首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Cigarette smoking is the major risk factor for COPD, leading to chronic airway inflammation. We hypothesized that cigarette smoke induces structural and functional changes of airway epithelial mitochondria, with important implications for lung inflammation and COPD pathogenesis.

Methods

We studied changes in mitochondrial morphology and in expression of markers for mitochondrial capacity, damage/biogenesis and fission/fusion in the human bronchial epithelial cell line BEAS-2B upon 6-months from ex-smoking COPD GOLD stage IV patients to age-matched smoking and never-smoking controls.

Results

We observed that long-term CSE exposure induces robust changes in mitochondrial structure, including fragmentation, branching and quantity of cristae. The majority of these changes were persistent upon CSE depletion. Furthermore, long-term CSE exposure significantly increased the expression of specific fission/fusion markers (Fis1, Mfn1, Mfn2, Drp1 and Opa1), oxidative phosphorylation (OXPHOS) proteins (Complex II, III and V), and oxidative stress (Mn-SOD) markers. These changes were accompanied by increased levels of the pro-inflammatory mediators IL-6, IL-8, and IL-1β. Importantly, COPD primary bronchial epithelial cells (PBECs) displayed similar changes in mitochondrial morphology as observed in long-term CSE-exposure BEAS-2B cells. Moreover, expression of specific OXPHOS proteins was higher in PBECs from COPD patients than control smokers, as was the expression of mitochondrial stress marker PINK1.

Conclusion

The observed mitochondrial changes in COPD epithelium are potentially the consequence of long-term exposure to cigarette smoke, leading to impaired mitochondrial function and may play a role in the pathogenesis of COPD.  相似文献   

2.
Cigarette smoke (CS)-induced mitochondrial damage with increased reactive oxygen species (ROS) production has been implicated in COPD pathogenesis by accelerating senescence. Mitophagy may play a pivotal role for removal of CS-induced damaged mitochondria, and the PINK1 (PTEN-induced putative kinase 1)-PARK2 pathway has been proposed as a crucial mechanism for mitophagic degradation. Therefore, we sought to investigate to determine if PINK1-PARK2-mediated mitophagy is involved in the regulation of CS extract (CSE)-induced cell senescence and in COPD pathogenesis. Mitochondrial damage, ROS production, and cell senescence were evaluated in primary human bronchial epithelial cells (HBEC). Mitophagy was assessed in BEAS-2B cells stably expressing EGFP-LC3B, using confocal microscopy to measure colocalization between TOMM20-stained mitochondria and EGFP-LC3B dots as a representation of autophagosome formation. To elucidate the involvement of PINK1 and PARK2 in mitophagy, knockdown and overexpression experiments were performed. PINK1 and PARK2 protein levels in lungs from patients were evaluated by means of lung homogenate and immunohistochemistry. We demonstrated that CSE-induced mitochondrial damage was accompanied by increased ROS production and HBEC senescence. CSE-induced mitophagy was inhibited by PINK1 and PARK2 knockdown, resulting in enhanced mitochondrial ROS production and cellular senescence in HBEC. Evaluation of protein levels demonstrated decreased PARK2 in COPD lungs compared with non-COPD lungs. These results suggest that PINK1-PARK2 pathway-mediated mitophagy plays a key regulatory role in CSE-induced mitochondrial ROS production and cellular senescence in HBEC. Reduced PARK2 expression levels in COPD lung suggest that insufficient mitophagy is a part of the pathogenic sequence of COPD.  相似文献   

3.
Cigarette smoking can cause damage of airway epithelial cells and contribute to chronic obstructive pulmonary disease (COPD). Honokiol is originally isolated from Magnolia obovata with multiple biological activities. Here, we investigated the protective effects of honokiol on cigarette smoke extract (CSE)-induced injury of BEAS-2B cells. BEAS-2B cells were treated with 300 mg/L CSE to construct an in vitro cell injury model, and cells were further treated with 2, 5 and 10 μM honokiol, then cell viability and LDH leakage were analysed by CCK-8 and LDH assay kits, respectively. Apoptosis was detected by flow cytometry analysis. ELISA was used to measure the levels of tumour necrosis factor (TNF)-ɑ, IL-1β, IL-6, IL-8 and MCP-1. The results showed that honokiol (0.5–20 μM) showed non-toxic effects on BEAS-2B cells. Treatment with honokiol (2, 5 and 10 μM) reduced CSE (300 mg/L)-induced decrease in cell viability and apoptosis in BEAS-2B cells. Honokiol also decreased CSE-induced inflammation through inhibiting expression and secretion of inflammatory cytokines, such as TNF-ɑ, IL-1β, IL-6, IL-8 and MCP-1. Moreover, honokiol repressed CSE-induced reactive oxygen species (ROS) production, decrease of ATP content and mitochondrial biogenesis, as well as mitochondrial membrane potential. Mechanistically, honokiol promoted the expression of SIRT3 and its downstream target genes, which are critical regulators of mitochondrial function and oxidative stress. Silencing of SIRT3 reversed the protective effects of honokiol on CSE-induced damage and mitochondrial dysfunction in BEAS-2B cells. These results indicated that honokiol attenuated CSE-induced damage of airway epithelial cells through regulating SIRT3/SOD2 signalling pathway.  相似文献   

4.
Cigarette smoke is a major environmental air pollutant that injures airway epithelium and incites subsequent diseases including chronic obstructive pulmonary disease. The lesion that smoke induces in airway epithelium is still incompletely understood. Using a LIVE/DEAD cytotoxicity assay, we observed that subconfluent cultures of bronchial epithelial cells derived from both human and monkey airway tissues and an immortalized normal human bronchial epithelial cell line (HBE1) were more susceptible to injury by cigarette smoke extract (CSE) and by direct cigarette smoke exposure than cells in confluent cultures. Scraping confluent cultures also caused an enhanced cell injury predominately in the leading edge of the scraped confluent cultures by CSE. Cellular ATP levels in both subconfluent and confluent cultures were drastically reduced after CSE exposure. In contrast, GSH levels were significantly reduced only in subconfluent cultures exposed to smoke and not in confluent cultures. Western blot analysis demonstrated ERK activation in both confluent and subconfluent cultures after CSE. However, activation of apoptosis signal-regulating kinase 1 (ASK1), JNK, and p38 were demonstrated only in subconfluent cultures and not in confluent cultures after CSE. Using short interfering RNA (siRNA) to JNK1 and JNK2 and a JNK inhibitor, we attenuated CSE-mediated cell death in subconfluent cultures but not with an inhibitor of the p38 pathway. Using the tetracycline (Tet)-on inducible approach, overexpression of thioredoxin (TRX) attenuated CSE-mediated cell death and JNK activation in subconfluent cultures. These results suggest that the TRX-ASK1-JNK pathway may play a critical role in mediating cell density-dependent CSE cytotoxicity.  相似文献   

5.

Background

The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that primarily resides in airway epithelial cells. Decreased CFTR expression and/or function lead to impaired airway surface liquid (ASL) volume homeostasis, resulting in accumulation of mucus, reduced clearance of bacteria, and chronic infection and inflammation.

Methods

Expression of CFTR and the cigarette smoke metal content were assessed in lung samples of controls and COPD patients with established GOLD stage 4. CFTR protein and mRNA were quantified by immunohistochemistry and quantitative RT-PCR, respectively. Metals present in lung samples were quantified by ICP-AES. The effect of cigarette smoke on down-regulation of CFTR expression and function was assessed using primary human airway epithelial cells. The role of leading metal(s) found in lung samples of GOLD 4 COPD patients involved in the alteration of CFTR was confirmed by exposing human bronchial epithelial cells 16HBE14o- to metal-depleted cigarette smoke extracts.

Results

We found that CFTR expression is reduced in the lungs of GOLD 4 COPD patients, especially in bronchial epithelial cells. Assessment of metals present in lung samples revealed that cadmium and manganese were significantly higher in GOLD 4 COPD patients when compared to control smokers (GOLD 0). Primary human airway epithelial cells exposed to cigarette smoke resulted in decreased expression of CFTR protein and reduced airway surface liquid height. 16HBE14o-cells exposed to cigarette smoke also exhibited reduced levels of CFTR protein and mRNA. Removal and/or addition of metals to cigarette smoke extracts before exposure established their role in decrease of CFTR in airway epithelial cells.

Conclusions

CFTR expression is reduced in the lungs of patients with severe COPD. This effect is associated with the accumulation of cadmium and manganese suggesting a role for these metals in the pathogenesis of COPD.  相似文献   

6.
7.
Cigarette smoke has been directly implicated in the disease pathogenesis of a plethora of different human cancer subtypes, including breast cancers. The prevailing view is that cigarette smoke acts as a mutagen and DNA damaging agent in normal epithelial cells, driving tumor initiation. However, its potential negative metabolic effects on the normal stromal microenvironment have been largely ignored. Here, we propose a new mechanism by which carcinogen-rich cigarette smoke may promote cancer growth, by metabolically “fertilizing” the host microenvironment. More specifically, we show that cigarette smoke exposure is indeed sufficient to drive the onset of the cancer-associated fibroblast phenotype via the induction of DNA damage, autophagy and mitophagy in the tumor stroma. In turn, cigarette smoke exposure induces premature aging and mitochondrial dysfunction in stromal fibroblasts, leading to the secretion of high-energy mitochondrial fuels, such as L-lactate and ketone bodies. Hence, cigarette smoke induces catabolism in the local microenvironment, directly fueling oxidative mitochondrial metabolism (OXPHOS) in neighboring epithelial cancer cells, actively promoting anabolic tumor growth. Remarkably, these autophagic-senescent fibroblasts increased breast cancer tumor growth in vivo by up to 4-fold. Importantly, we show that cigarette smoke-induced metabolic reprogramming of the fibroblastic stroma occurs independently of tumor neo-angiogenesis. We discuss the possible implications of our current findings for the prevention of aging-associated human diseases and, especially, common epithelial cancers, as we show that cigarette smoke can systemically accelerate aging in the host microenvironment. Finally, our current findings are consistent with the idea that cigarette smoke induces the “reverse Warburg effect,” thereby fueling “two-compartment tumor metabolism” and oxidative mitochondrial metabolism in epithelial cancer cells.  相似文献   

8.

Background

Although individuals exposed to cigarette smoke are more susceptible to respiratory infection, the effects of cigarette smoke on lung defense are incompletely understood. Because airway epithelial cell responses to type II interferon (IFN) are critical in regulation of defense against many respiratory viral infections, we hypothesized that cigarette smoke has inhibitory effects on IFN-γ-dependent antiviral mechanisms in epithelial cells in the airway.

Methods

Primary human tracheobronchial epithelial cells were first treated with cigarette smoke extract (CSE) followed by exposure to both CSE and IFN-γ. Epithelial cell cytotoxicity and IFN-γ-induced signaling, gene expression, and antiviral effects against respiratory syncytial virus (RSV) were tested without and with CSE exposure.

Results

CSE inhibited IFN-γ-dependent gene expression in airway epithelial cells, and these effects were not due to cell loss or cytotoxicity. CSE markedly inhibited IFN-γ-induced Stat1 phosphorylation, indicating that CSE altered type II interferon signal transduction and providing a mechanism for CSE effects. A period of CSE exposure combined with an interval of epithelial cell exposure to both CSE and IFN-γ was required to inhibit IFN-γ-induced cell signaling. CSE also decreased the inhibitory effect of IFN-γ on RSV mRNA and protein expression, confirming effects on viral infection. CSE effects on IFN-γ-induced Stat1 activation, antiviral protein expression, and inhibition of RSV infection were decreased by glutathione augmentation of epithelial cells using N-acetylcysteine or glutathione monoethyl ester, providing one strategy to alter cigarette smoke effects.

Conclusions

The results indicate that CSE inhibits the antiviral effects of IFN-γ, thereby presenting one explanation for increased susceptibility to respiratory viral infection in individuals exposed to cigarette smoke.  相似文献   

9.
Cigarette smoke is a major cause of chronic obstructive pulmonary disease (COPD). Airway epithelial cells and macrophages are the first defense cells against cigarette smoke and these cells are an important source of pro-inflammatory cytokines. These cytokines play a role in progressive airflow limitation and chronic airways inflammation. Furthermore, the chronic colonization of airways by Gram-negative bacteria, contributes to the persistent airways inflammation and progression of COPD. The current study addressed the effects of cigarette smoke along with lipolysaccharide (LPS) in airway epithelial cells as a representative in vitro model of COPD exacerbations. Furthermore, we evaluated the effects of PDE4 inhibitor, the roflumilast N-oxide (RNO), in this experimental model. A549 cells were stimulated with cigarette smoke extract (CSE) alone (0.4% to 10%) or in combination with a low concentration of LPS (0.1 µg/ml) for 2 h or 24 h for measurement of chemokine protein and mRNAs and 5–120 min for protein phosphorylation. Cells were also pre-incubated with MAP kinases inhibitors and Prostaglandin E2 alone or combined with RNO, before the addition of CSE+LPS. Production of cytokines was determined by ELISA and protein phosphorylation by western blotting and phospho-kinase array. CSE did not induce production of IL-8/CXCL8 and Gro-α/CXCL1 from A549 cells, but increase production of CCL2/MCP-1. However the combination of LPS 0.1 µg/ml with CSE 2% or 4% induced an important production of these chemokines, that appears to be dependent of ERK1/2 and JAK/STAT pathways but did not require JNK and p38 pathways. Moreover, RNO associated with PGE2 reduced CSE+LPS-induced cytokine release, which can happen by occur through of ERK1/2 and JAK/STAT pathways. We report here an in vitro model that can reflect what happen in airway epithelial cells in COPD exacerbation. We also showed a new pathway where CSE+LPS can induce cytokine release from A549 cells, which is reduced by RNO.  相似文献   

10.
Mucus hypersecretion from hyperplastic airway goblet cells is a hallmark of chronic obstructive pulmonary disease (COPD). Although cigarette smoking is thought to be involved in mucus hypersecretion in COPD, the mechanism by which cigarette smoke induces mucus overproduction is unknown. Here we show that activation of epidermal growth factor receptors (EGFR) is responsible for mucin production after inhalation of cigarette smoke in airways in vitro and in vivo. In the airway epithelial cell line NCI-H292, exposure to cigarette smoke upregulated the EGFR mRNA expression and induced activation of EGFR-specific tyrosine phosphorylation, resulting in upregulation of MUC5AC mRNA and protein production, effects that were inhibited completely by selective EGFR tyrosine kinase inhibitors (BIBX1522, AG-1478) and that were decreased by antioxidants. In vivo, cigarette smoke inhalation increased MUC5AC mRNA and goblet cell production in rat airways, effects that were prevented by pretreatment with BIBX1522. These effects may explain the goblet cell hyperplasia that occurs in COPD and may provide a novel strategy for therapy in airway hypersecretory diseases.  相似文献   

11.
As a novel kind of non‐coding RNA, circular RNAs (circRNAs) were involved in various biological processes. However, the role of circRNAs in the developmental process of chronic obstructive pulmonary disease (COPD) is still unclear. In the present study, by using a cell model of COPD in primary human small airway epithelial cells (HSAECs) treated with or without cigarette smoke extract (CSE), we uncovered 4,379 previously unknown circRNAs in human cells and 903 smoke‐specific circRNAs, with the help of RNA‐sequencing and bioinformatic analysis. Moreover, 3,872 up‐ and 4,425 down‐regulated mRNAs were also identified under CSE stimulation. Furthermore, a putative circRNA‐microRNA‐mRNA network was constructed for in‐depth mechanism exploration, which indicated that differentially expressed circRNAs could influence expression of some key genes that participate in response to pentose phosphate pathway, ATP‐binding cassette (ABC) transporters, glycosaminoglycan biosynthesis pathway and cancer‐related pathways. Our research indicated that cigarette smoke had an influence on the biogenesis of circRNAs and mRNAs. CircRNAs might be involved in the response to CSE in COPD through the circRNA‐mediated ceRNA networks.  相似文献   

12.
Previously, we have found that acetaldehyde, a volatile component of cigarette smoke, stimulates the protein kinase C (PKC) pathway and inhibits ciliary motility. A "smokeless" cigarette (Eclipse) now exists in which most of the tobacco is not burned, reducing the pyrolyzed components in the extract. We hypothesized that acetaldehyde is a component of cigarette smoke that activates PKC in the airway epithelial cell, and therefore the Eclipse cigarette would not activate epithelial cell PKC. In this study, bovine bronchial epithelial cells (BBEC) were incubated with cigarette smoke extract (CSE) or Eclipse smoke extract (ESE). We found that PKC activity was significantly higher in cells exposed to 5% CSE than cells exposed to 5% ESE or media. When acetaldehyde levels of both extracts were measured by gas chromatography, CSE was found to have 15-20 times greater concentration (microM) of acetaldehyde than ESE. When BBEC were treated with 5% CSE, ciliary beating was further decreased from baseline levels. This decrease in ciliary beating was not observed in cells treated with ESE, suggesting that acetaldehyde contained in CSE slows cilia. These results suggest that volatile components such as acetaldehyde in cigarette smoke may inhibit ciliary motility via a PKC-dependent mechanism.  相似文献   

13.
Increased lung cell apoptosis and necrosis occur in patients with chronic obstructive pulmonary disease (COPD). Mitochondria are crucially involved in the regulation of these cell death processes. Cigarette smoke is the main risk factor for development of COPD. We hypothesized that cigarette smoke disturbs mitochondrial function, thereby decreasing the capacity of mitochondria for ATP synthesis, leading to cellular necrosis. This hypothesis was tested in both human bronchial epithelial cells and isolated mitochondria. Cigarette smoke extract exposure resulted in a dose-dependent inhibition of complex I and II activities. This inhibition was accompanied by decreases in mitochondrial membrane potential, mitochondrial oxygen consumption, and production of ATP. Cigarette smoke extract abolished the staurosporin-induced caspase-3 and -7 activities and induced a switch from epithelial cell apoptosis into necrosis. Cigarette smoke induced mitochondrial dysfunction, with compounds of cigarette smoke acting as blocking agents of the mitochondrial respiratory chain; loss of ATP generation leading to cellular necrosis instead of apoptosis is a new pathophysiological concept of COPD development.  相似文献   

14.
Cigarette smoking is the main risk factor associated with chronic obstructive pulmonary disease (COPD), and contributes to COPD development and progression by causing epithelial injury and inflammation. Whereas it is known that cigarette smoke (CS) may affect the innate immune function of airway epithelial cells and epithelial repair, this has so far not been explored in an integrated design using mucociliary differentiated airway epithelial cells. In this study, we examined the effect of whole CS exposure on wound repair and the innate immune activity of mucociliary differentiated primary bronchial epithelial cells, upon injury induced by disruption of epithelial barrier integrity or by mechanical wounding. Upon mechanical injury CS caused a delayed recovery in the epithelial barrier integrity and wound closure. Furthermore CS enhanced innate immune responses, as demonstrated by increased expression of the antimicrobial protein RNase 7. These differential effects on epithelial repair and innate immunity were both mediated by CS-induced oxidative stress. Overall, our findings demonstrate modulation of wound repair and innate immune responses of injured airway epithelial cells that may contribute to COPD development and progression.  相似文献   

15.
Wu Q  Jiang D  Chu HW 《Innate immunity》2012,18(4):617-626
Excessive mucus is a hallmark of chronic obstructive pulmonary disease (COPD). There is an emerging interest in the role of TGF-β signaling in the initiation and progression of COPD. Growth differentiation factor 15 (GDF15) is a divergent member of TGF-β superfamily. However, whether cigarette smoke induces airway epithelial GDF15 production and its functions in the airways have not been revealed. Therefore, we first analyzed GDF15 protein expression in airway epithelium of human COPD smokers versus normal non-smokers. We then examined the regulation and function of GDF15 in human airway epithelial cells in response to cigarette smoke exposure. We found increased GDF15 protein expression in airway epithelium (mainly in ciliated cells) of human COPD smokers compared with normal non-smokers. Furthermore, cigarette smoke exposure consistently up-regulated GDF15 expression in human airway epithelial cells. Moreover, GDF15 was shown to play a critical role in cigarette smoke-induced airway epithelial MUC5AC expression. Lastly, activation of phosphoinositide 3-kinase (PI3K) pathway was largely responsible for GDF15-induced airway epithelial MUC5AC expression. Our findings indicate that human airway epithelial cells can produce GDF15 during cigarette smoke exposure, which subsequently activates PI3K pathway to promote mucin (e.g. MUC5AC) expression. This highlights a novel role of GDF15 in regulating airway mucosal immunity (e.g. mucin) in cigarette smoke-exposed lungs.  相似文献   

16.

Background

Abnormal immune responses are believed to be highly relevant in the pathogenesis of chronic obstructive pulmonary disease (COPD). Dendritic cells provide a critical checkpoint for immunity by their capacity to both induce and suppress immunity. Although evident that cigarette smoke, the primary cause of COPD, significantly influences dendritic cell functions, little is known about the roles of dendritic cells in the pathogenesis of COPD.

Methods

The extent of dendritic cell infiltration in COPD tissue specimens was determined using immunohistochemical localization of CD83+ cells (marker of matured myeloid dendritic cells), and CD1a+ cells (Langerhans cells). The extent of tissue infiltration with Langerhans cells was also determined by the relative expression of the CD207 gene in COPD versus control tissues. To determine mechanisms by which dendritic cells accumulate in COPD, complimentary studies were conducted using monocyte-derived human dendritic cells exposed to cigarette smoke extract (CSE), and dendritic cells extracted from mice chronically exposed to cigarette smoke.

Results

In human COPD lung tissue, we detected a significant increase in the total number of CD83+ cells, and significantly higher amounts of CD207 mRNA when compared with control tissue. Human monocyte-derived dendritic cells exposed to CSE (0.1-2%) exhibited enhanced survival in vitro when compared with control dendritic cells. Murine dendritic cells extracted from mice exposed to cigarette smoke for 4 weeks, also demonstrated enhanced survival compared to dendritic cells extracted from control mice. Acute exposure of human dendritic cells to CSE induced the cellular pro-survival proteins heme-oxygenase-1 (HO-1), and B cell lymphoma leukemia-x(L) (Bcl-xL), predominantly through oxidative stress. Although activated human dendritic cells conditioned with CSE expressed diminished migratory CCR7 expression, their migration towards the CCR7 ligand CCL21 was not impaired.

Conclusions

These data indicate that COPD is associated with increased numbers of cells bearing markers associated with Langerhans cells and mature dendritic cells, and that cigarette smoke promotes survival signals and augments survival of dendritic cells. Although CSE suppressed dendritic cell CCR7 expression, migration towards a CCR7 ligand was not diminished, suggesting that reduced CCR7-dependent migration is unlikely to be an important mechanism for dendritic cell retention in the lungs of smokers with COPD.  相似文献   

17.
Chronic obstructive pulmonary disease (COPD) is a major global epidemic with increasing incidence worldwide. The pathogenesis of COPD is involved with mitochondrial autophagy. Recently, it has been reported that FUN14 domain containing 1 (FUNDC1) is a mediator of mitochondrial autophagy. Therefore, we hypothesized that FUNDC1 was involved in cigarette smoke (CS)-induced COPD progression by regulating mitochondrial autophagy. In vitro cigarette smoke extract (CSE)-treated human bronchial epithelial cell (hBEC) Beas-2B cell line and in vivo CS-induced COPD mouse models were developed, in which FUNDC1 expression was measured. Next, whether FUNDC1 interacted with dynamin-related protein 1 (DRP1) in COPD was investigated. The functional mechanism of FUNDC1 in COPD was evaluated through gain- or loss-of-function studies. Then, pulmonary function, mitochondrial transmembrane potential (MTP) and mucociliary clearance (MCC) were examined. Levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) and expression of autophagy-specific markers (light chain 3 [LC3] II, LC3 I, and Tom20) were measured. Finally, apoptosis and mitochondrial autophagy were assessed. FUNDC1 was highly expressed in CSE-treated hBECs and COPD mice. Meanwhile, FUNDC1 was proved to interact with DRP1 in CSE-treated cells. Moreover, in CSE-treated hBECs, silencing FUNDC1 was observed to reduce levels of IL-6 and TNF-α, and MTP but increase MCC, and inhibit CSE-induced mitochondrial autophagy and Beas-2B cell apoptosis, which was consistent with the trend in COPD mouse models. In addition, pulmonary function of COPD mouse models was increased in response to FUNDC1 silencing. Finally, silencing of DRP1 also inhibited mitochondrial autophagy and Beas-2B cell apoptosis. Collectively, FUNDC1 silencing could suppress the progression of COPD by inhibiting mitochondrial autophagy and hBEC apoptosis through interaction with DRP1, highlighting a potential therapeutic target for COPD treatment.  相似文献   

18.
19.

Background

Genotoxic stress, such as by exposure to bromodeoxyuridine (BrdU) and cigarette smoke, induces premature cell senescence. Recent evidence indicates that cellular senescence of various types of cells is accelerated in COPD patients. However, whether the senescence of airway epithelial cells contributes to the development of airway diseases is unknown. The present study was designed to test the hypothesis that premature senescence of airway epithelial cells (Clara cells) impairs repair processes and exacerbates inflammation after airway injury.

Methods

C57/BL6J mice were injected with the Clara-cell-specific toxicant naphthalene (NA) on days 0, 7, and 14, and each NA injection was followed by a daily dose of BrdU on each of the following 3 days, during which regenerating cells were allowed to incorporate BrdU into their DNA and to senesce. The p38 MAPK inhibitor SB202190 was injected 30 minutes before each BrdU dose. Mice were sacrificed at different times until day 28 and lungs of mice were obtained to investigate whether Clara cell senescence impairs airway epithelial regeneration and exacerbates airway inflammation. NCI-H441 cells were induced to senesce by exposure to BrdU or the telomerase inhibitor MST-312. Human lung tissue samples were obtained from COPD patients, asymptomatic smokers, and nonsmokers to investigate whether Clara cell senescence is accelerated in the airways of COPD patients, and if so, whether it is accompanied by p38 MAPK activation.

Results

BrdU did not alter the intensity of the airway epithelial injury or inflammation after a single NA exposure. However, after repeated NA exposure, BrdU induced epithelial cell (Clara cell) senescence, as demonstrated by a DNA damage response, p21 overexpression, increased senescence-associated β-galactosidase activity, and growth arrest, which resulted in impaired epithelial regeneration. The epithelial senescence was accompanied by p38 MAPK-dependent airway inflammation. Senescent NCI-H441 cells impaired epithelial wound repair and secreted increased amounts of pro-inflammatory cytokines in a p38 MAPK-dependent manner. Clara cell senescence in COPD patients was accelerated and accompanied by p38 MAPK activation.

Conclusions

Senescence of airway epithelial cells impairs repair processes and exacerbates p38 MAPK-dependent inflammation after airway injury, and it may contribute to the pathogenesis of COPD.  相似文献   

20.

Background

Human rhinovirus (HRV) triggers exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Cigarette smoking is the leading risk factor for the development of COPD and 25% of asthmatics smoke. Smoking asthmatics have worse symptoms and more frequent hospitalizations compared to non-smoking asthmatics. The degree of neutrophil recruitment to the airways correlates with disease severity in COPD and during viral exacerbations of asthma. We have previously shown that HRV and cigarette smoke, in the form of cigarette smoke extract (CSE), each induce expression of the neutrophil chemoattractant and activator, CXCL8, in human airway epithelial cells. Additionally, we demonstrated that the combination of HRV and CSE induces expression of levels of CXCL8 that are at least additive relative to induction by each stimulus alone, and that enhancement of CXCL8 expression by HRV+CSE is regulated, at least in part, via mRNA stabilization. Here we further investigate the mechanisms by which HRV+CSE enhances CXCL8 expression.

Methods

Primary human bronchial epithelial cells were cultured and treated with CSE alone, HRV alone or the combination of the two stimuli. Stabilizing/destabilizing proteins adenine/uridine-rich factor-1 (AUF-1), KH-type splicing regulatory protein (KHSRP) and human antigen R (HuR) were measured in cell lysates to determine expression levels following treatment. siRNA knockdown of each protein was used to assess their contribution to the induction of CXCL8 expression following treatment of cells with HRV and CSE.

Results

We show that total expression of stabilizing/de-stabilizing proteins linked to CXCL8 regulation, including AUF-1, KHSRP and HuR, are not altered by CSE, HRV or the combination of the two stimuli. Importantly, however, siRNA-mediated knock-down of HuR, but not AUF-1 or KHSRP, abolishes the enhancement of CXCL8 by HRV+CSE. Data were analyzed using one-way ANOVA with student Newman-Keuls post hoc analysis and values of p≤ 0.05 were considered significant.

Conclusions

Induction of CXCL8 by the combination of HRV and CSE is regulated by mRNA stabilization involving HuR. Thus, targeting the HuR pathway may be an effective method of dampening CXCL8 production during HRV-induced exacerbations of lower airway disease, particularly in COPD patients and asthmatic patients who smoke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号