首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
1. The combined effect of methylmercury, cadmium and lead on renal enzymes of pekin ducks was studied.2. Renal acid phosphatase and glutathione S-transferase activities were not affected by heavy metal treatment.3. Renal δ-aminolevulinic acid dehydratase activity was decreased significantly in ducks treated with lead alone or when lead was co-administered with methylmercury.4. Renal cytochrome c oxidase activity was decreased significantly when methylmercury was co-administered with cadmium and/or lead.5. The findings suggest that lead had the main effect on 5-aminolevulinic acid dehydratase and methylmercury had the main effect on cytochrome c oxidase activity. Interaction effect was also observed in cytoehrome c oxidase activity.  相似文献   

2.
We have investigated the structure of cytochrome c oxidase vesicle crystals by analysis at 20 Å resolution of electron micrographs of negatively stained specimens. The map clearly shows the shape of the part of the cytochrome c oxidase molecule which protrudes from the lipid bilayer. On the side of the membrane corresponding to the cytoplasmic face of the mitochondrial inner membrane, the molecule projects over 50 Å into solution. About half of the mass of the protein is in this domain, which contains the cytochrome c binding site. On the side of the membrane corresponding to the matrix face, no features are observed, which at this resolution means the protein protrudes less than 20 Å. In vesicle crystals, and probably in the mitochondrion, cytochrome c oxidase monomers are closely paired as dimers, with a clear cleft showing the boundary between monomers.  相似文献   

3.
4.
The reaction of the cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) of Paracoccus denitrificans cytoplasmic membranes with the endogenous cytochrome c of the membranes was studied, as well as its interaction with added exogenous cytochrome c from P. denitrificans or bovine heart. The polarographic method was employed, using N,N,N′,N′-tetramethyl-p-phenylenediamine plus ascorbate to reduce the cytochrome c. We found that overall electron transport can proceed maximally while the cytochrome c remains membrane bound; NADH or succinoxidase activities were not inhibited by the addition of substances which bind the P. denitrificans cytochrome c strongly. In contrast to our observations with the spectrophotometric method (Smith, L., Davies, H.C. and Nava, M.E. (1976) Biochemistry 15, 5827–5831), in the polarographic assays the membrane-bound oxidase reacts with about equal rapidity with exogenous bovine and P. denitrificans cytochromes c. The reaction of the oxidase with the endogenous cytochrome c proceeds at high rates and preferentially to that with exogenous cytochrome c; the reaction with the latter, but not the former is inhibited by positively charged poly(l-lysine). The cytochrome c and the oxidase appear to be very closely associated on the membrane.  相似文献   

5.
Intact spheroplasts of the cyanobacterium (blue-green alga) Anacystis nidulans oxidized various exogenous c-type cytochromes with concomitant outward proton translocation while exogenous ferricytochrome c was not reduced. The H+/e stoichiometry was close to 1 with each of the cytochromes and did not depend on the actual rate of the oxidase reaction. Observed proton ejections were abolished by the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Cyanide, azide, and carbon monoxide inhibited cytochrome c oxidation and proton extrusion in parallel while dicyclohexylcarbodiimide affected proton translocation more strongly than cytochrome c oxidation. The cytoplasmic membrane of A. nidulans appears to contain a proton-translocating cytochrome c oxidase similar to the one described for mitochondria.  相似文献   

6.
Laser Raman spectroscopy is used to examine the interactions of intrinsic and extrinsic proteins with the lipid layer structure. The interactions of cytochrome c and cytochrome c oxidase with lipids have been well established by others using a variety of techniques. Cytochrome c is thought to act as an extrinsic membrane protein while cytochrome c oxidase is thought to act as an intrinsic membrane protein. The lipid-cytochrome c and lipid cytochrome c oxidase systems are used to assist in interpreting the spectral changes due to extrinsic and intrinsic protein interactions. The two types of proteins examined produced differential changes in the lipid hydrocarbon CH stretch Raman modes for both dimyristoyl and dipalmitoyl phosphatidylcholine. The plasma proteins albumin and fibrinogen were also found to differentially affect the lipid hydrocarbon CH stretch Raman modes. These proteins appear to interact with lipids in an extrinsic manner different from that of cytochrome c.  相似文献   

7.
Mitochondria from dormant spores of the fungus Botryodiplodia theobromae did not contain extractable cyctochrome c oxidase (EC 1.9.3.1) activity; however, this enzyme activity was elaborated rapidly after 150 min of the 240-min germination sequence. The absence of cytochrome c oxidase activity in the dormant spores apparently is not an artifact caused by spore disruption and fractionation procedures, transient enzyme instability, or insensitivity of the enzyme assay. Mitochondria from dormant spores of three other phylogenetically diverse genera of fungi were observed to contain readily detectable quantities of cytochrome c oxidase, suggesting that the absence of the enzyme in B. theobromae may be relatively novel. The elaboration of cytochrome c oxidase activity in germinating spores was abolished by cycloheximide if the drug was added at or before 95 min of germination, but development of enzyme activity was initially insensitive to inhibitors of the mitochondrial genetic system, chloramphenicol or ethidium bromide. Incubation of spores in both ethionine and S-2-aminoethyl-l-cysteine reduced the amount of extracted cytochrome c oxidase activity. Elaboration of enzyme activity was severely retarded by cerulenin, an inhibitor of fatty acid biosynthesis and of spore germination. This enzyme activity developed in water-incubated or 1% Tween 80-incubated spores in which only the cytoplasmic ribosomes are functional in translation of a stored nuclear messenger RNA. The results of this study show that cytoplasmic (but not mitochondrial) ribosome function is required for development of this enzyme activity during spore germination, and they suggest that a portion of the cytochrome c oxidase enzyme or some other protein required for its activity is synthesized de novo upon germination.  相似文献   

8.
Earlier studies have evidenced a particular kind of biochemical hetero-geneity within the endoplasmic reticulum of liver cells. Enzymes upon which quantitative data are available are present in the same membranes, in both the rough and smooth portions. However, there are two different distribution patterns: NADPH cytochrome c reductase is more concentrated in the smooth membranes; glucose-6-phosphatase is more uniformly distributed through the rough and smooth portions; the other enzyme distributions conform to one of these patterns designated b and c, respectively. We consider a plausible explanation about this heterogeneity, postulating that enzymes in solution in the cisternal medium and integral membrane proteins of the lumenal aspect are randomly distributed through the whole endoplasmic reticulum (type c enzymes), whereas membrane proteins which expose a large segment at the cytoplasmic aspect are heterogeneously distributed. This latter aspect would consist of two distinct, homogeneous domains; one corresponding to the membrane surfaces in close association with ribosomes; the other containing the enzymes of type b. These domains extensively interpenetrate, accounting for the presence of a significant fraction of the enzymes of type b in the rough microsomes. Experimental data concerning the transmembrane asymmetry of enzymes categorized in groups b and c are briefly reviewed. Relationships between the distributions of NADPH cytochrome c reductase, glucose-6-phosphatase and ribosomes in density gradient analysis are deduced from the assumptions made and confronted with actual density distributions obtained.  相似文献   

9.
The cytochrome b6f complex is an integral part of the photosynthetic and respiratory electron transfer chain of oxygenic photosynthetic bacteria. The core of this complex is composed of four subunits, cytochrome b, cytochrome f, subunit IV and the Rieske protein (PetC). In this study deletion mutants of all three petC genes of Synechocystis sp. PCC 6803 were constructed to investigate their localization, involvement in electron transfer, respiration and photohydrogen evolution. Immunoblots revealed that PetC1, PetC2, and all other core subunits were exclusively localized in the thylakoids, while the third Rieske protein (PetC3) was the only subunit found in the cytoplasmic membrane. Deletion of petC3 and both of the quinol oxidases failed to elicit a change in respiration rate, when compared to the respective oxidase mutant. This supports a different function of PetC3 other than respiratory electron transfer. We conclude that the cytoplasmic membrane of Synechocystis lacks both a cytochrome c oxidase and the cytochrome b6f complex and present a model for the major electron transfer pathways in the two membranes of Synechocystis. In this model there is no proton pumping electron transfer complex in the cytoplasmic membrane.Cyclic electron transfer was impaired in all petC1 mutants. Nonetheless, hydrogenase activity and photohydrogen evolution of all mutants were similar to wild type cells. A reduced linear electron transfer and an increased quinol oxidase activity seem to counteract an increased hydrogen evolution in this case. This adds further support to the close interplay between the cytochrome bd oxidase and the bidirectional hydrogenase.  相似文献   

10.
The filamentous cyanobacterium Plectonema boryanum catalyzes efficient dark oxidative phosphorylation of exogenous ADP during NADPH consumption after a lysozyme treatment of only 30 min and subsequent dilution in hypoosmotic medium. It is shown that the thylakoid membranes and membrane areas bearing the terminal oxidase (presumably the cell membrane with cytochrome c:O2 oxidoreductase) and easily soluble cytoplasmic proteins are involved in KCN-sensitive dark oxidative phosphorylation. The dinitrophenyl ether of 2-iodo-4-nitrothymol, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone and KCN are inhibitors of dark respiratory ATP synthesis. Dependent on the physiological condition, other more or less KCN-insensitive respiratory pathways towards O2 may be present. A tentative scheme of the respiratory pathways is proposed.  相似文献   

11.
When anaerobically grown Saccharomyces cerevisiae are aerated under conditions which may deplete them of cytoplasmically translated, mitochondrial inner membrane enzyme precursors, they show no immediate decrease in in vivo mitochondrial translational activity compared with cells which have not been so depleted. Similarly, cells depleted of mitochondrially translanted precursors show no immediate decrease in their cytoplasmic translation of mitochondrial inner membrane proteins. These experiments suggest that the synthesis and nonspecific membrane attachment of mitochondrially and cytoplasmically translated inner membrane proteins are not stringently delimited by a prior depletion of inner membrane precursors elaborated by the “other” genetic system. It is thus possible to demonstrate a degree of uncoupling of the activities of the two genetic systems. The oxygen inductions of reduced CoQ cytochrome c reductase (complex III) and of cytochrome c oxidase (complex IV) activities in cells which have been sequentially exposed first to cycloheximide and then to chloramphenicol, or first to chloramphenicol and then to cycloheximide reflect the levels to which specifically integrated, mitochondrial and cytoplasmic precursors of these complexes can accumulate in the absence of concomitant translational activity by the “other” genetic system. These data again suggest the degree to which the translational activities of the two genetic systems can be uncoupled. A detailed study of the inductions of these two complexes in cells exposed first to chloramphenicol shows that the modes of induction of the two complexes are different. Complex III develops approximately 50% of its activity as an expression of a precursor (presumably mitochondrially translated) which is already present in the anaerobic cells, but which requires oxygen-induced cytoplasmic translation for its expression. The remainder of the induced complex III activity appears to require oxygen-induced mitochondrial translation for its expression. There was no analogous anaerobically present component evident during complex IV induction.  相似文献   

12.
Respiration is carried out by a series of membrane-bound complexes in the inner mitochondrial membrane or in the cytoplasmic membrane of bacteria. Increasing evidence shows that these complexes organize into larger supercomplexes. In this work, we identified a supercomplex composed of cytochrome (cyt.) bc1 and aa3-type cyt. c oxidase in Rhodobacter sphaeroides. We purified the supercomplex using a His-tag on either of these complexes. The results from activity assays, native and denaturing PAGE, size exclusion chromatography, electron microscopy, optical absorption spectroscopy and kinetic studies on the purified samples support the formation and coupled quinol oxidation:O2 reduction activity of the cyt. bc1-aa3 supercomplex. The potential role of the membrane-anchored cyt. cy as a component in supercomplexes was also investigated.  相似文献   

13.
Orientations of the active site chromophores of the mitochondrial redox carriers have been investigated in hydrated, oriented multilayers of mitochondrial membranes using optical and EPR spectroscopy. The hemes of cytochrome c oxidase, cytochrome c1, and cytochromes b were found to be oriented in a similar manner, with the normal to their heme planes lying approximately in the plane of the mitochondrial membrane. The heme of cytochrome c was either less oriented in general or was oriented at an angle closer to the plane of the mitochondrial membrane than were the hemes of the “tightly bound” mitochondrial cytochromes. EPR spectra of the azide, sulfide and formate complexes of cytochrome c oxidase in mitochondria in situ obtained as a function of the orientation of the applied magnetic field relative to the planes of the membrane multilayers showed that both hemes of the oxidase were oriented in such a way that the angle between the heme normal and the membrane normal was approx. 90°.  相似文献   

14.
Kristina Faxén 《BBA》2007,1767(5):381-386
Cytochrome c oxidase is the terminal enzyme in the respiratory chains of mitochondria and many bacteria where it translocates protons across a membrane thereby maintaining an electrochemical proton gradient. Results from earlier studies on detergent-solubilized cytochrome c oxidase have shown that individual reaction steps associated with proton pumping display pH-dependent kinetics. Here, we investigated the effect of pH on the kinetics of these reaction steps with membrane-reconstituted cytochrome c oxidase such that the pH was adjusted to different values on the inside and outside of the membrane. The results show that the pH on the inside of the membrane fully determines the kinetics of internal electron transfers that are linked to proton pumping. Thus, even though proton release is rate limiting for these reaction steps (Salomonsson et al., Proc. Natl. Acad. Sci. USA, 2005, 102, 17624), the transition kinetics is insensitive to the outside pH (in the range 6-9.5).  相似文献   

15.
The mitochondrial inner membrane contains two non-bilayer‐forming phospholipids, phosphatidylethanolamine (PE) and cardiolipin (CL). Lack of CL leads to destabilization of respiratory chain supercomplexes, a reduced activity of cytochrome c oxidase, and a reduced inner membrane potential Δψ. Although PE is more abundant than CL in the mitochondrial inner membrane, its role in biogenesis and assembly of inner membrane complexes is unknown. We report that similar to the lack of CL, PE depletion resulted in a decrease of Δψ and thus in an impaired import of preproteins into and across the inner membrane. The respiratory capacity and in particular the activity of cytochrome c oxidase were impaired in PE-depleted mitochondria, leading to the decrease of Δψ. In contrast to depletion of CL, depletion of PE did not destabilize respiratory chain supercomplexes but favored the formation of larger supercomplexes (megacomplexes) between the cytochrome bc1 complex and the cytochrome c oxidase. We conclude that both PE and CL are required for a full activity of the mitochondrial respiratory chain and the efficient generation of the inner membrane potential. The mechanisms, however, are different since these non-bilayer‐forming phospholipids exert opposite effects on the stability of respiratory chain supercomplexes.  相似文献   

16.
Irmelin Probst  Hans G. Schlegel 《BBA》1976,440(2):412-428
1. Cells of the hydrogen bacterium Alcaligenes eutrophus are broken by gentle lysis using lysozyme treatment in hypertonic sucrose followed by osmotic shock. By this method, 93% of the in vivo activity of the H2 oxidase is recovered and the ATPase remains particle bound. In contrast, cell disruption in a French pressure cell diminishes the in vivo activity of the H2 oxidase by 50% and solubilizes the bulk of the ATPase.2. The bacterium contains a periplasmic cytochrome c with bands at 418, 521 and 550 nm (difference spectrum). In addition to cytochrome aa3, b-560, c-553 and o, low temperature difference spectra of membranes show the presence of two further cytochromes (shoulders at 551 and 553 nm).3. The unsupplemented membrane fraction catalyses the oxidation of hydrogen, NADH, NADPH, succinate, formate and endogenous substrate (NAD linked) at rates 2–3-fold higher than membranes obtained from cells disrupted in a French pressure cell. With the exception of the H2 oxidase all oxidase activities in lysozyme membranes are sensitive to carbonylcyanide m-chlorophenylhydrazone (20–100% stimulation of oxygen uptake).4. The cytoplasmic fraction contains a B-type cytochrome with absorption maxima at 436 and 560 nm, capable of combining with CO; it contains non-covalently bound protohaem. In alkaline solutions a spectral transition to the haemochrome type with bands at 423, 526 and 556 nm occurs. The addition of NADH to an aerobic suspension of this cytochrome elicits new absorption maxima at 418, 545 and 577 nm (difference spectrum), which are believed to represent an oxygenated form of the reduced cytochrome.  相似文献   

17.
Freya A. Bundschuh  Klaus Hoffmeier 《BBA》2008,1777(10):1336-1343
Biogenesis of cytochrome c oxidase (COX) relies on a large number of assembly proteins, one of them being Surf1. In humans, the loss of Surf1 function is associated with Leigh syndrome, a fatal neurodegenerative disorder. In the soil bacterium Paracoccus denitrificans, homologous genes specifying Surf1 have been identified and located in two operons of terminal oxidases: surf1q is the last gene of the qox operon (coding for a ba3-type ubiquinol oxidase), and surf1c is found at the end of the cta operon (encoding subunits of the aa3-type cytochrome c oxidase). We introduced chromosomal single and double deletions for both surf1 genes, leading to significantly reduced oxidase activities in membrane. Our experiments on P. denitrificans surf1 single deletion strains show that both Surf1c and Surf1q are functional and act independently for the aa3-type cytochrome c oxidase and the ba3-type quinol oxidase, respectively. This is the first direct experimental evidence for the involvement of a Surf1 protein in the assembly of a quinol oxidase. Analyzing the heme content of purified cytochrome c oxidase, we conclude that Surf1, though not indispensable for oxidase assembly, is involved in an early step of cofactor insertion into subunit I.  相似文献   

18.
Derepression of mitochondria and their enzymes in yeast: regulatory aspects   总被引:27,自引:0,他引:27  
We have performed a detailed analysis of the properties of glucose-repressed cells of a commercial strain of Saccharomyces cerevisiae. They contain measurable amounts of the respiratory enzymes NADH oxidase, cytochrome c oxidase, succinate dehydrogenase, succinate:cytochrome c reductase and NADH:cytochrome c reductase (antimycin A-sensitive) as well as the dehydrogenases for l-malate, l-glutamate, and l8-isocitrate. Cytochromes b, c1, and aa3 are present in amounts that may be in excess of those required for cytochrome-linked enzyme activities. Enzymes and cytochromes are localized in large, presumably mitochondrial organelles among which no compositional or functional heterogeneity could be detected.We have also analyzed the kinetics of synthesis of respiratory enzymes and cytochromes during the release from catabolite(glucose) repression. All activities assayed except for cytochrome c oxidase begin their derepression before the external glucose concentration falls below 0.4%; derepression of cytochrome oxidase occurs only after the glucose concentration falls below 0.1%. The earlier events comprise the “fermentative” phase of derepression while the later events comprise the “oxidative” phase. The two phases can be distinguished operationally by their sensitivity to antimycin A. Only the oxidative phase is blocked by the inhibitor. Respiratory enzymes and cytochromes appear to fall into two classes distinguishable by their increase during derepression. An apparently constitutive one consists of cytochrome c oxidase, ATPase, and cytochromes aa3, b, and c1; these entities increase in amount per cell but not in amount per unit of mitochondrial mass and are of the order of 5-fold or less. The second class consists of those activities that increase by more than 6-fold and may be considered derepressible in the strict sense. Thus, proliferation and differentiation of mitochondria both contribute to the cellular changes associated with derepression.The fermentative phase of derepression does not require mitochondrial function, mitochondrial protein, or RNA synthesis, or the gradual accumulation of regulatory elements for either its initiation or persistence. This phase of derepression also occurs in cytoplasmic petites. In contrast, the oxidative phase of derepression requires mitochondrial function. Mitochondrial gene expression is required for the biogenesis of fully functional mitochondria but, except for cytochrome c, it plays little or no role in regulating the expression of nuclear genes the products of which are localized in mitochondria.  相似文献   

19.
Oxidation of ferrocytochrome c by molecular oxygen catalysed by cytochrome c oxidase (cytochrome aa3) is coupled to translocation of H+ ions across the mitochondrial membrane. The proton pump is an intrinsic property of the cytochrome c oxidase complex as revealed by studies with phospholipid vesicles inlayed with the purified enzyme. As the conformation of cytochrome aa3 is specifically sensitive to the electrochemical proton gradient across the mitochondrial membrane, it is likely that redox energy is primarily conserved as a conformational “strain” in the cytochrome aa3 complex, followed by relaxation linked to proton translocation. Similar principles of energy conservation and transduction may apply on other respiratory chain complexes and on mitochondrial ATP synthase.  相似文献   

20.
The terminal enzyme of the respiratory chain, cytochrome c oxidase, consists of a hydrophobic reaction center formed by three mitochondrially encoded subunits with which 9–10 nuclear encoded subunits are associated. The three core subunits are synthesized on mitochondrial ribosomes and inserted into the inner membrane in a co-translational reaction facilitated by the Oxa1 insertase. Oxa1 consists of an N-terminal insertase domain and a C-terminal ribosome-binding region. Mutants lacking the C-terminal region show specific defects in co-translational insertion, suggesting that the close contact of the ribosome with the insertase promotes co-translational insertion of nascent chains. In this study, we inserted flexible linkers of 100 or 200 amino acid residues between the insertase domain and ribosome-binding region of Oxa1 of Saccharomyces cerevisiae. In the absence of the ribosome receptor Mba1, these linkers caused a length-dependent decrease in mitochondrial respiratory activity caused by diminished levels of cytochrome c oxidase. Interestingly, considerable amounts of mitochondrial translation products were still integrated into the inner membrane in these linker mutants. However, they showed severe defects in later stages of the biogenesis process, presumably during assembly into functional complexes. Our observations suggest that the close proximity of Oxa1 to ribosomes is not only used to improve membrane insertion but is also critical for the productive assembly of the subunits of the cytochrome c oxidase. This points to a role for Oxa1 in the spatial coordination of the ribosome with assembly factors that are critical for enzyme biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号