首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diabetic retinopathy (DR) is a leading cause of adult visual impairment and loss. This study aims to explore the effects of microRNA-9 (miR-9) on retinal neovascularization during DR by targeting the vascular endothelial growth factor A (VEGFA). DR rat models were successfully established. Retinal microvascular endothelial cells (RMECs) of DR rats were isolated and treated with miR-9 mimic, miR-9 inhibitor or small interfering RNA (siRNA)-VEGFA. The expressions of miR-9, VEGFA, and cluster of differentiation 31 (CD31) of the rats’ tissues and cells were examined. The targeting relationship between miR-9 and VEGFA was testified. The tubule formation, the cell proliferation and the periodic distribution and apoptosis were evaluated after transfection. In the retinal tissues of DR rats, miR-9 expression decreased while the expression of VEGFA and CD31 increased. Notably, miR-9 targeted and inhibited VEGFA expression. In response to the treatment of miR-9 mimic and siRNA-VEGFA, a reduction was identified in CD31 expression, tubule formation, and proliferation of RMECs and cell ratio in the S phase, but an increase was observed in apoptosis rate of RMECs. The treatment of miR-9 inhibitor reversed the manifestations. Our study demonstrated that miR-9 could inhibit retinal neovascularization of DR and tubule formation, and promote apoptosis in RMECs by targeting VEGFA.  相似文献   

2.
3.
4.
Diabetic retinopathy (DR) is the most prevalently occurring microvascular complication in diabetic patients that triggers severe visual impairments. The anti-angiogenesis role of FBXW7 has been identified in breast cancer. Therefore, this study intends to decipher the mechanism of FBXW7 in angiogenesis of DR. DR model was induced on mice using high-glucose (HG) and high-fat diet, and retinal microvascular endothelial cells (RMECs) isolated from normal mice were induced with HG, followed by evaluation of FBXW7, Ki67, HIF-1α and VEGF expression by immunofluorescence, immunohistochemistry or Western blot analysis. After gain- and loss-of-function assays in normal and DR mice, angiogenesis was assessed by CD31 fluorescence staining and Western blot analysis. After ectopic expression and silencing experiments in HG-induced RMECs, RMEC proliferation, migration and angiogenesis were, respectively, determined by EdU, Transwell and in vitro angiogenesis assays. The impact of FBXW7 on the ubiquitination of c-Myc was studied by cycloheximide chase assay and proteasome inhibition, and the binding of c-Myc to HDAC2 promoter by dual-luciferase reporter gene experiment. DR mice and HG-induced RMECs possessed down-regulated FBXW7 and up-regulated Ki67, HIF-1α and VEGF. Silencing FBXW7 enhanced angiogenesis in normal mouse retinal tissue, but overexpressing FBXW7 or silencing c-Myc diminished angiogenesis in DR mouse retinal tissue. Overexpressing FBXW7 or silencing c-Myc depressed proliferation, migration and angiogenesis in HG-induced RMECs. FBXW7 induced c-Myc ubiquitination degradation, and c-Myc augmented HDAC2 expression by binding to HDAC2 promoter. Conclusively, our data provided a novel sight of anti-angiogenesis role of FBXW7 in DR by modulating the c-Myc/HDAC2 axis.  相似文献   

5.
The study was designed to explore the underlying mechanism of micro ribonucleic acids (miR)-145-5p in the process of hypertrophic scar (HS). The difference in the relative content of miR-145-5p between HS and adjacent normal skin collected from 5 patients was detected via RT-PCR. Expressions of Smad2 and Smad3 with or without TGF-β1 was detected by western blotting. Fibroblasts apoptosis rate was examined by Annexin V/Propidium Iodide double staining. HS fibroblasts (HSFs) were isolated from HS tissues, cultured and then divided into control group, miR-145-5p inhibitor group (transfected with miR-145-5p inhibitor) and miR-145-5p mimic group (transfected with miR-145-5p plasmid) based on different treatment methods. Next, CCK-8 was employed to examine the function of miR-145-5p in HSF proliferation. Luciferase assay was conducted to confirm whether Smad2/3 were direct targets of miR-145-5p, and RT-PCR was done to measure the expression of miR-145-5p, Smad2/Smad3 and fibrosis-related genes of fibroblasts in three groups. Wound injury mice model was established to determine the function of miR-145-5p in regulating scar formation. miR-145-5p was found lowly expressed in HS tissues. Compared with Control group, miR-145-5p mimic decreased the levels of Smad2/3, arrested the activation and proliferation of HSFs and induced HSFs apoptosis. Overexpressing miR-145-5p achieved the contrary results. Smad2/3 was confirmed as the target of miR-145-5p. Moreover, miR-145-5p mimic decreased the recruitment of fibroblasts in vivo and decreased the expression of fibrosis-related genes after wound injury. In conclusion, miR-145-5p arrests the development of fibrogenesis and decreases HS formation by reducing the expression of Smad2/3. miR-145-5p may be an optional novel molecular target for treating HS.  相似文献   

6.
Downregulation of microRNA-590-3p (miR-590-3p) is a frequently occurring, nonphysiological event which is observed in several human cancers, especially breast cancer. However, the significance of miR-590-3p still remain unclear in the progression of this disease. This study explored the role of miR-590-3p in apoptosis of breast cancer cells. Gene expression of miR-590-3p, Sirtuin-1 (SIRT1), Bcl-2 associated X protein (BAX), and p21 was evaluated with real-time polymerase chain reaction (PCR) and SIRT1 protein expression was assessed by Western blot analysis in breast cancer cell lines. Bioinformatics analysis and luciferase reporter assay were used to evaluate targeting of SIRT1 messenger RNA (mRNA) by miR-590-3p. Cells were transfected with miR-590-3p mimic and inhibitor and their effects on the expression and activity of SIRT1 were evaluated. The effects of miR-590-3p upregulation on the acetylation of p53 as well as cell viability and apoptosis were assessed by Western blot analysis, WST-1 assay, and flow cytometry, respectively. miR-590-3p expression was considerably downregulated in breast cancer cells which was accompanied by upregulation of SIRT1 expression. SIRT1 was recognized as a direct target for miR-590-3p in breast cancer cells and its protein expression and activity was dramatically inhibited by the miR-590-3p. In addition, there was an increase in p53 and its acetylated form that ultimately led to upregulation of BAX and p21 expression, suppression of cell survival, and considerable induction of apoptosis in breast cancer cells. These findings suggest that miR-590-3p exerts tumor-suppressing effects through targeting SIRT1 in breast cancer cells, which makes it a potential therapeutic target for developing more efficient treatments for breast cancer.  相似文献   

7.
This study was aimed to figure out whether long noncoding RNA MEG3/miR-361-5p/FoxM1 signaling would contribute to improved proliferation and metastasis of osteosarcoma cells. We altogether collected 204 pairs of osteosarcoma tissues and adjacent normal tissues, and obtained four human osteosarcoma cell lines. Then pcDNA3.1-MEG3, si-MEG3, miR-361-5p mimic, miR-361-5p inhibitor, pcDNA3.1-FoxM1, si-FoxM1, and negative control (NC) were, respectively, transfected into the osteosarcoma cells. Furthermore, real time polymerase chain reaction was utilized to determine the mRNA expressions of maternally expressed gene 3 (MEG3) and miR-361-5p, and western blot analysis was applied for determining the FoxM1 expression. Besides, dual luciferase reporter gene assay was adopted to verify if MEG3 can be directly targeted by miR-361-5p. Finally, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, colony formation assay, flow cytometry, wound healing assay, and transwell assay were conducted to investigate the influence of MEG3, miR-361-5p, and FoxM1 expressions on the viability, proliferation, apoptosis, migration, and invasion of osteosarcoma cells. MEG3 and miR-361-5p were observed to be significantly downregulated within both osteosarcoma tissues and cell lines, whereas FoxM1 was upregulated in osteosarcoma tissues and cell lines (p < 0.05). MEG3 directly bound to miR-361-5p, and significantly upgraded its expression (p < 0.05). The upregulated MEG3 and miR-361-5p or the downregulated FoxM1 appeared to substantially inhibit proliferation, migration, and invasion of osteosarcoma cells (p < 0.05). Finally, the proliferation, migration, invasion, and motility of osteosarcoma cells within the miR-NC + pcDNA3.1-FoxM1 group and pcDNA + pcDNA-FoxM1 group were markedly promoted when compared with the miR-361-5p mimic group and pcDNA3.1-MEG3 group (p < 0.05). The MEG3/miR-361-5p/FoxM1 axis could potentially serve as therapeutic targets or diagnostic biomarkers for osteosarcoma.  相似文献   

8.
9.
MicroRNAs have been regarded to play a crucial role in the proliferation of different cell types including preadipocytes. In our study, we observed that miR-129-5p was down-regulated during 3T3-L1 preadipocyte proliferation, while the expression of G3BP1 showed a contrary tendency. 5-Ethynyl-2′-deoxyuridine (EdU) incorporation assay and flow cytometry showed that overexpression of miR-129-5p could bring about a reduction in S-phase cells and G2-phase arrest. Additional study indicated that miR-129-5p impaired cell cycle-related genes in 3T3-L1 preadipocytes. Importantly, it showed that miR-129-5p directly targeted the 3UTR of G3BP1 and the expression of G3BP1 was inhibited by miR-129-5p mimic. Moreover, miR-129-5p mimic activated the p38 signaling pathway through up-regulating p38 and the phosphorylation level of p38. In a word, results in our study revealed that miR-129-5p suppressed preadipocyte proliferation via targeting G3BP1 and activating the p38 signaling pathway.  相似文献   

10.
Nasopharyngeal carcinoma (NPC) is a major otorhinolaryngological disease with limited effective therapeutic options. This work focused on the function of microRNA-384 (miR-384) on the NPC pathogenesis and the molecules involved. miR-384 expression in cancer tissues and cells was detected. Gain- and loss-of-functions of miR-384 were performed to identify its role in NPC progression. The target mRNA of miR-384 was predicted on an online system and validated through a luciferase reporter assay. The activity of Wnt/β-catenin signaling was detected. Consequently, miR-384 was found to be poorly expressed in NPC tissues and cell lines and was linked to unfavorable survival rates in patients. Overexpression of miR-384 in 6-10B cells suppressed growth, migration, invasion and resistance to apoptosis of cells, but inverse trends were presented in C6661 cells where miR-384 was downregulated. miR-384 targeted Smad5 mRNA. Upregulation of Smad5 counteracted the roles of miR-384 mimic in cells. The NPC-inhibiting effects of miR-384 mimic were also blocked by Wnt/β-catenin activation. To conclude, miR-384 targets Smad5 and inactivates the Wnt/β-catenin pathway, which exerts a suppressing role in NPC cell behaviors as well as tumor growth in vivo. The findings may offer novel thoughts into NPC therapy.Supplementary InformationThe online version contains supplementary material available at 10.1007/s10616-021-00458-3.  相似文献   

11.
12.
To explore the targeting relationship between miR-490-5p and ECT2 in hepatocellular carcinoma (HCC) and the influences of miR-490-5p and ECT2 on the stemness of HCC cells. The expressions of miR-490-5p and ECT2 in HCC tissues and adjacent tissues were identified by quantitative real-time polymerase chain reaction (qRT-PCR). The relationships between the expression levels of miR-490-5p/ ECT2 and the overall/disease-free survival (OS/DFS) of patients with HCC were evaluated using correlative curves. In addition, the targeting relationship between miR-490-5p and ECT2 was predicted by TargetScan and verified by dual-luciferase reporter assay. Plasmid transfection was used for overexpression of ECT2 in HepG2 cells, and transfection efficiency was verified by qRT-PCR. Cell Counting Kit-8 assay and cell sphere-formation assay were conducted to detect the proliferation and sphere-formation ability of HCC cells, respectively. Cell populations with different cell transfections were sorted using flow cytometry. The expression levels of proteins in the stem cell signaling pathway were determined using Western blot analysis. MiR-490-5p was remarkably downregulated, yet ECT2 was upregulated in HCC tissues compared with adjacent tissues. MiR-490-5p expression was positively correlated with OS and DFS of patients with HCC, which were otherwise negatively correlated with ECT2 expression. ECT2 was validated to be the downstream target of miR-490-5p. Overexpression of miR-490-5p restrained the sphere formation ability, stemness, and proliferation of HCC cells. MiR-490-5p repressed the stemness of HCC cells through inhibiting the expression of ECT2. MiR-490-5p may be an underlying therapeutic target in HCC treatment.  相似文献   

13.
ABSTRACT

Diabetic retinopathy (DR) is a leading cause of new-onset blindness. Recent studies showed that protecting retinal ganglion cells (RGCs) from high glucose-induced injury is a promising strategy for delaying DR. This study is to investigate the role of miR-145-5p in high glucose-induced RGC injury. Here, RGCs were randomly divided into low glucose and high glucose groups. PCR assay showed miR-145-5p was significantly upregulated in high glucose group. Transfection of miR-145-5p inhibitor decreased pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) levels, elevated cell viability and proliferation, as well as suppressed cell apoptosis by ELISA, MTT, EdU proliferation, colony formation and flow cytometry assays, respectively. Moreover, dual-luciferase reporter assay confirmed FGF5 as a target gene of miR-145-5p. FGF5 knockdown could partially reverse the protective effects of miR-145-5p on RGC-5 cells. In conclusion, our results demonstrated that inhibition of miR-145-5p might be a neuroprotective target for diabetes mellitus-related DR.

Abbreviations: DR: diabetic retinopathy; RGCs: retinal ganglion cells; miR-145-5p: microRNA-145-5p; TNF-α: tumor necrosis factor-α; IL-6: interleukin-6; FGF: fibroblast growth factor; ATCC: American Type Culture Collection; WT: wild type; MUT: mutant type  相似文献   

14.
15.
Laryngeal cancer (LC) is an increasingly common malignant tumors of head and neck cancer. Aberrant expression of microRNA (miRNA) is closely related with LC development. In the current study, we investigated the biological function and underlying molecular mechanism of miR-384 in LC. The results showed that the miR-384 expression was markedly downregulated in LC tissue and cell lines (TU212 and TU686) as compared with that of adjacent nontumor tissues and a normal human bronchial epithelial cell line. Next, we performed gain-of-function and loss-of-function experiments in the TU212 and TU686 cells by transfecting the cells with miR-384 mimics, miR-384 inhibitor, or miRNA control. Moreover, results showed that miR-384 mimic remarkably inhibited LC cell proliferation, which was notably decreased by miR-384 inhibitor. Furthermore, miR-384 mimics notably increased the amounts of DNA fragmentation from the apoptotic cells (a hallmark of apoptosis) and the caspase-3 activity, whereas miR-384 inhibitor resulted in a decline of DNA fragmentation and the caspase-3 activity compared with its control. In addition, a dual-luciferase reporter assay confirmed that Wnt-induced secreted protein-1 (WISP1) gene was a direct target of miR-384. MiR-384 mimic remarkably inhibited the messenger RNA and protein expression of WISP1, which was upregulated by miR-384 inhibitor as compared to its control. WISP1 knockdown by small interfering RNA inhibited LC cell proliferation and promoted cell apoptosis. WISP1 overexpression partly abrogates the effect of miR-384 overexpression. Taken together, these data indicate that miR-384 regulates LC cell proliferation and apoptosis through targeting WISP1 signaling pathway, providing a novel insight into the LC treatment.  相似文献   

16.
Diabetic retinopathy (DR) remains the leading cause of blindness in adults with diabetes mellitus. Numerous microRNAs (miRNAs) have been identified to modulate the pathogenesis of DR. The main purpose of this study was to evaluate the potential roles of miR-455-5p in high glucose (HG)-treated retinal pigment epithelial (RPE) cells and underlying mechanisms. Our present investigation discovered that the expression of miR-455-5p was apparently downregulated in ARPE-19 cells stimulated with HG. In addition, forced expression of miR-455-5p markedly enhanced cell viability and restrained HG-induced apoptosis accompanied by decreased BCL2-associated X protein (Bax)/B-cell leukemia/lymphoma 2 (Bcl-2) ratio and expression of apoptotic marker cleaved caspase-3 during HG challenged. Subsequently, augmentation of miR-455-5p remarkably alleviated HG-triggered oxidative stress injury as reflected by decreased the production of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) content as well as NADPH oxidase 4 expression, concomitant with enhanced the activities of superoxide dismutase, catalase, and GPX stimulated with HG. Furthermore, enforced expression of miR-455-5p effectively ameliorated HG-stimulated inflammatory response as exemplified by repressing the secretion of inflammatory cytokines interleukin 1β (IL-1β), IL-6, and tumour necrosis factor-α in ARPE-19 cells challenged by HG. Most importantly, we successfully identified suppressor of cytokine signaling 3 (SOCS3) as a direct target gene of miR-455-5p, and miR-455-5p negatively regulated the expression of SOCS3. Mechanistically, restoration of SOCS3 abrogated the beneficial effects of miR-455-5p on apoptosis, accumulation of ROS, and inflammatory factors production in response to HG. Taken together, these findings demonstrated that miR-455-5p relieved HG-induced damage through repressing apoptosis, oxidant stress, and inflammatory response by targeting SOCS3. The study gives evidence that miR-455-5p may serve as a new potential therapeutic agent for DR treatment.  相似文献   

17.
Hepatocellular carcinoma (HCC) is known as a frequent type of primary cancer in the liver, and it is the third-most common cause of cancer-related death all over the world. However, the molecular mechanism in the progression of HCC is still unclear. The current study was designed to investigate the expression and function of microRNA-34a (miR-34a) in HCC. In HCC tissues and cells, the expression levels of miR-34a were analyzed by quantitative real-time polymerase chain reaction. The association between the level of miR-34a and hexokinase (HK)-1 was also investigated via luciferase reporter assay. Cell viability and proliferation were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry. To assess whether miR-34a can limit tumor growth in vivo, animal models and terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used for examining the role of miR-34a on the development of HCC and cell apoptosis. The expression level of miR-34a was reduced in HCC samples and cells. The expression of miR-34a was associated with the viability and proliferation capacity of HCC cells, and miR-34a could inhibit HCC cells proliferation by inhibiting HK1. In the mouse model of HCC, volumes and weight of the tumors were significantly decreased by transfection with miR-34a mimic compared with the control group. Furthermore, miR-34a mimics could induce apoptosis in a greater proportion of cells compared with the control group. Taken together, the data may provide some novel insights into the molecular mechanism of miR-34a and HK1 in the progression of HCC. Thus, miR-34a/HK1 axis might be a novel promising therapeutic target for treating HCC.  相似文献   

18.
19.
Triple negative breast cancer (TNBC) is a heterogeneous subclass of breast cancer (BC) distinguished by lack of hormone receptor expression. It is highly aggressive and difficult to treat with traditional chemotherapeutic regimens. Targeted-therapy using microRNAs (miR) has recently been proposed to improve the treatment of TNBC in the early stages. Here, we explore the roles of miR-483-3p/HDAC8 HDAC8 premiR-vector on tumorigenicity in TNBC patients. Clinical TNBC specimens and three BC cell lines were prepared. miR-483-3p and expression levels were measured using quantitative real-time polymerase chain reaction. Cell cycle progression was assessed by a flow-cytometry method. We also investigated cell proliferation by 3-2, 5-diphenyl tetrazolium bromide assay and colony formation assay. We used a to overexpress miR-483-3p, and a HDAC8-KO-vector for knocking out the endogenous production of HDAC8. Our data showed significant downregulation of miR-483-3p expression in TNBC clinical and cell line samples. The HDAC8 was also upregulated in both tissue specimens and BC cell lines. We found that increased levels of endogenous miR-483-3p affects tumorigenecity of MDA-MB-231. Downregulation of HDAC8 using the KO-vector showed the same pattern. Our results revealed that the miR-483-3p suppresses cellular proliferation and progression in TNBC cell lines via targeting HDAC8. Overall, our outcomes demonstrated the role of miR-483-3p as a tumor suppressor in TNBC and showed the possible mechanism via HDAC8. In addition, targeted treatment of TNBC with miR-483-3p might be considered in the future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号