首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Tyrosinase related protein‐1 (TRP‐1) is a melanocyte‐specific gene product involved in eumelanin synthesis. Mutation in the Tyrp1 gene is associated with brown pelage in mouse and oculocutaneous albinism Type 3 in humans (OCA3). It has been demonstrated that TRP‐1 expresses DHICA oxidase activity in the murine system. However, its actual function in the human system is still unclear. The study was designed to determine the effects of mutation at two Typr1 alleles, namely the Tyrp1b (brown) and Tyrp1b‐cj (cordovan) compared with wild type Tyrp1B (black) on melanocyte function and melanin biosynthesis. The most significant finding was that both of the Tyrp1 mutations (i.e. brown expressing a point mutation and cordovan expressing decreased amount of TRP‐1 protein) resulted in attenuation of cell proliferation rates. Neither necrosis nor apoptosis was responsible for the observed decrease in cell proliferation rates of the brown and cordovan melanocytes. Ultrastructural evaluation by electron microscopic analysis revealed that both mutations in Tyrp1 affected melanosome maturation without affecting its structure. These observations demonstrate that mutation in Tyrp1 compromised tyrosinase activity within the organelle. DOPA histochemistry revealed differences in melanosomal stages between black and brown melanocytes but not between black and cordovan melanocytes. There were no significant differences in tyrosine hydroxylase activities of tyrosinase and TRP‐1 in wild type black, brown and cordovan melanocyte cell lysates. We conclude that mutations in Tyrp1 compromise cell proliferation and melanosomal maturation in mouse melanocyte cultures.  相似文献   

2.
3.
Tyrosinase‐related protein 1 (Tyrp1) is a melanocyte‐specific gene product involved in eumelanin synthesis. Mutations in the mouse Tyrp1 gene are associated with brown pelage, and in the human TYRP1 gene with oculocutaneous albinism type 3 (OCA3). In the murine system, Tyrp1 expresses significant dihydroxyindole carboxylic acid oxidase (i.e. DHICA oxidase) activity. However, in humans, TYRP1 is enigmatic in that despite extensive efforts focused on the study of its function, its actual role in the human melanocyte is still unclear. There is mounting evidence demonstrating that in addition to its role in eumelanin synthesis, Tyrp1 is involved in maintaining stability of tyrosinase protein and modulating its catalytic activity. Tyrp1 is also involved in maintenance of melanosome ultrastructure and affects melanocyte proliferation and melanocyte cell death. The current review is an attempt to consolidate our understanding of the role of Tyrp1 in the melanocyte.  相似文献   

4.
Tyrp1 and oculocutaneous albinism type 3.   总被引:4,自引:0,他引:4  
Tyrosinase-related protein 1 (Tyrp1) is a melanocyte-specific gene product involved in eumelanin synthesis. Mutations in the mouse Tyrp1 gene are associated with brown pelage, and in the human TYRP1 gene with oculocutaneous albinism type 3 (OCA3). In the murine system, Tyrp1 expresses significant dihydroxyindole carboxylic acid oxidase (i.e. DHICA oxidase) activity. However, in humans, TYRP1 is enigmatic in that despite extensive efforts focused on the study of its function, its actual role in the human melanocyte is still unclear. There is mounting evidence demonstrating that in addition to its role in eumelanin synthesis, Tyrp1 is involved in maintaining stability of tyrosinase protein and modulating its catalytic activity. Tyrp1 is also involved in maintenance of melanosome ultrastructure and affects melanocyte proliferation and melanocyte cell death. The current review is an attempt to consolidate our understanding of the role of Tyrp1 in the melanocyte.  相似文献   

5.
Oculocutaneous albinism (OCA) is caused by reduced or deficient melanin pigmentation in the skin, hair, and eyes. OCA has different phenotypes resulting from mutations in distinct pigmentation genes involved in melanogenesis. OCA type 2 (OCA2), the most common form of OCA, is an autosomal recessive disorder caused by mutations in the P gene, the function(s) of which is controversial. In order to elucidate the mechanism(s) involved in OCA2, our group used several antibodies specific for various melanosomal proteins (tyrosinase, Tyrp1, Dct, Pmel17 and HMB45), including a specific set of polyclonal antibodies against the p protein. We used confocal immunohistochemistry to compare the processing and distribution of those melanosomal proteins in wild type (melan-a) and in p mutant (melan-p1) melanocytes. Our results indicate that the melanin content of melan-p1 melanocytes was less than 50% that of wild type melan-a melanocytes. In contrast, the tyrosinase activities were similar in extracts of wild type and p mutant melanocytes. Confocal microscopy studies and pulse-chase analyses showed altered processing and sorting of tyrosinase, which is released from melan-p1 cells to the medium. Processing and sorting of Tyrp1 was also altered to some extent. However, Dct and Pmel17 expression and subcellular localization were similar in melan-a and in melan-p1 melanocytes. In melan-a cells, the p protein showed mainly a perinuclear pattern with some staining in the cytoplasm where some co-localization with HMB45 antibody was observed. These findings suggest that the p protein plays a major role in modulating the intracellular transport of tyrosinase and a minor role for Tyrp1, but is not critically involved in the transport of Dct and Pmel17. This study provides a basis to understand the relationship of the p protein with tyrosinase function and melanin synthesis, and also provides a rational approach to unveil the consequences of P gene mutations in the pathogenesis of OCA2.  相似文献   

6.
Tyrosinase-related protein (TRP)-1 is one of the most abundant melanosomal glycoproteins involved in melanogenesis. This report summarizes our recent research efforts related to the biological role and biosynthesis of TRP-1 and its transport from TGN (trans-Golgi network) to the stage I melanosome. Our UV irradiation and tyrosinase and TRP-1 cDNA co-transfection studies indicated that human TRP-1 is involved in not only melanogenesis but also prevention of melanocyte death, which may occur during biosynthesis of melanin pigment in the presence of tyrosinase. Furthermore, a coordinated gene interaction was indicated between tyrosinase and TRP-1, resulting in upregulation of mRNA and protein expression of LAMP (lysosome-associated membrane protein)-1 that would directly prevent the tyrosinase-mediated programmed cell death of melanocytes. Similar to tyrosinase, however, TRP-1 appears to require a molecular chaperone, calnexin, which we have cloned recently. Our cDNA transfection study of tyrosinase with calnexin showed clearly the necessity of calnexin in order to have efficient, functional activity of melanosomal glycoprotein, especially tyrosinase. Once glycosylation is completed, TRP-1 will be transported from TGN to the stage I melanosome. At this stage, TRP-1 will have its own target signal, in particular, tyrosine-rich leucine residues in cytoplasmic tail. Our TRP-1 cDNA transfection and immunoelectron microscopy study shows that TRP-1 will be transported through small vesicles, probably non-clathrin-coated type, to large vacuoles, identical to the MPR (mannose-6-phosphate receptor)-positive, late endosomes. In this transport process, a low molecular weight G-protein, rab-7, was isolated from the purified melanosomal protein on 2D-PAGE and identified by subsequent sequencing and PCR amplification. Confocal microscopy with double immunostaining and immunoelectron microscopy confirmed the co-localization of rab-7 and TRP-1 in the melanosomes with early stages of maturation (I-III). Furthermore, this process will also be regulated by phosphatidylinositol 3-kinase (PI-3 kinase).  相似文献   

7.
8.
A mouse cDNA for the developmentally controlled, melanocyte-specific protein, tyrosinase-related protein 1 (TRP-1), was previously cloned and reported to show genetic linkage with the coat-colour locus brown (b) on mouse chromosome 4. The cDNA has been inserted into a retroviral vector derived from Moloney murine leukaemia virus, under the control of the human histone H4 promoter. This vector was used to infect melanocytes of the immortal line melan-b, which are homozygous for the b mutation and which display light brown pigmentation in culture. Infected cultures containing between 0.2 and 2 copies of provirus per cell displayed an altered phenotype: 20-50% of cells now had the black to dark brown colour characteristic of cultured wild-type (Black, B/B) mouse melanocytes. Thus the TRP-1 gene complements the brown mutation. We conclude that TRP-1 is the product of the wild-type b-locus.  相似文献   

9.
10.
E. Zdarsky  J. Favor    I. J. Jackson 《Genetics》1990,126(2):443-449
The murine b locus encodes the tyrosinase related protein, TRP-1, a putative membrane-bound, copper-containing enzyme having about 40% amino acid identity with tyrosinase. The protein is essential for production of black rather than brown hair pigment. We show that skin of mutant brown mice contains the same amount of TRP-1 mRNA as wild type. On sequencing the coding region of the mutant mRNA we find four nucleotide differences from the wild-type (Black) sequence. Two of these differences result in different amino acid residues encoded by the brown allele. By sequencing the TRP-1 gene from a mouse in which a reversion from brown to Black has been induced by ethylnitrosourea we are able to show that only one of these amino acid changes, which substitutes a tyrosine for a conserved cysteine, is the cause of the brown phenotype. This mutation is adjacent to another cysteine at which, in the analogous position in tyrosinase a mutation results in the albino phenotype. The sequence of the revertant is the first report of DNA sequence of an ethylnitrosourea-induced genetic change in mouse.  相似文献   

11.
In order to better understand the cascade of melanogenic events in melanocytes, this report has introduced our two recent approaches for the expression of melanogenesis/or melanosome-associated genes and encoded proteins in melanocytes (melanoma cells) after repeated exposure to UV -B and after cotransfection of two human genes, i.e., tyrosinase and tyrosinase-related protein-1 (TRP-1). Repeated exposure of UV B (2.5–5.0 mJ/cm2) caused not only upregulation of tyrosinase and TRP-1 genes but also coordinated increase in the gene and protein synthesis expression of Lamp-1 (lysosome-associated membrane protein-1). When COS-7 kidney cells and amelanotic melanoma (C32 and SKMEL-24) and melanotic melanoma (G361 and SK-MEL-23) cells were exposed to cotransfection of human tyrosinase and TRP-1 cDNAs, there was also an increased expression of Lamp-1 mRNA and protein along with tyrosinase activation and new melanin synthesis. Importantly, single transfectants of human tyrosinase cDNA revealed marked cellular degeneration, whereas this degeneration was not seen in single transfectants of TRP-1 cDNA or cotransfectants of human tyrosinase and TRP-1 cDNAs, indicating that TRP-1 prevented, along with Lamp-1, programmed death of melanocytes after transfection of tyrosinase gene. The coordinated expression of TRP-1 and Lamp-1 was further confirmed by antisense oligodeoxynucleotide hybridization experiment against Lamp-1 gene, showing the decreased expression of TRP-1 as identified by three different types of anti-TRP-1 monoclonal antibodies. We propose therefore that human tyrosinase and TRP-l, when activated or expressed together, will coordinate to upregulate the mRNA expression and protein synthesis of Lamp-1. The Lamp-1 molecules will, in turn, cover the inner surface of melanosomal membrane, together with TRP-1 molecules, thus protecting the melanosomal membrane from toxic melanin intermediates generated during melanogenesis in the presence of active tyrosinase. In contrast, the expression of other lysosome-related proteins, e.g., β-galactosidase and CD63 is not stimulated in new melanogenesis.  相似文献   

12.
Melanin biosynthesis in vertebrates depends on the function of three enzymes of the tyrosinase family, tyrosinase (Tyr), tyrosinase‐related protein 1 (Tyrp1), and dopachrome tautomerase (Dct or Tyrp2). Tyrp1 might play an additional role in the survival and proliferation of melanocytes. Here, we describe a mutation in tyrp1A, one of the two tyrp1 paralogs in zebrafish, which causes melanophore death leading to a semi‐dominant phenotype. The mutation, an Arg‐>Cys change in the amino‐terminal part of the protein, is similar to mutations in humans and mice where they lead to blond hair (in melanesians) or dark hair with white bases, respectively. We demonstrate that the phenotype in zebrafish depends on the presence of the mutant protein and on melanin synthesis. Ultrastructural analysis shows that the melanosome morphology and pigment content are altered in the mutants. These structural changes might be the underlying cause for the observed cell death, which, surprisingly, does not result in patterning defects.  相似文献   

13.
14.
Rab proteins, a subfamily of the ras superfamily, are low molecular weight GTPases involved in the regulation of intracellular vesicular transport. Cloning of human RAB32 was recently described. Presently, we report the cloning and characterization of the mouse homologue of Rab32. We show that murine Rab32 exhibits a ubiquitous expression pattern, with tissue-specific variation in expression level. Three cell types with highly specialized organelles, melanocytes, platelets and mast cells, exhibit relatively high level of Rab32. We show that in murine amelanotic in vitro transformed melanocytes as well as in human amelanotic metastatic melanoma cell lines, the expression of Rab32 is markedly reduced or absent, in parallel with the loss of expression of two key enzymes for the production of melanin, tyrosinase and Tyrp1. Therefore, in both mouse and human systems, the expression of Rab32 correlates with the expression of genes involved in pigment production. However, in melanoma samples, amelanotic due to a mutation in the tyrosinase gene, the expression of Rab32 remains at levels comparable to those observed in pigmented melanoma samples. Finally, we observed co-localization of Rab32 and the melanosomal proteins, Tyrp1 and Dct, indicating an association of Rab32 with melanosomes. Based on these data, we propose the inclusion of Rab32 to the so-called melanocyte/platelet family of Rab proteins.  相似文献   

15.
Patients with Hermansky-Pudlak syndrome type 2 (HPS-2) have mutations in the beta 3A subunit of adaptor complex-3 (AP-3) and functional deficiency of this complex. AP-3 serves as a coat protein in the formation of new vesicles, including, apparently, the platelet's dense body and the melanocyte's melanosome. We used HPS-2 melanocytes in culture to determine the role of AP-3 in the trafficking of the melanogenic proteins tyrosinase and tyrosinase-related protein-1 (TRP-1). TRP-1 displayed a typical melanosomal pattern in both normal and HPS-2 melanocytes. In contrast, tyrosinase exhibited a melanosomal (i.e., perinuclear and dendritic) pattern in normal cells but only a perinuclear pattern in the HPS-2 melanocytes. In addition, tyrosinase exhibited a normal pattern of expression in HPS-2 melanocytes transfected with a cDNA encoding the beta 3A subunit of the AP-3 complex. This suggests a role for AP-3 in the normal trafficking of tyrosinase to premelanosomes, consistent with the presence of a dileucine recognition signal in the C-terminal portion of the tyrosinase molecule. In the AP-3-deficient cells, tyrosinase was also present in structures resembling late endosomes or multivesicular bodies; these vesicles contained exvaginations devoid of tyrosinase. This suggests that, under normal circumstances, AP-3 may act on multivesicular bodies to form tyrosinase-containing vesicles destined to fuse with premelanosomes. Finally, our studies demonstrate that tyrosinase and TRP-1 use different mechanisms to reach their premelanosomal destination.  相似文献   

16.
Melanosomes are lysosome-related organelles that coexist with lysosomes in mammalian pigment cells. Melanosomal and lysosomal membrane proteins share similar sorting signals in their cytoplasmic tail, raising the question how they are segregated. We show that in control melanocytes, the melanosomal enzymes tyrosinase-related protein 1 (Tyrp1) and tyrosinase follow an intracellular Golgi to melanosome pathway, whereas in the absence of glycosphingolipids, they are observed to pass over the cell surface. Unexpectedly, the lysosome-associated membrane protein 1 (LAMP-1) and 2 behaved exactly opposite: they were found to travel through the cell surface in control melanocytes but followed an intracellular pathway in the absence of glycosphingolipids. Chimeric proteins having the cytoplasmic tail of Tyrp1 or tyrosinase were transported like lysosomal proteins, whereas a LAMP-1 construct containing the lumenal domain of Tyrp1 localized to melanosomes. In conclusion, the lumenal domain contains sorting information that guides Tyrp1 and probably tyrosinase to melanosomes by an intracellular route that excludes lysosomal proteins and requires glucosylceramide.  相似文献   

17.
18.
Human TRP-1 has been immunopurified from normal human melanocytes cultured from black neonatal subjects and used to investigate the catalytic function of TRP-1 for the two substrates, L-tyrosine and L-DOPA. Immunopurified TRP-1 did not demonstrate DOPA staining on SDS/PAGE nor DOPA oxidase (DO) activity with either routine or modified assays. The purified TRP-1 also demonstrated no tyrosine hydroxylase (TH) activity using the routine Pomerantz assay. However, there was apparent TH activity exhibited by immunopurified TRP-1 under conditions with low tyrosine concentration (≤0.8 μCi/ml of 3H-tyrosine), prolonged incubation time (i.e., overnight) and in the absence of the cofactor L-DOPA. Using these latter specific conditions, TH activity was also detected in cell lysates from a tyrosinase-negative albino melanocyte line which exhibited no TH activity with the routine Pomerantz assay. In addition, TH activity under low substrate assay conditions was not exhibited in a melanocyte line derived from a TRP-1 deficient, Brown albino individual. However, the absence of TH in this Brown albino cell line could be compensated for by the addition of L-DOPA to the assay. These results suggested that TRP-1 has some tyrosine hydroxylase but no DOPA oxidase activity. We propose that one function of TRP-1 is to modulate tyrosinase activity by making DOPA available as a cofactor to perpetuate the initial steps in melanogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号