首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EW-7197 is a transforming growth factor-β type I receptor kinase inhibitor with potential anti-inflammatory and antifibrotic properties. Here, we investigate the potential therapeutic effects of EW-7197 in a murine model of ulcerative colitis. EW-7197 attenuated the colitis disease activity index by improving rectal bleeding, body weight, and degree of stool consistency. EW-7197 also reduced colorectal tissue damage and the colon histopathological score by reducing crypt loss, mucosal damage, and tissue inflammation. Moreover, EW-7197 appeared to ameliorate the inflammatory and fibrotic responses by reducing oxidative stress, reducing submucosal edema and inflammatory cell infiltration, downregulating proinflammatory and pro-fibrotic genes, and inhibiting excessive collagen deposition in inflamed and fibrotic ulcerative colitis tissues. These results suggest that EW-7197 has potentially useful therapeutic properties against colitis, with clinically translational potential of inhibiting key pathological responses of inflammation and fibrosis in patients with colitis.  相似文献   

2.
Stroma-tumor interactions within microenvironment play a crucial role in tumor development and growth. Cellular transdifferentiation in the stroma is a prerequisite for tumor formation. Targeting the interactions maybe a promising anticancer strategy. Berberine (BBR) has been confirmed to have anticancer and anti-inflammatory effects. We found for the first time that colon cancer cells SW480 induced spindle-like morphological changes and downregulation of E-cadherin and upregulation of vimentin and alpha-smooth muscle actin in colon epithelial cells HCoEpiCs by using transwell coculture system and conditioned medium from SW480. The conditioned medium also promoted the migration of HCoEpiCs. This transition was inhibited by a transforming growth factor-β receptor inhibitor LY364947. BBR (50 and 100 µg/ml) reversed the EMT-like transition and repressed the migration in HCoEpiCs. Further results demonstrated that downregulation of TβRII, Smad2, p-Smad3, and overexpression of Smad3 participated in the SW480-induced phenotypic transition of HCoEpiCs. In addition, BBR upregulated the expressions of TβRII, Smad2, and p-Smad3. In conclusion, our findings suggest that BBR exerts the anti-EMT and antimigration effect by mediating the expression of TβRII, Smad2, and p-Smad3.  相似文献   

3.
4.
Liver fibrosis is a wound-healing response represented by excessive extracellular matrix deposition. Activation of hepatic stellate cell (HSC) is the critical cellular basis for hepatic fibrogenesis, whereas hepatocyte undergoes epithelial-mesenchymal transition (EMT) which is also involved in chronic liver injury. Long noncoding RNA H19 has been found to be associated with cholestatic liver fibrosis lately. However, the role of H19 in liver fibrosis remains largely to be elucidated. In this study, we found that the expression of H19 was significantly upregulated in the liver tissue of CCl4-induced mice, a toxicant-induced liver fibrogenesis model. Overexpression of H19 significantly aggravated activation of HSC and EMT of hepatocyte both by stimulating transforming growth factor-β (TGF-β) pathway. In terms of mechanism, H19 functioned as a competing endogenous RNA to sponge miR-148a and subsequently sustained the level of ubiquitin-specific protease 4 (USP4), which was an identified target of miR-148a and was able to stabilize TGF-β receptor I. In conclusion, our findings revealed a novel H19/miR-148a/USP4 axis which promoted liver fibrosis via TGF-β pathway in both HSC and hepatocyte, indicating that H19 could become a promising target for the treatment of liver fibrosis.  相似文献   

5.
6.
Circular RNAs (circRNAs) are a novel type of noncoding RNAs that modulate the pathogenesis of multiple diseases. Nevertheless, the role of circRNAs in diabetic nephropathy (DN) pathogenesis is still ambiguous. In the current study, our team aims to investigate the expression profiles of circRNAs in DN and identify the function of circRNA on mesangial cells. CircRNAs microarray analysis revealed dysregulated circRNA in db/db DN mice, and circRNA_15698 was validated to be upregulated in both db/db mice and mouse mesangial cells (SV40-MES13) that were exposed to high glucose (25 mM) using real-time polymerase chain reaction. Loss-of-functional experiments showed that circRNA_15698 knockdown significantly inhibited the expression levels of collagen type I (Col. I), collagen type IV (Col. IV), and fibronectin. Moreover, the cellular localization of circRNA_15698 was mainly in the cytoplasm. Bioinformatics tools and luciferase reporter assay confirmed that circRNA_15698 acted as a ‘sponge’ of miR-185, and then positively regulated the transforming growth factor-β1 (TGF-β1) protein expression, suggesting a circRNA_15698/miR-185/TGF-β1 pathway. Further validation experiments validated that circRNA_15698/miR-185/TGF-β1 promoted extracellular matrix (ECM)-related protein synthesis. In summary, our study preliminarily investigates the role of circRNAs in mesangial cells and ECM accumulation, providing a novel insight for DN pathogenesis.  相似文献   

7.
8.
Scarring of cornea, glaucoma, after-cataract and also proliferative vitreoretinopathy(PVR) related tractional retina detachment, age related macular degeneration and diabetic retinopathy etc., which are the major and seriously impair vision diseases in eyes, with various appearance and different therapy method, but maybe they have the similar pathogenesis—fibrosis, and all the above ocular diseases can be regarded as fibrotic disorders. Thus inhibition of the fibrotic process may provide a potentially novel therapeutic approach to the treatment of these ocular diseases mentioned above. Now numerous studies have proved that BMP-7 significantly reversed renal, hepatic, pulmonary fibrosis, including inhibition of Transforming growth factor-β (TGF-β) production, suppression of epithelial-to-mesenchymal transition (EMT), and repair of severely damaged epithelial cells. So it is reasonable to refer that BMP-7 may have the same preventive effect in these ocular fibrotic disorders. A potential clinical therapy can be developed by using the anti-fibrosis effect of BMP-7.  相似文献   

9.
Burn scar contracture that follows the healing of deep dermal burns causes severe deformation and functional impairment. However, its current therapeutic interventions are limited with unsatisfactory outcomes. When we treated deep second-degree burns in rat skin with activin-like kinase 5 (ALK5) inhibitor A-83-01, it reduced wound contraction and enhanced the area of re-epithelialization so that the overall time for wound closing was not altered. In addition, it reduced myofibroblast population in the dermis of burn scar with a diminished deposition of its biomarker proteins such as α-SMA and collagen. Treatment of rat dermal fibroblast with A-83-01 inhibited transforming growth factor-β1 (TGF-β1)-dependent induction of α-SMA and collagen type I. Taken together, these results suggest that topical application of ALK5 inhibitor A-83-01 could be effective in preventing the contraction of burn wound without delaying the wound closure by virtue of its inhibitory activity against the TGF-β-induced increase of myofibroblast population.  相似文献   

10.
Radiation-induced lung injury (RILI) frequently occurs in patients with thoracic malignancies. In response to radiation, alveolar epithelial cells (AEC) undergo epithelial-mesenchymal transition (EMT) and contribute to the pathogenesis of RILI. Insulin-like growth factor binding protein 7 (IGFBP7) is reported as a downstream mediator of transforming growth factor-β1 (TGF-β1) pathway, which plays a crucial role in radiation-induced EMT. In the present study, the levels of IGFBP7 and TGF-β1 were simultaneously increased in experimental RILI models and radiation-treated AEC (human pulmonary alveolar epithelial cells [HPAEpic]). The expression of IGFBP7 in radiation-treated HPAEpic cells was obviously inhibited by the specific inhibitor of TGF-β receptor antagonist SB431542 and TGF-β1 neutralizing antibody, and time-dependently enhanced by TGF-β1 treatment. Moreover, IGFBP7 knockdown significantly attenuated the effects of radiation on morphology change, cell migration, expression of EMT-related markers (E-cadherin, α-SMA, and Vimentin), and phosphorylation of extracellular-signal-regulated kinase (ERK). The effects of IGFBP7 overexpression on the expression of EMT-related markers were partially reversed by the ERK inhibitor PD98059. In conclusion, IGFBP7, was enhanced by TGF-β1, may be involved in radiation-induced EMT of AEC via the ERK signaling pathway, thus contributing to the pathogenesis of RILI.  相似文献   

11.
While epidermal growth factor receptor (EGFR) plays a pivotal role in the repair process of epithelial cells, it is also involved in the overproduction of mucus and goblet cell hyperplasia (GCH), which occurs in chronic airway diseases such as asthma. Among the EGFR ligands, transforming growth factor (TGF)-α is thought to be the most important in the synthesis of mucus. Pro-TGF-α is cleaved to give an active form by members of the matrix metalloproteinases (MMP)/a disintegrin and metalloproteinases (ADAM) family. Thus MMP/ADAM inhibitors might prevent GCH by inhibiting transactivation of EGFR. Upon stimulation of differentiating normal human bronchial epithelial (NHBE) cells by IL-13, GCH was induced. The mucin genes MUC5AC, MUC5B, and MUC2 were upregulated whereas the expression of ciliated cell markers was greatly repressed. GM6001, a broad-spectrum inhibitor for MMP/ADAM, inhibited IL-13-induced mucin gene expression and mucus production as measured by periodic acid-Schiff staining. This was accompanied by an inhibition of TGF-α release. These results suggest that MMP/ADAMs play a pivotal role in the development of GCH in lung epithelial cells.  相似文献   

12.
Transforming growth factor β1 (TGF-β1), a multifunctional cytokine, is known to promote tumor invasion and metastasis and induce epithelial-mesenchymal transition (EMT) in various cancer cells. Inhibition of TGF-β1 signaling is a new strategy for cancer therapy. Most cancer cells display altered or nonfunctional TGF-β1 signaling; hence, TGF-β1 inhibitors exert limited effects on these cells. Recent studies have suggested that developing a TGF-β1 inhibitor from natural compounds is a key step to create novel therapeutic agents. This study aimed to develop a new anti-TGF-β1 therapy for cancer. We found an improved analog of chalcones, compound 67, and investigated its effects in vitro. We demonstrated the inhibitory role of compound 67 through migration and invasion assays on TGF-β1-induced EMT of human A549 lung cancer cells. Compound 67 inhibited TGF-β1-induced smad2 phosphorylation, suppressed TGF-β1-induced EMT markers, matrix metalloproteinase-2 (MMP-2) and MMP-9, and inhibited migration and invasion of A549 cells. The study results showed that compound 67 is useful to prevent tumor growth and metastasis.  相似文献   

13.
We examined the dietary effects of cyclic nigerosylnigerose (CNN), a dietary indigestible oligosaccharide with four D-glucopyranosyl residues linked by alternating α-(1→3)- and α-(1→6) glucosidic linkages, on the intestinal immune function of mice, and the effects were compared with those of α-(1→3)-linked oligosaccharide (nigerooligosaccharides, NOS) or α-(1→6)-linked oligosaccharide (isomaltooligosaccharides, IMO). BALB/c mice were fed with 1–5% CNN, 5% IMO, or 12.5% NOS for 4 weeks, and the intestinal mucosal immune responses were determined. In the 1–5% CNN fed groups, the amounts of IgA in feces increased significantly. In addition, IgA, transforming growth factor-β1 (TGF-β1), and interleukin-6 (IL-6) secretion by Peyer’s patch (PP) cells were enhanced in CNN fed mice. In the 5% CNN group, pH in the cecum decreased, and the amounts of lactic acid and butyric acid increased. These findings were not observed in the NOS- or IMO-fed group of mice. They suggest that CNN supplementation changes the intestinal environment of microflora and indirectly enhances the immune function in the gut.  相似文献   

14.
Transcriptional induction of Smurf2 ubiquitin ligase by TGF-beta   总被引:1,自引:0,他引:1  
Smad ubiquitination regulatory factor 2 (Smurf2), a ubiquitin ligase for Smads, plays critical roles in the regulation of transforming growth factor-beta (TGF-beta)-Smad signaling via ubiquitin-dependent degradation of Smad2 and Smad7. We found that TGF-beta stimulates Smurf2 expression. TGF-beta activated the Smurf2 promoter in a TGF-beta responsive cell lines, whereas IL-1alpha, PDGF and epidermal growth factor did not. TGF-beta-mediated Smurf2 promoter activation was inhibited by Smad7 or an activin receptor-like kinase 5 inhibitor but not by dominant negative Smad or disruption of Smad-binding elements in the promoter. Moreover, inhibition of the phosphatidil inositol 3 kinase (PI3K)/Akt pathway suppressed TGF-beta-mediated Smurf2 induction. These results suggest that TGF-beta stimulates Smurf2 expression by Smad-independent pathway such as PI3K/Akt pathway via TGF-beta receptor.  相似文献   

15.
转化生长因子β1 (TGF-β1) 是参与骨髓间充质干细胞(BMSCs)脂肪定向分化的重要调节因子,其具体的调节机制尚不清楚. 本研究证明,BMSCs在体外分化为脂肪细胞的过程中, TGF-β1的基因表达显著下调,重组TGF-β1能够抑制BMSCs体外脂肪细胞定向分化,其分化的标志蛋白C/EBPβ和αP2的表达水平显著降低. TGF-β1在激活Smad信号通路的同时,还抑制胰岛素(脂肪分化的主要诱导剂)对PI3K/Akt信号通路的激活.加入Smad特异性阻断剂后,C/EBPβ和αP2的诱导表达恢复正常,同时PI3K/Akt信号通路的活化亦得以恢复. 结果提示,TGF-β1可通过Smad信号通路干扰脂肪细胞分化的核心信号通路-PI3K/Akt的活化,从而实现对BMSCs脂肪分化的抑制.该研究结果为肥胖等导致的心血管疾病或Ⅱ型糖尿病等的临床治疗提供有价值的参考.  相似文献   

16.
Cardiac fibrosis is involved in nearly all forms of heart diseases and is characterized by excessive deposition of extracellular matrix proteins by cardiac fibroblasts (CFs). We and others have reported the possibility of poly(ADP-ribose) polymerase 1 (PARP1), the founding subtype of the PARPs enzyme family, as a novel therapeutic target of heart diseases. The cardiac fibrotic induction of mammalian target of rapamycin (mTOR) is mainly due to collagen expression, Smad3- and p53/JNK-mediated apoptosis. However, the possible link between PARP1 and mTOR in the progression of cardiac fibrosis remains unclear. In this study, PARP1 protein expression, and the activity of mTOR and its three target substrates (p70 ribosomal S6 Kinase 1, eukaryotic initiation factor 4E­-binding protein 1, and UNC­51­like kinase 1) were augmented; meanwhile, the nicotinamide adenine dinucleotide (NAD) content was significantly reduced in the process of cardiac fibrosis in vivo and in vitro. Sprague-Dawley rats were intraperitoneally injected with 3-aminobenzamide (3AB) (20 mg/kg/d; a well-established PARP1 inhibitor) or rapamycin (Rapa; 1 mg/kg/d; used for mTOR inhibition) 7 days after abdominal aortic constriction (AAC) surgery for 6 weeks. Pretreatment of 3AB or Rapa both relieved AAC-caused cardiac fibrosis and heart dysfunction. Overexpression of PARP1 with adenovirus carrying PARP1 gene specifically transduced into the hearts via intramyocardial multipoint injection caused similar myocardial damage. In CFs, preincubation with PARP1 or mTOR inhibitors all blocked TGF-β1 induced cardiac fibrosis. PARP1 overexpression evoked cardiac fibrosis, which could be antagonized by mTOR inhibitors or NAD supplementation in CFs. These results provide novel and compelling evidence that PARP1 exacerbated cardiac fibrosis, which was partially attributed to NAD-dependent activation of mTOR.  相似文献   

17.
The use of acetic acid as a carbon source in alkaline protease fermentation was examined. Acetic acid was a good carbon source and yielded a great deal of alkaline protease.

Acetic acid has advantages over ordinary carbon sources such as starch and glucose in that it can be supplied to culturing liquid as much as needed to perform the fermentation efficiently, that it has a function to control the pH of culturing liquid at a constant level and that it was obtained at lower price.

The maximum proteolytic activity attained was 1.6 × 104 units/ml (11.4 mg-enzyme/ml).  相似文献   

18.
19.
The ability of inflammatory cytokine TGF-beta1 to alter endothelial cell phenotype suggests its role in the regulation of vascular endothelial cell permeability. We demonstrate that depletion of TGF-beta1 receptor ALK5 and regulatory protein Smad4, but not ALK1 receptor attenuates TGF-beta1-induced permeability increase and significantly inhibits TGF-beta1-induced EC contraction manifested by actin stress fiber formation and increased MLC and MYPT1 phosphorylation. Consistent with these results, EC treatment with SB 431542, an inhibitor of ALK5 but not ALK1 receptor, significantly attenuates TGF-beta1-induced permeability. Thus, our data demonstrate for the first time direct link between TGF-beta1-mediated activation of ALK5/Smad and EC barrier dysfunction.  相似文献   

20.
Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and regulates a wide variety of cellular processes such as proliferation, differentiation, necrosis, apoptosis and degeneration. However, the expression of ERK5 and its role in degenerated human nucleus pulposus (NP) is hitherto unknown. In this study, we observed the differential expression of ERK5 in normal and degenerated human nucleus pulposus tissues by using immunohistochemical staining and Western blot. Treatment of NP cells with Pro-inflammatory cytokine, TNF-α decreased ERK5 gene expression as well as NP marker gene expression; including the type II collagen and aggrecan. Suppression of ERK5 gene expression in NP cells by ERK5 siRNA resulted in decreased gene expression of type II collagen and aggrecan. Furthermore, inhibition of ERK5 activation by BIX02188 (5 μM) decreased the gene expression of type II collagen and aggrecan in NP cells. Our results document the expression of ERK5 in degenerated nucleus pulposus tissues, and suggest a potential involvement of ERK5 in human degenerated nucleus pulposus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号