首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Rationale

Chorioamnionitis and antenatal glucocorticoids are common exposures for preterm infants and can affect the fetal brain, contributing to cognitive and motor deficits in preterm infants. The effects of antenatal glucocorticoids on the brain in the setting of chorioamnionitis are unknown. We hypothesized that antenatal glucocorticoids would modulate inflammation in the brain and prevent hippocampal and white matter injury after intra-amniotic lipopolysaccharide (LPS) exposure.

Methods

Time-mated ewes received saline (control), an intra-amniotic injection of 10 mg LPS at 106d GA or 113d GA, maternal intra-muscular betamethasone (0.5 mg/kg maternal weight) alone at 113d GA, betamethasone at 106d GA before LPS or betamethasone at 113d GA after LPS. Animals were delivered at 120d GA (term=150d). Brain structure volumes were measured on T2-weighted MRI images. The subcortical white matter (SCWM), periventricular white matter (PVWM) and hippocampus were analyzed for microglia, astrocytes, apoptosis, proliferation, myelin and pre-synaptic vesicles.

Results

LPS and/or betamethasone exposure at different time-points during gestation did not alter brain structure volumes on MRI. Betamethasone alone did not alter any of the measurements. Intra-amniotic LPS at 106d or 113d GA induced inflammation as indicated by increased microglial and astrocyte recruitment which was paralleled by increased apoptosis and hypomyelination in the SCWM and decreased synaptophysin density in the hippocampus. Betamethasone before the LPS exposure at 113d GA prevented microglial activation and the decrease in synaptophysin. Betamethasone after LPS exposure increased microglial infiltration and apoptosis.

Conclusion

Intra-uterine LPS exposure for 7d or 14d before delivery induced inflammation and injury in the fetal white matter and hippocampus. Antenatal glucocorticoids aggravated the inflammatory changes in the brain caused by pre-existing intra-amniotic inflammation. Antenatal glucocorticoids prior to LPS reduced the effects of intra-uterine inflammation on the brain. The timing of glucocorticoid administration in the setting of chorioamnionitis can alter outcomes for the fetal brain.  相似文献   

2.
We describe a protocol for establishing mouse models of periventricular leukomalacia (PVL). PVL is the predominant form of brain injury in premature infants and the most common antecedent of cerebral palsy. PVL is characterized by periventricular white matter damage with prominent oligodendroglial injury. Hypoxia/ischemia with or without systemic infection/inflammation are the primary causes of PVL. We use P6 mice to create models of neonatal brain injury by the induction of hypoxia/ischemia with or without systemic infection/inflammation with unilateral carotid ligation followed by exposure to hypoxia with or without injection of the endotoxin lipopolysaccharide (LPS). Immunohistochemistry of myelin basic protein (MBP) or O1 and electron microscopic examination show prominent myelin loss in cerebral white matter with additional damage to the hippocampus and thalamus. Establishment of mouse models of PVL will greatly facilitate the study of disease pathogenesis using available transgenic mouse strains, conduction of drug trials in a relatively high throughput manner to identify candidate therapeutic agents, and testing of stem cell transplantation using immunodeficiency mouse strains.  相似文献   

3.
Exposure to chorioamnionitis is strongly associated with neurodevelopmental disability after premature birth; however, it remains unclear whether subclinical infection affects functional EEG maturation. Chronically instrumented 103-104-day-old (0.7 gestational age: term 147 days) fetal sheep in utero were randomized to receive either gram-negative LPS by continuous low-dose infusion (100 ng iv over 24 h, followed by 250 ng/24 h for 4 days; n = 6) or the same volume of normal saline (n = 9). Arterial plasma cortisol, ACTH, and IL-6 were measured. The delta (0-3.9 Hz), theta (4-7.9 Hz), alpha (8-12.9 Hz), and beta (13-22 Hz) components of the EEG were determined by power spectral analysis. Brains were taken after 10 days for histopathology. There were no changes in blood gases, cardiovascular variables, or EEG power during LPS infusion, but a transient rise in plasma cortisol and IL-6 (P < 0.05). LPS infusion was associated with loss of the maturational increase to higher frequency activity, with reduced alpha and beta power, and greater delta power than saline controls from 6 to 10 days (P < 0.05). Histologically, LPS was associated with increased numbers of microglia and TNF-α-positive cells in the periventricular white matter and frontoparietal cortex, increased caspase-3-positive cells in white matter, but no loss of CNPase-positive oligodendrocytes, Nurr-1 subplate cells, or gyral complexity. These data suggest that low-dose endotoxin exposure can impair EEG maturation in preterm fetal sheep in association with neural inflammation but without hemodynamic disturbances or cortical injury.  相似文献   

4.
5.
Bacterial lipopolysaccharide (LPS) is an important mediator of inflammation and a potent inducer of endothelial cell damage and apoptosis. In this study, we investigated the protective effects of saikosaponin C (SSc), one of the active ingredients produced by the traditional Chinese herb, Radix Bupleuri, against LPS-induced apoptosis in human umbilical endothelial cells (HUVECs). LPS triggered caspase-3 activation, which was found to be important in LPS-induced HUVEC apoptosis. Inhibition of caspase-3 also inhibited LPS-induced degradation of focal adhesion kinase (FAK), indicating that caspase-3 is important in LPS-mediated FAK degradation as well as in apoptosis in HUVECs. SSc significantly inhibited LPS-induced apoptotic cell death in HUVECs through the selective suppression of caspase-3. SSc was also shown to rescue LPS-induced FAK degradation and other cell adhesion signals. Furthermore, the protective effects of SSc against LPS-induced apoptosis were abolished upon pretreatment with a FAK inhibitor, highlighting the importance of FAK in SSc activity. Taken together, these results show that SSc efficiently inhibited LPS-induced apoptotic cell death via inhibition of caspase-3 activation and caspase-3-mediated-FAK degradation. Therefore, SSc represents a promising therapeutic candidate for the treatment of vascular endothelial cell injury and cellular dysfunction.  相似文献   

6.
The aim of the present study is to evaluate the effect of reduced fetal oxygen supply on cerebral white matter in the adult offspring and further assess its susceptibility to postnatal hypoxia and high-fat diet. Based on a 3 × 2 full factorial design consisting of three factors of maternal hypoxia, postnatal high-fat diet, and postnatal hypoxia, the ultrastructure of myelin, axon and capillaries were observed, and the expression of myelin basic protein (MBP), neurofilament-H+L(NF-H+L), and glial fibrillary acidic protein (GFAP) was analyzed in periventricular white matter of 16-month-old offspring. Demyelination, injured axon and damaged microvasculars were observed in maternal hypoxia offspring. The main effect of maternal hypoxia lead to decreased expression of MBP or NF-H+L, and increased expression of GFAP (all < 0.05). Moreover, there was positive three-way interaction among maternal hypoxia, high-fat diet and postnatal hypoxia on MBP, NF-H+L or GFAP expression (all < 0.05). In summary, our results indicated that maternal hypoxia during pregnancy in rats lead to changes of periventricular white matter in adult offspring, including demyelination, damaged axon and proliferated astroglia. This effect was amplified by high-fat diet and postnatal hypoxia.  相似文献   

7.
Cerebral blood flow disturbance is a major contributor to brain injury in the preterm infant. The initiation of ventilation may be a critical time for cerebral hemodynamic disturbance leading to brain injury in preterm infants, particularly if they are exposed to inflammation in utero. We aimed to determine whether exposure to inflammation in utero alters cardiopulmonary hemodynamics, resulting in cerebral hemodynamic disturbance and related brain injury during the initiation of ventilation. Furthermore, we aimed to determine whether inflammation in utero alters the cerebral hemodynamic response to challenge induced by high mean airway pressures. Pregnant ewes received intra-amniotic lipopolysaccharide (LPS) or saline either 2 or 4-days before preterm delivery (at 128 ± 1 days of gestation). Lambs were surgically instrumented for assessment of pulmonary and cerebral hemodynamics before delivery and positive pressure ventilation. After 30 min, lambs were challenged hemodynamically by incrementing and decrementing positive end-expiratory pressure. Blood gases, arterial pressures, and blood flows were recorded. The brain was collected for biochemical and histological assessment of inflammation, brain damage, vascular extravasation, hemorrhage, and oxidative injury. Carotid arterial pressure was higher and carotid blood flow was more variable in 2-day LPS lambs than in controls during the initial 15 min of ventilation. All lambs responded similarly to the hemodynamic challenge. Both 2- and 4-day LPS lambs had increased brain interleukin (IL)-1β, IL-6, and IL-8 mRNA expression; increased number of inflammatory cells in the white matter; increased incidence and severity of brain damage; and vascular extravasation relative to controls. Microvascular hemorrhage was increased in 2-day LPS lambs compared with controls. Cerebral oxidative injury was not different between groups. Antenatal inflammation causes adverse cerebral hemodynamics and increases the incidence and severity of brain injury in ventilated preterm lambs.  相似文献   

8.
Perinatal infections are a risk factor for fetal neurological pathologies, including cerebral palsy and schizophrenia. Cytokines that are produced as part of the inflammatory response are proposed to partially mediate the neurological injury. This study investigated the effects of intraperitoneal injections of lipopolysaccharide (LPS) to pregnant rats on the production of cytokines and stress markers in the fetal environment. Gestation day 18 pregnant rats were treated with LPS (100 microg/kg body wt i.p.), and maternal serum, amniotic fluid, placenta, chorioamnion, and fetal brain were harvested at 1, 6, 12, and 24 h posttreatment to assay for LPS-induced changes in cytokine protein (ELISA) and mRNA (real-time RT-PCR) levels. We observed induction of proinflammatory cytokines interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha (TNF-alpha) as well as the anti-inflammatory cytokine IL-10 in the maternal serum within 6 h of LPS exposure. Similarly, proinflammatory cytokines were induced in the amniotic fluid in response to LPS; however, no significant induction of IL-10 was observed in the amniotic fluid. LPS-induced mRNA changes included upregulation of the stress-related peptide corticotropin-releasing factor in the fetal whole brain, TNF-alpha, IL-6, and IL-10 in the chorioamnion, and TNF-alpha, IL-1 beta, and IL-6 in the placenta. These findings suggest that maternal infections may lead to an unbalanced inflammatory reaction in the fetal environment that activates the fetal stress axis.  相似文献   

9.
Endothelial injury is a major manifestation of septic shock induced by LPS. Recently, LPS was shown to induce apoptosis in different types of endothelial cells. In this study, we observed that pretreatment with vascular endothelial growth factor (VEGF), a known cell survival factor, blocked LPS-induced apoptosis in endothelial cells. We then further defined this LPS-induced apoptotic pathway and its inhibition by VEGF. We found that LPS treatment increased caspase-3 and caspase-1 activities and induced the cleavage of focal adhesion kinase. LPS also augmented expression of the pro-apoptotic protein Bax and the tumor suppressor gene p53. The pro-apoptotic Bax was found to translocate to the mitochondria from the cytosol following stimulation with LPS. Pretreatment of endothelial cells with VEGF inhibited the induction of both Bax and p53 as well as the activation of caspase-3. These data suggest that VEGF inhibits LPS-induced endothelial apoptosis by blocking pathways that lead to caspase activation.  相似文献   

10.
Caspase-1, the prototypic caspase, is known to process the cytokines IL-1beta and IL-18 to mature forms but it is unclear whether, like other caspases, it can induce apoptosis by activation of downstream protease cascades. Neutrophils are known to express caspase-1, to release IL-1beta and to undergo rapid, caspase-dependent apoptosis. We examined apoptosis and IL-1beta production in peripheral blood neutrophils of caspase-1-deficient and wild-type mice. Constitutive apoptosis of caspase-1-deficient neutrophils was delayed compared with wild-type neutrophils and LPS-mediated inhibition of apoptosis was absent, but caspase-1-deficient neutrophils were susceptible to Fas-mediated apoptosis. LPS-stimulated IL-1beta production was absent from caspase-1-deficient neutrophils. To ascertain whether these differences in apoptosis and IL-1beta production would alter the response to acute lung injury, we studied pulmonary neutrophil accumulation following intratracheal administration of LPS. Caspase-1-deficient mice showed increased, predominantly neutrophilic pulmonary inflammation, but inflammation had resolved in both wild-type and deficient animals by 72 h after LPS instillation. IL-1beta production was increased in wild-type lungs but was also detected in caspase-1-deficient mice. We conclude that caspase-1 modulates apoptosis of both peripheral blood and inflammatory neutrophils, but is not essential for IL-1beta production in the lung.  相似文献   

11.
Maternal immune activation can induce neuropsychiatric disorders, such as autism and schizophrenia. Previous investigations by our group have shown that prenatal treatment of rats on gestation day 9.5 with lipopolysaccharide (LPS; 100 μg/kg, intraperitoneally), which mimics infections by gram-negative bacteria, induced autism-like behavior in male rats, including impaired communication and socialization and induced repetitive/restricted behavior. However, the behavior of female rats was unchanged. Little is known about how LPS-induced changes in the pregnant dam subsequently affect the developing fetus and the fetal immune system. The present study evaluated the hypothalamic-pituitary-adrenal (HPA) axis activity, the placental tissue and the reproductive performance of pregnant Wistar rats exposed to LPS. In the adult offspring, we evaluated the HPA axis and pro-inflammatory cytokine levels with or without a LPS challenge. LPS exposure increased maternal serum corticosterone levels, injured placental tissue and led to higher post-implantation loss, resulting in fewer live fetuses. The HPA axis was not affected in adult offspring. However, prenatal LPS exposure increased IL-1β serum levels, revealing that prenatal LPS exposure modified the immune response to a LPS challenge in adulthood. Increased IL-1β levels have been reported in several autistic patients. Together with our previous studies, our model induced autistic-like behavioral and immune disturbances in childhood and adulthood, indicating that it is a robust rat model of autism.  相似文献   

12.
Vitronectin is present in large concentrations in serum and participates in regulation of humoral responses, including coagulation, fibrinolysis, and complement activation. Because alterations in coagulation and fibrinolysis are common in acute lung injury, we examined the role of vitronectin in LPS-induced pulmonary inflammation. Vitronectin concentrations were significantly increased in the lungs after LPS administration. Neutrophil numbers and proinflammatory cytokine levels, including IL-1beta, MIP-2, KC, and IL-6, were significantly reduced in bronchoalveolar lavage fluid from vitronectin-deficient (vitronectin(-/-)) mice, as compared with vitronectin(+/+) mice, after LPS exposure. Similarly, LPS induced increases in lung edema, myeloperoxidase-concentrations, and pulmonary proinflammatory cytokine concentrations were significantly lower in vitronectin(-/-) mice. Vitronectin(-/-) neutrophils demonstrated decreased KC-induced chemotaxis as compared with neutrophils from vitronectin(+/+) mice, and incubation of vitronectin(+/+) neutrophils with vitronectin was associated with increased chemotaxis. Vitronectin(-/-) neutrophils consistently produced more TNF-alpha, MIP-2, and IL-1beta after LPS exposure than did vitronectin(+/+) neutrophils and also showed greater degradation of IkappaB-alpha and increased LPS-induced nuclear accumulation of NF-kappaB compared with vitronectin(+/+) neutrophils. These findings provide a novel vitronectin-dependent mechanism contributing to the development of acute lung injury.  相似文献   

13.
14.
Lipopolysaccharide (LPS) exerts a myriad of effects in rat hippocampus; it increases the concentration of the proinflammatory cytokine, interleukin-1beta (IL-1beta), and signalling via the IL-1 type I receptor (IL-1RI) resulting in phosphorylation of the stress-activated protein kinase, c-jun-N-terminal kinase (JNK) and impairment in long-term potentiation (LTP). This study was designed to establish whether activation of JNK is a pivotal event in mediating the effects of LPS in hippocampus and therefore LPS-treated rats were injected intracerebroventricularly with saline, the JNK inhibitor D-JNKI1, or with the anti-inflammatory cytokine IL-4, which antagonizes the effects of IL-1beta upstream of JNK activation. We report that IL-4 blocked the LPS-induced increase in IL-1RI expression and associated increases in phosphorylation of JNK and c-jun, whereas D-JNKI1 inhibited the LPS-induced phosphorylation of c-jun. Both IL-4 and D-JNKI1 inhibited the increase in caspase-3 staining which was associated with LPS treatment, and both abrogated the LPS-induced inhibition of LTP in perforant path-granule cell synapses. The data presented are consistent with the proposal that JNK activation, probably as a result of increased IL-1RI activation, is a critical step in mediating the detrimental effects of LPS in hippocampus.  相似文献   

15.
16.
Vascular response is an essential pathological mechanism underlying various inflammatory diseases. This study determines whether IL-35, a novel responsive anti-inflammatory cytokine, inhibits vascular response in acute inflammation. Using a mouse model of LPS-induced acute inflammation and plasma samples from sepsis patients, we found that IL-35 was induced in the plasma of mice after LPS injection as well as in the plasma of sepsis patients. In addition, IL-35 decreased LPS-induced proinflammatory cytokines and chemokines in the plasma of mice. Furthermore, IL-35 inhibited leukocyte adhesion to the endothelium in the vessels of lung and cremaster muscle and decreased the numbers of inflammatory cells in bronchoalveolar lavage fluid. Mechanistically, IL-35 inhibited the LPS-induced up-regulation of endothelial cell (EC) adhesion molecule VCAM-1 through IL-35 receptors gp130 and IL-12Rβ2 via inhibition of the MAPK-activator protein-1 (AP-1) signaling pathway. We also found that IL-27, which shares the EBI3 subunit with IL-35, promoted LPS-induced VCAM-1 in human aortic ECs and that EBI3-deficient mice had similar vascular response to LPS when compared with that of WT mice. These results demonstrated for the first time that inflammation-induced IL-35 inhibits LPS-induced EC activation by suppressing MAPK-AP1-mediated VCAM-1 expression and attenuates LPS-induced secretion of proinflammatory cytokines/chemokines. Our results provide insight into the control of vascular inflammation by IL-35 and suggest that IL-35 is an attractive novel therapeutic reagent for sepsis and cardiovascular diseases.  相似文献   

17.
18.
AimsEnvironmental information received by a mother can induce a phenotype change in her offspring, commonly known as a maternal effect (trans-generational effect). The present work verified the effects of lipopolysaccharide (LPS), which mimics bacterial infection, on maternal care and on the activity of related brain areas in F1 offspring, i.e., female rats that were prenatally exposed to LPS.Main methodsPregnant rats received 100 μg/kg of LPS intraperitoneally on gestational day (GD) 9.5. Female offspring of the F1 generation were mated to naïve males and were evaluated during their lactation period for open field, maternal and aggressive behaviors. Striatal and hypothalamic dopamine and serotonin levels and turnover were also evaluated. Furthermore, astrocyte protein expression in the nucleus accumbens (NA) was analyzed in F1 females to assess LPS-induced neuroinflammation.Key findingsPrenatal LPS did not change open field behavior but impaired both maternal and maternal aggressive behaviors in the F1 generation. LPS exposure also reduced both striatal levels of dopamine and serotonin and its metabolites, but induced no changes in NA astrocyte expression.SignificanceWe suggested that the observed impairments in the F1 females were a consequence of a motivational change induced by prenatal LPS, as (1) no changes in motor activity were observed, (2) prenatal LPS-exposure was reported by our group to induce motivational impairments in males, and (3) the existence of a strong connection between striatal dopaminergic activity and motivation-oriented activities. The present findings strongly indicate a maternal effect for prenatal LPS, at least for the F1 generation.  相似文献   

19.
《Free radical research》2013,47(8):1026-1037
Abstract

Maternal inflammation is associated with spontaneous preterm birth and respiratory impairment among premature infants. Recently, molecular hydrogen (H2) has been reported to have a suppressive effect on oxidative stress and inflammation. The aim of this study was to evaluate the effects of H2 on fetal lung injury caused by maternal inflammation. Cell viability and the production of interleukin-6 (IL-6) and reactive oxygen species (ROS) were examined by treatment with lipopolysaccharide (LPS) contained in ordinal or H2-rich medium (HM) using a human lung epithelial cell line, A549. Pregnant Sprague Dawley rats were divided into three groups: Control, LPS, and HW + LPS groups. Rats were injected with phosphate-buffered saline (Control) or LPS intraperitoneally (LPS) on gestational day 19 and provided H2 water (HW) ad libitum for 24 h before LPS injection (HW + LPS). Fetal lung samples were collected on day 20, and the levels of apoptosis, oxidative damage, IL-6, and vascular endothelial growth factor (VEGF) were evaluated using immunohistochemistry. The number of apoptotic cells, and levels of ROS and IL-6 were significantly increased by LPS treatment, and repressed following cultured with HM in A549 cells. In the rat models, the population positive for cleaved caspase-3, 8-hydroxy-2′-deoxyguanosine, IL-6, and VEGF was significantly increased in the LPS group compared with that observed in the Control group and significantly decreased in the HW + LPS group. In this study, LPS administration induced apoptosis and oxidative damage in fetal lung cells that was ameliorated by maternal H2 intake. Antenatal H2 administration may decrease the pulmonary mobility associated with inflammation in premature infants.  相似文献   

20.
Prenatal exposure to infection is known to affect brain development and has been linked to increased risk for schizophrenia. The goal of this study was to investigate whether maternal infection and associated fever near term disrupts synaptic transmission in the hippocampus of the offspring. We used LPS to mimic bacterial infection and trigger the maternal inflammatory response in near-term rats. LPS was administered to rats on embryonic days 15 and 16 and hippocampal synaptic transmission was evaluated in the offspring on postnatal days 20-25. Only offspring from rats that showed a fever in response to LPS were tested. Schaffer collateral-evoked field excitatory postsynaptic potentials (fEPSPs) and fiber volleys in CA1 of hippocampal slices appeared smaller in offspring from the LPS group compared with controls, but, when the fEPSPs were normalized to the amplitude of fiber volleys, they were larger in the LPS group. In addition, intrinsic excitability of CA1 pyramidal neurons was heightened, as antidromic field responses in the LPS group were greater than those from control. Short-, but not long-term plasticity was impaired since paired-pulse facilitation of the fEPSP was attenuated in the LPS group, whereas no differences in long-term potentiation were noted. These results suggest that LPS-induced inflammation during pregnancy produces in the offspring a reduction in presynaptic input to CA1 with compensatory enhancements in postsynaptic glutamatergic response and pyramidal cell excitability. Neurodevelopmental disruption triggered by prenatal infection can have profound effects on hippocampal synaptic transmission, likely contributing to the memory and cognitive deficits observed in schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号