首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
目的观察大鼠微小RNA-1(miR-1)、微小RNA-133(miR-133)过表达对L6成肌细胞增殖分化的影响。方法分别构建miR-1、miR-133的重组慢病毒载体,并进行测序鉴定,稳定转染L6细胞后,用RT-PCR Taqman探针的方法检测miR-1、miR-133的表达水平;细胞计数实验(CCK-8试剂盒)评价miR-1、miR-133过表达后对L6细胞增殖的影响。诱导稳定转染后L6成肌细胞进行分化,观察miR-1、miR-133过表达后对L6细胞分化的影响。以Western blot法检测miR-1、miR-133过表达后,α肌动蛋白(skeletalα-actin)表达水平的变化。采用Kruskal-Wallis H检验、重复测量和单因素方差分析进行比较。结果miR-1慢病毒载体经酶切和测序鉴定序列准确,转染48 h后L6细胞miR-1组(4.292±0.50)比control组(0.231±0.86)、miR-133组(0.205±0.48)比control组(3.564±0.45)表达均显著上调(P〈0.001);细胞计数和细胞分化实验显示,培养120 h后,过表达miR-1的L6细胞α肌动蛋白(skeletalα-actin)比对照组(0.415±0.02)表达显著升(0.676±0.02,F=222.144,P〈0.001),分化明显加快,但增殖无明显变化;而过表达miR-133的L6细胞增殖明显加快,α肌动蛋白表达呈下降趋势(0.363±0.02,F=2385.643,P〈0.001),分化受到抑制。结论 miR-1、miR-133慢病毒表达载体稳定转染L6成肌细胞后高效表达miR-1和miR-133,miR-1可促进L6细胞分化,miR-133能促进L6细胞增殖但抑制其分化。  相似文献   

2.
Phosphoenolpyruvate carboxykinase 1 (soluble) (PCK1) is a key gene in gluconeogenesis and glyceroneogenesis. Although its functions have been extensively studied in mice, bats and humans, little is known in ducks. Here, PCK1 functions were studied using a duck domestication model and a 48‐h fasting experiment. We found PCK1 expression significantly decreased in two breeds of domestic ducks (Jinyun Pockmark ducks and Cherry Valley ducks) as compared with wild ducks (Anas platyrhynchos). Simultaneously, plasma levels of glucose, triglycerides and free fatty acid in domestic ducks were lower than in wild ducks. When compared with fed ducks, the plasma triglyceride level was observed to be significantly decreased, while the glucose and free fatty acid levels remained constant in 48‐h fasting ducks. The expression analysis of gluconeogenic genes revealed that fructose‐1,6‐bisphosphatase genes (FBP1 and FBP2) and the glucose‐6‐phosphatase gene (G6PC2) were not changed, whereas PCK1 was significantly upregulated. In addition, the reported regulators of PCK1, including forkhead box A2 (FOXA2) gene and orphan nuclear receptor NR4A family genes (NR4A1, NR4A2 and NR4A3), exhibited similar expression levels between 48‐h fasting ducks and fed ducks, suggesting that PCK1 is not regulated by these genes in the duck under fasting conditions. In conclusion, PCK1 expression may affect plasma levels of glucose, triglycerides and free fatty acid during the duck domestication process. This work demonstrates for the first time in duck that PCK1 is a key gene in maintaining plasma glucose homeostasis during fasting and that the upregulated expression of PCK1 may be responsible for constant plasma free fatty acid level by the glyceroneogenesis process.  相似文献   

3.
Transforming growth factor (TGF-β) plays a pivotal role in angiogenesis. The purpose of this study was to explore the microRNA-mediated regulation of TGF-β receptor-II (TGFBR2) expression during rapid antler growth and proliferation of antler cells in sika deer. Deep sequencing–based expression analysis of miRNAs on the antler tip tissue was performed. Then, two bioinformatics software were used to analyze TGFBR2 3′-UTR sequence for predicting the matched and differentially expressed miRNAs in different tissues of the antler. The results indicated that miRNA-19a and miRNA-19b exhibited the highest upregulation among differentially expressed miRNAs. We also found that the TGFBR2 3′-UTR contains a binding site for miRNA-19a and miRNA-19b by transfection of wild-type and mutant dual-luciferase reporter vectors into antler cartilage cells. Meanwhile, overexpression of miRNA-19a and miRNA-19b significantly inhibited the proliferation of cartilage cells in vitro, and decreased the expression level of TGFBR2 protein. Furthermore, the expression levels of insulin-like growth factor 1 (IGF-1) and TGF-β2, which were associated with TGFBR2, reduced after transfection of cartilage cells with miRNA-19a and miRNA-19b. Our results indicate the significant roles of miRNA-19a and miRNA-19b in proliferation of antler cells and its potential application.  相似文献   

4.
To investigate molecular epidemiology of DuCV in Cherry Valley ducks in China,the complete genomes of six DuCV strains,which were detected from Cherry Valley ducks in China between 2007 and 2008,were s...  相似文献   

5.
6.
Mortality rates of acute lymphoblastic leukemia (ALL) have improved over the past 20 years; however, a significant portion of deaths stems from the lack of prognostic biomarkers, which can direct therapy and overcome drug resistance. microRNA-155a (miRNA-155a) and miRNA-181a are two single-stranded miRNAs involved in the pathogenesis of many types of leukemia and lymphoma and is linked to drug resistance. We investigated their expression levels in 55 patients, 45 diagnosed with ALL and 10 as a control group. We found that miRNA-155a and miRNA-181a were significantly upregulated in the ALL group with both being linked to high levels of minimal residual disease and poor prognosis. miRNA-155a cutoff value was significant in discriminating between high- and low-risk ALL patients as well as between ALL patients and healthy controls, miRNA-181a cutoff value, however, was not significant. Both markers levels were significantly downregulated after therapy. We conclude that miR-155 is correlated with poor prognosis in ALL, whereas we couldn’t link miRNA-181a to the prognosis in ALL. Moreover, the marked decrease in their expression after therapy could reflect their impact on disease outcome.  相似文献   

7.
孔祥洁  刘小林  吴艳  王婕 《遗传》2008,30(6):760-764
以384只北京鸭 (Z2系、Z4系、Z2×Z4杂交系)和樱桃谷鸭为材料, 利用PCR-SSCP结合测序技术, 对前胰岛素原基因外显子2与部分内含子的多态性进行了研究, 并分析对屠体性状的遗传效应。结果发现存在2个单核苷酸突变位点, 即在第179位和第195位分别发生了T→C和C→T的突变。适合性χ2检验结果表明, 北京鸭各品系和樱桃谷鸭均处于Hardy-Weinberg平衡状态(P>0.05)。最小二乘分析SNPs与屠体性状的关系表明, 在北京鸭3个品系中, 基因型 BB 在胴体重、全净膛重和胸肌重上极显著(P<0.01)高于基因型AA和AB, 在腿肌重和皮脂重上极显著(P<0.01)高于基因型AB; 基因型AA在皮脂率和全净膛重上极显著(P<0.01)和显著(P<0.05)高于基因型AB。而对于樱桃谷鸭, 只有AB型在皮脂重和腹脂重上显著(P<0.05)高于基因型AA。研究结果表明, 鸭前胰岛素原基因多态性与鸭的部分屠体性状存在显著相关性, 且B等位基因有利于增加鸭的胴体重和胸肌重。  相似文献   

8.
Histone deacetylase 8 (HDAC8) is a class 1 histone deacetylase and a member of the cohesin complex. HDAC8 is expressed in smooth muscles, but its expression in skeletal muscle has not been described. We have shown for the first time that HDAC8 is expressed in human and zebrafish skeletal muscles. Using RD/12 and RD/18 rhabdomyosarcoma cells with low and high differentiation potency, respectively, we highlighted a specific correlation with HDAC8 expression and an advanced stage of muscle differentiation. We inhibited HDAC8 activity through a specific PCI-34051 inhibitor in murine C2C12 myoblasts and zebrafish embryos, and we observed skeletal muscles differentiation impairment. We also found a positive regulation of the canonical Wnt signaling by HDAC8 that might explain muscle differentiation defects. These findings suggest a novel mechanism through which HDAC8 expression, in a specific time window of skeletal muscle development, positively regulates canonical Wnt pathway that is necessary for muscle differentiation.  相似文献   

9.
microRNAs (miRNAs) are small non-coding RNAs that regulate cellular processes by fine-tuning the levels of their target mRNAs. However, the regulatory elements determining cellular miRNA levels are not well studied. Previously, we had described an altered miRNA signature in the skeletal muscle of db/db mice. Here, we sought to explore the role of epigenetic mechanisms in altering these miRNAs. We show that histone deacetylase (HDAC) protein levels and activity are upregulated in the skeletal muscle of diabetic mice. In C2C12 cells, HDAC inhibition using suberoylanilide hydroxamic acid (SAHA) altered the levels of 24 miRNAs: 15 were downregulated and 9 were upregulated. miR-449a, an intronic miRNA localized within the Cdc20b gene, while being downregulated in the skeletal muscle of diabetic mice, was the most highly upregulated during HDAC inhibition. The host gene, Cdc20b, was also significantly upregulated during HDAC inhibition. Bioinformatics analyses identified a common promoter for both Cdc20b and miR-449a that harbors significant histone acetylation marks, suggesting the possibility of regulation by histone acetylation-deacetylation. These observations suggest an inverse correlation between miR-449a levels and HDAC activity, in both SAHA-treated skeletal muscle cells and db/db mice skeletal muscle. Further, in SAHA-treated C2C12 cells, we observed augmented occupancy of acetylated histones on the Cdc20b/miR-449a promoter, which possibly promotes their upregulation. In vivo injection of SAHA to db/db mice significantly restored skeletal muscle miR-449a levels. Our results provide insights into the potential regulatory role of epigenetic histone acetylation of the miR-449a promoter that may regulate its expression in the diabetic skeletal muscle.  相似文献   

10.
微小RNA(microRNA,miRNA)是广泛存在于动植物中的一类不编码蛋白质的短小的单链RNA分子,一般由22个核苷酸组成,它们可以特异性地结合mRNA并通过降解或抑制其翻译而在转录后水平调控基因表达。miRNA的表达及功能可影响许多表观遗传学特征,其功能涉及细胞的发生、生长、发育、分化和凋亡过程,在肿瘤的形成和进展过程中扮演重要角色。microRNA-214(miRNA-214,miR-214)参与肝癌、乳腺癌、宫颈癌、卵巢癌、恶性黑色素瘤、胃癌、胶质瘤、儿童骨肉瘤等恶性肿瘤的发生发展,以及与肿瘤细胞的侵袭及转移密切相关。miRNA-214在不同的肿瘤中表达水平并不相同,miRNA-214在不同肿瘤中的差异表达是通过调控某个或者某些癌基因及抑癌基因而实现其参与肿瘤的发生发展、侵袭及转移的作用。因此,本文主要通过阅读大量国内外文献,总结和概括了miRNA-214参与部分恶性肿瘤发生发展的机制。虽然目前对于miRNA的理论研究已经日渐完善和成熟,但是怎样将这些研究结果应用于临床,怎样能够更准确、更便捷的通过对miRNA的检测达到对疾病的诊断、治疗以及预后评估,想必一定会成为将来研究的热点,我们期待一种新型的恶性肿瘤的分子标志物会使越来越多的肿瘤患者获益。  相似文献   

11.
【目的】通过高通量测序的方法获得PCV2感染3D4/21细胞的miRNAs表达谱,并探讨miRNA-98在PCV2复制中的作用。【方法】本研究以猪肺泡巨噬细胞系3D4/21细胞为细胞模型,对PCV2感染过程中的3D4/21细胞进行miRNAs差异表达分析,筛选与病毒复制相关的特异性miRNAs,并探讨其在PCV2复制中的作用。【结果】经高通量测序,获得PCV2感染3D4/21细胞的miRNAs表达谱,结合实验室前期研究筛选获得miRNA-98。实验表明,miRNA-98的表达量随PCV2感染时间的延长而持续升高,其变化趋势与Cap蛋白表达变化基本一致,由此推测miRNA-98与PCV2复制正相关。过表达miRNA-98可显著上调Cap蛋白的表达量和PCV2的复制。进一步的研究表明,miRNA-98参与调节宿主免疫相关细胞因子的表达和PCV2的复制。【结论】miRNA-98可通过调节免疫相关细胞因子的表达调控宿主免疫功能,帮助PCV2逃逸宿主免疫,促进PCV2在3D4/21细胞中的复制。这些发现不仅为深入了解PCV2与宿主之间的关系提供了新视角,还有望为猪圆环病毒相关疾病的防控提供新的抗病毒策略。  相似文献   

12.
13.
14.
Myogenic differentiation 1 (MyoD1) genes belong to the MyoD gene family and play key roles in growth and muscle development. This study was designed to investigate the effects of variants in the MyoD1 gene on duck growth and carcass traits. Three duck populations (Cherry Valley, Jingjiang, and Muscovy) were sampled, their growth and carcass traits were measured, and they were genotyped using the PCR–RFLP method. The results showed one novel polymorphism, an alteration in intron 2 of the MyoD1 gene (A to T). It was associated with the traits of weight at 8?weeks, carcass weight, breast muscle weight, leg muscle weight, eviscerated percentage, percentage of leg muscle weight, dressing percentage, and lean meat percentage. This alteration in intron 2 of MyoD1 may be linked with potential major loci or genes affecting some growth and carcass traits.  相似文献   

15.

Background

Osteosarcoma (OS) is the most common bone malignancy prevalent in children and young adults. MicroRNA-133b (miR-133b), through directly targeting the fibroblast growth factor receptor 1 (FGFR1), is increasingly recognized as a tumor suppressor in different types of cancers. However, little is known on the biological and functional significance of miR-133b/FGFR1 regulation in osteosarcoma.

Methods

The expressions of miR-133b and FGFR1 were examined by RT-qPCR and compared between 30 paired normal bone tissues and OS tissues, and also between normal osteoblasts and three OS cells lines, MG-63, U2OS, and SAOS-2. Using U2OS and MG-63 as the model system, the functional significance of miR-133b and FGFR1 was assessed on cell viability, proliferation, apoptosis, migration/invasion, and epithelial–mesenchymal transition (EMT) by overexpressing miR-133b and down-regulating FGFR1 expression, respectively. Furthermore, the signaling cascades controlled by miR-133b/FGFR1 were examined.

Results

miR-133b was significantly down-regulated while FGFR1 robustly up-regulated in OS tissues and OS cell lines, when compared to normal bone tissues and normal osteoblasts, respectively. Low miR-133b expression and high FGFR1 expression were associated with location of the malignant lesion, advanced clinical stage, and distant metastasis. FGFR1 was a direct target of miR-133b. Overexpressing miRNA-133b or knocking down FGFR1 significantly reduced the viability, proliferation, migration/invasion, and EMT, but promoted apoptosis of both MG-63 and U2OS cells. Both the Ras/MAPK and PI3K/Akt intracellular signaling cascades were inhibited in response to overexpressing miRNA-133b or knocking down FGFR1 in OS cells.

Conclusion

miR-133b, by targeting FGFR1, presents a plethora of tumor suppressor activities in OS cells. Boosting miR-133b expression or reducing FGFR1 expression may benefit OS therapy.
  相似文献   

16.
A newly emerged duck parvovirus, which causes beak atrophy and dwarfism syndrome (BADS) in Cherry Valley ducks, has appeared in Northern China since March 2015. To explore the genetic diversity among waterfowl parvovirus isolates, the complete genome of an identified isolate designated SDLC01 was sequenced and analyzed in the present study. Genomic sequence analysis showed that SDLC01 shared 90.8%–94.6% of nucleotide identity with goose parvovirus (GPV) isolates and 78.6%–81.6% of nucleotide identity with classical Muscovy duck parvovirus (MDPV) isolates. Phylogenetic analysis of 443 nucleotides (nt) of the fragment A showed that SDLC01 was highly similar to a mule duck isolate (strain D146/02) and close to European GPV isolates but separate from Asian GPV isolates. Analysis of the left inverted terminal repeat regions revealed that SDLC01 had two major segments deleted between positions 160–176 and 306–322 nt compared with field GPV and MDPV isolates. Phylogenetic analysis of Rep and VP1 encoded by two major open reading frames of parvoviruses revealed that SDLC01 was distinct from all GPV and MDPV isolates. The viral pathogenicity and genome characterization of SDLC01 suggest that the novel GPV (N-GPV) is the causative agent of BADS and belongs to a distinct GPV-related subgroup. Furthermore, N-GPV sequences were detected in diseased ducks by polymerase chain reaction and viral proliferation was demonstrated in duck embryos and duck embryo fibroblast cells.  相似文献   

17.
18.
Non-small cell lung cancers (NSCLCs) cause high mortality worldwide, and the cancer progression can be activated by several genetic events causing receptor dysregulation, including mutation or amplification. MicroRNAs are a group of small non-coding RNA molecules that function in gene silencing and have emerged as the fine-tuning regulators during cancer progression. MiR-133a is known as a key regulator in skeletal and cardiac myogenesis, and it acts as a tumor suppressor in various cancers. This study demonstrates that miR-133a expression negatively correlates with cell invasiveness in both transformed normal bronchial epithelial cells and lung cancer cell lines. The oncogenic receptors in lung cancer cells, including insulin-like growth factor 1 receptor (IGF-1R), TGF-beta receptor type-1 (TGFBR1), and epidermal growth factor receptor (EGFR), are direct targets of miR-133a. MiR-133a can inhibit cell invasiveness and cell growth through suppressing the expressions of IGF-1R, TGFBR1 and EGFR, which then influences the downstream signaling in lung cancer cell lines. The cell invasive ability is suppressed in IGF-1R- and TGFBR1-repressed cells and this phenomenon is mediated through AKT signaling in highly invasive cell lines. In addition, by using the in vivo animal model, we find that ectopically-expressing miR-133a dramatically suppresses the metastatic ability of lung cancer cells. Accordingly, patients with NSCLCs who have higher expression levels of miR-133a have longer survival rates compared with those who have lower miR-133a expression levels. In summary, we identified the tumor suppressor role of miR-133a in lung cancer outcome prognosis, and we demonstrated that it targets several membrane receptors, which generally produce an activating signaling network during the progression of lung cancer.  相似文献   

19.
ObjectiveTo explore the expression differences of miRNA-21, miRNA-31 and miRNA-let7 between lung cancer patient and healthy people, thereby providing reference for early diagnosis of lung cancer.MethodReal-time PCR was employed to determine the expression difference between lung cancer patients (50 cases) and healthy people (24 cases). The clinical data of lung cancer patients were analyzed to explore the correlation between clinicopathological characteristics and expression level of miRNA-21, miRNA-31, miRNA-let7.ResultsThe relative expression levels of miRNA-21 and miRNA-31 in lung cancer group were obviously higher than those in healthy control group, and the relative expression level of miRNA-let7 in lung cancer group was slightly higher than that in healthy control group. Lung cancer patients with lymph node metastasis had higher expression level than those without lymph node metastasis. The ROC curve showed that the three miRNAs had clinical diagnosis efficiency for lung cancer, and the combined detection of the three miRNAs were more efficient in diagnosing lung cancer. Survival curve analysis suggested that the median survival times of patients in the miRNA-21 and miRNA-31 high expression groups were shorter than those in the low expression groups, and the median survival time of patients in miRNA-let7 high expression group was longer than that in the low expression group.ConclusionPlasma miRNA-21, miRNA-31 and miRNA-let7 may be diagnostic marker for lung cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号