30 DPH at 27°C, when the fish have reached TL = 31.1 ± 0.4 mm (n = 30) and WBW = 436.9 ± 13.7 mg (n = 30).  相似文献   

20.
This study assessed the effects of resistance training (RT) on energy restriction–induced changes in body composition, protein metabolism, and the fractional synthesis rate of mixed muscle proteins (FSRm) in postmenopausal, overweight women. Sixteen women (age 68 ± 1 years, BMI 29 ± 1 kg/m2, mean ± s.e.m.) completed a 16‐week controlled diet study. Each woman consumed 1.0 g protein/kg/day. At baseline (weeks B1–B3) and poststudy (weeks RT12–RT13), energy intake matched each subject's need and during weeks RT1–RT11 was hypoenergetic by 2,092 kJ/day (500 kcal/day). From weeks RT1 to RT13, eight women performed RT 3 day/week (RT group) and eight women remained sedentary (SED group). RT did not influence the energy restriction–induced decrease in body mass (SED ?5.8 ± 0.6 kg; RT ?5.0 ± 0.2 kg) and fat mass (SED ?4.1 ± 0.9 kg; RT ?4.7 ± 0.5 kg). Fat free mass (FFM) and total body water decreased in SED (?1.6 ± 0.4 and ?2.1 ± 0.5 kg) and were unchanged in RT (?0.3 ± 0.4 and ?0.4 ± 0.7 kg) (group‐by‐time, P ≤ 0.05 and P = 0.07, respectively). Protein–mineral mass did not change in either group (SED 0.4 ± 0.2 kg; RT 0.1 ± 0.4 kg). Nitrogen balance, positive at baseline (2.2 ± 0.3 g N/day), was unchanged poststudy. After body mass loss, postabsorptive (PA) and postprandial (PP) leucine turnover, synthesis, and breakdown decreased. Leucine oxidation and balance were not changed. PA and total (PA + PP) FSRm in the vastus lateralis were higher after weight loss. RT did not influence these protein metabolism responses. In summary, RT helps older women preserve FFM during body mass loss. The comparable whole‐body nitrogen retentions, leucine kinetics, and FSRm between groups are consistent with the lack of differential protein–mineral mass change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号