首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
Abstract

Scleroderma (systemic sclerosis) is a chronic multisystem autoimmune disease in which oxidative stress is suspected to play a role in the pathophysiology. Therefore, it was postulated that patients with scleroderma would have abnormally high breath ethane concentrations, which is a volatile product of free-radical-mediated lipid peroxidation, compared with a group of controls. There was a significant difference (p<0.05) between the mean exhaled ethane concentration of 5.27 pmol ml–1 CO2 (SEM=0.76) in the scleroderma patients (n=36) versus the mean exhaled concentration of 2.72 pmol ml?1 CO2 (SEM=0.71) in a group of healthy controls (n=21). Within the scleroderma group, those subjects taking a calcium channel blocker had lower ethane concentrations compared with patients who were not taking these drugs (p=0.05). There was a significant inverse association between lung diffusion capacity for carbon monoxide (per cent of predicted) and ethane concentration (b=?2.8, p=0.026, CI=?5.2 to ?0.35). These data support the presence of increased oxidative stress among patients with scleroderma that is detected by measuring breath ethane concentrations.  相似文献   

2.
Quantitations of exhaled nitric oxide (NO) and carbon monoxide (CO) have been proposed as noninvasive markers of airway inflammation. We hypothesized that exhaled CO is increased in individuals with alpha(1)-antitrypsin (AT) deficiency, who have lung inflammation and injury related to oxidative and proteolytic processes. Nineteen individuals with alpha(1)-AT deficiency, 22 healthy controls, and 12 patients with non-alpha(1)-AT-deficient chronic obstructive pulmonary disease (COPD) had NO, CO, CO(2), and O(2) measured in exhaled breath. Individuals with alpha(1)-AT deficiency had lower levels of NO and CO than control or COPD individuals. Alpha(1)-AT-deficient and COPD patients had lower exhaled CO(2) than controls, although only alpha(1)-AT-deficient patients had higher exhaled O(2) than healthy controls. NO was correlated inversely with exhaled O(2) and directly with exhaled CO(2), supporting a role for NO in regulation of gas exchange. Exhaled gases were not significantly related to corticosteroid use or lung function. Demonstration of lower than normal CO and NO levels may be useful as an additional noninvasive method to evaluate alpha(1)-AT deficiency in individuals with a severe, early onset of obstructive lung disease.  相似文献   

3.
To examine lipid peroxidation during radiotherapy (RT), exhaled pentane samples were collected from 11 lung cancer patients before RT and 30 and 120 min after the start of RT on days 1, 4 and 5 and at 30 and 40 Grays, if possible. Exhaled pentane samples were collected once from 30 healthy controls. Serum thiobarbituric-acid-reactive substances (TBARS) and conjugated dienes (CD) were obtained from patients on each exhaled air collection day. Lung cancer patients had higher exhaled pentane levels than controls (1.73 ng/L vs 0.83 ng/L, p=0.017). Exhaled pentane levels tended to decrease during the first RT day (p=0.075) and levels of CD decreased during the first week of RT (p=0.014). Higher pre-treatment pentane levels predicted better survival (p=0.003). Elevated exhaled pentane levels before RT may be due to the lipid peroxidation burden associated with cancer. The decrease of lipid peroxidation markers during RT may be attributable to enhanced antioxidant defense mechanisms.  相似文献   

4.
Biomarkers of some pulmonary diseases in exhaled breath   总被引:16,自引:0,他引:16  
Analysis of various biomarkers in exhaled breath allows completely non-invasive monitoring of inflammation and oxidative stress in the respiratory tract in inflammatory lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), bronchiectasis and interstitial lung diseases. The technique is simple to perform, may be repeated frequently, and can be applied to children, including neonates, and patients with severe disease in whom more invasive procedures are not possible. Several volatile chemicals can be measured in the breath (nitric oxide, carbon monoxide, ammonia), and many non-volatile molecules (mediators, oxidation and nitration products, proteins) may be measured in exhaled breath condensate. Exhaled breath analysis may be used to quantify inflammation and oxidative stress in the respiratory tract, in differential diagnosis of airway disease and in the monitoring of therapy. Most progress has been made with exhaled nitric oxide (NO), which is increased in atopic asthma, is correlated with other inflammatory indices and is reduced by treatment with corticosteroids and antileukotrienes, but not (β2-agonists. In contrast, exhaled NO is normal in COPD, reduced in CF and diagnostically low in primary ciliary dyskinesia. Exhaled carbon monoxide (CO) is increased in asthma, COPD and CF. Increased concentrations of 8-isoprostane, hydrogen peroxide, nitrite and 3-nitrotyrosine are found in exhaled breath condensate in inflammatory lung diseases. Furthermore, increased levels of lipid mediators are found in these diseases, with a differential pattern depending on the nature of the disease process. In the future it is likely that smaller and more sensitive analysers will extend the discriminatory value of exhaled breath analysis and that these techniques may be available to diagnose and monitor respiratory diseases in the general practice and home setting.  相似文献   

5.
Role of exhaled nitric oxide in asthma   总被引:4,自引:0,他引:4  
Nitric oxide (NO), an evanescent atmospheric gas, has recently been discovered to be an important biological mediator in animals and humans. Nitric oxide plays a key role within the lung in the modulation of a wide variety of functions including pulmonary vascular tone, nonadrenergic non-cholinergic (NANC) transmission and modification of the inflammatory response. Asthma is characterized by chronic airway inflammation and increased synthesis of NO and other highly reactive and toxic substances (reactive oxygen species). Pro- inflammatory cytokines such as TNFalpha and IL-1beta are secreted in asthma and result in inflammatory cell recruitment, but also induce calcium- and calmodulin-independent nitric oxide synthases (iNOS) and perpetuate the inflammatory response within the airways. Nitric oxide is released by several pulmonary cells including epithelial cells, eosinophils and macrophages, and NO has been shown to be increased in conditions associated with airway inflammation, such as asthma and viral infections. Nitric oxide can be measured in the expired air of several species, and exhaled NO can now be rapidly and easily measured by the use of chemiluminescence analysers in humans. Exhaled NO is increased in steroid-naive asthmatic subjects and during an asthma exacerbation, although it returns to baseline levels with appropriate anti-inflammatory treatment, and such measurements have been proposed as a simple non-invasive method of measuring airway inflammation in asthma. Here the chemical and biological properties of NO are briefly discussed, followed by a summary of the methodological considerations relevant to the measurement of exhaled NO and its role in lung diseases including asthma. The origin of exhaled NO is considered, and brief mention made of other potential markers of airway inflammation or oxidant stress in exhaled breath.  相似文献   

6.

Background

The role of leukotriene (LT) B4, a potent inflammatory mediator, in atopic asthmatic and atopic nonasthmatic children is largely unknown. The lack of a gold standard technique for measuring LTB4 in exhaled breath condensate (EBC) has hampered its quantitative assessment in this biological fluid. We sought to measure LTB4 in EBC in atopic asthmatic children and atopic nonasthmatic children. Exhaled nitric oxide (NO) was measured as an independent marker of airway inflammation.

Methods

Fifteen healthy children, 20 atopic nonasthmatic children, 25 steroid-naïve atopic asthmatic children, and 22 atopic asthmatic children receiving inhaled corticosteroids were studied. The study design was of cross-sectional type. Exhaled LTB4 concentrations were measured using liquid chromatography/mass spectrometry-mass spectrometry (LC/MS/MS) with a triple quadrupole mass spectrometer. Exhaled NO was measured by chemiluminescence with a single breath on-line method. LTB4 values were expressed as the total amount (in pg) of eicosanoid expired in the 15-minute breath test. Kruskal-Wallis test was used to compare groups.

Results

Compared with healthy children [87.5 (82.5–102.5) pg, median and interquartile range], exhaled LTB4 was increased in steroid-naïve atopic asthmatic [255.1 (175.0–314.7) pg, p < 0.001], but not in atopic nonasthmatic children [96.5 (87.3–102.5) pg, p = 0.59)]. Asthmatic children who were receiving inhaled corticosteroids had lower concentrations of exhaled LTB4 than steroid-naïve asthmatics [125.0 (25.0–245.0) pg vs 255.1 (175.0–314.7) pg, p < 0.01, respectively]. Exhaled NO was higher in atopic nonasthmatic children [16.2 (13.5–22.4) ppb, p < 0.05] and, to a greater extent, in atopic steroid-naïve asthmatic children [37.0 (31.7–57.6) ppb, p < 0.001] than in healthy children [8.3 (6.1–9.9) ppb]. Compared with steroid-naïve asthmatic children, exhaled NO levels were reduced in asthmatic children who were receiving inhaled corticosteroids [15.9 (11.5–31.7) ppb, p < 0.01].

Conclusion

In contrast to exhaled NO concentrations, exhaled LTB4 values are selectively elevated in steroid-naïve atopic asthmatic children, but not in atopic nonasthmatic children. Although placebo control studies are warranted, inhaled corticosteroids seem to reduce exhaled LTB4 in asthmatic children. LC/MS/MS analysis of exhaled LTB4 might provide a non-invasive, sensitive, and quantitative method for airway inflammation assessment in asthmatic children.  相似文献   

7.

Background

Exhaled nitric oxide (NO) production is increased in asthma and reflects the degree of airway inflammation. The alveolar NO concentration (Calv) in interstitial pneumonia is reported to be increased. However, it remains unknown whether NO production is increased and nitrosative stress occurs in eosinophilic pneumonia (EP). We hypothesized that nitrosative stress markers including Calv, inducible type of NO synthase (iNOS), and 3-nitrotyrosine (3-NT), are upregulated in EP.

Methods

Exhaled NO including fractional exhaled NO (FENO) and Calv was measured in ten healthy subjects, 13 patients with idiopathic pulmonary fibrosis (IPF), and 13 patients with EP. iNOS expression and 3-NT formation were assessed by immunocytochemistory in BALf cells. The exhaled NO, lung function, and systemic inflammatory markers of the EP patients were investigated after corticosteroid treatment for 4 weeks.

Results

The Calv levels in the EP group (14.4 ± 2.0 ppb) were significantly higher than those in the healthy subjects (5.1 ± 0.6 ppb, p < 0.01) and the IPF groups (6.3 ± 0.6 ppb, p < 0.01) as well as the FENO and the corrected Calv levels (all p < 0.01). More iNOS and 3-NT positive cells were observed in the EP group compared to the healthy subject and IPF patient. The Calv levels had significant positive correlations with both iNOS (r = 0.858, p < 0.05) and 3-NT positive cells (r = 0.924, p < 0.01). Corticosteroid treatment significantly reduced both the FENO (p < 0.05) and the Calv levels (p < 0.01). The magnitude of reduction in the Calv levels had a significant positive correlation with the peripheral blood eosinophil counts (r = 0.802, p < 0.05).

Conclusions

These results suggested that excessive nitrosative stress occurred in EP and that Calv could be a marker of the disease activity.  相似文献   

8.
Breath analysis, including measurement of nitric oxide (NO), is a noninvasive diagnostic tool that may help evaluate cetacean health. This is the first report on the effects of breath hold duration, feeding, and lung disease on NO in dolphin exhaled breath. Three healthy dolphins were trained to hold their breath for 30, 60, 90, and 120 s and then exhale into an underwater funnel. Exhaled NO values from 157 breath samples were compared among three healthy dolphins by breath hold time and after fasting and feeding. Exhaled NO values were also measured in two dolphins with pulmonary disease. NO in dolphin breath was higher compared to ambient air; healthy dolphins had higher NO concentrations in their breath after feeding compared to after overnight fasting; and there were no significant differences in exhaled NO levels by breath hold duration. A dolphin with Mycoplasma‐associated pneumonia and chronic gastrointestinal disease had higher postprandial exhaled NO levels compared to healthy controls. This study demonstrates, contrary to previous publications, that dolphins exhale NO. Given the high standard deviations present in exhaled breath NO values, future studies are needed to further standardize collection methods or identify more reliable samples (e.g., blood).  相似文献   

9.
Nitric oxide (NO) was first detected in the exhaled breath more than a decade ago and has since been investigated as a noninvasive means of assessing lung inflammation. Exhaled NO arises from the airway and alveolar compartments, and new analytical methods have been developed to characterize these sources. A simple two-compartment model can adequately represent many of the observed experimental observations of exhaled concentration, including the marked dependence on exhalation flow rate. The model characterizes NO exchange by using three flow-independent exchange parameters. Two of the parameters describe the airway compartment (airway NO diffusing capacity and either the maximum airway wall NO flux or the airway wall NO concentration), and the third parameter describes the alveolar region (steady-state alveolar NO concentration). A potential advantage of the two-compartment model is the ability to partition exhaled NO into an airway and alveolar source and thus improve the specificity of detecting altered NO exchange dynamics that differentially impact these regions of the lungs. Several analytical techniques have been developed to estimate the flow-independent parameters in both health and disease. Future studies will focus on improving our fundamental understanding of NO exchange dynamics, the analytical techniques used to characterize NO exchange dynamics, as well as the physiological interpretation and the clinical relevance of the flow-independent parameters.  相似文献   

10.
Asthma is a multifactorial disease and its severity varies with the inflammatory status of the patient. It has been hypothesized that deficiency of trace elements has an important role in the etiology of asthma. The aim of the study was to evaluate the concentration of trace elements in nails of adolescents with different degrees of airway inflammation. We assessed the prevalence of active and severe asthma in adolescents (n?=?106) through the ISAAC questionnaire. Subjects were allocated into two different groups according to the value of fraction exhaled nitric oxide (FeNO) measured. Also, nail specimens were collected in order to determine the concentration of accumulated trace elements (Cu, Zn, Mn, Se) by ICP-MS. It was performed Student’s t test to evaluate statistical differences between inflammatory groups considering normally distributed data. On the other hand, when data presented non-normal distribution, Mann-Whitney U test was utilized. Spearman coefficients were calculated to investigate correlations between FeNO and mineral concentrations. Exhaled NO was increased in male subjects. We found association between active asthma and elevated exhaled NO. There was no significant difference in Cu (4.40 vs. 4.52), Zn (84.66 vs. 79.48), Mn (0.59 vs. 0.76), and Se (0.18 vs. 0.19) concentrations (μg/g) among distinct FeNO groups as well as was not observed correlation between exhaled NO levels and any element. Deficiency of trace elements in nails were not associated with increased FeNO.  相似文献   

11.
Exhaled nitric oxide (NO) is a potential noninvasive index of lung inflammation and is thought to arise from the alveolar and airway regions of the lungs. A two-compartment model has been used to describe NO exchange; however, the model neglects axial diffusion of NO in the gas phase, and recent theoretical studies suggest that this may introduce significant error. We used heliox (80% helium, 20% oxygen) as the insufflating gas to probe the impact of axial diffusion (molecular diffusivity of NO is increased 2.3-fold relative to air) in healthy adults (21-38 yr old, n = 9). Heliox decreased the plateau concentration of exhaled NO by 45% (exhalation flow rate of 50 ml/s). In addition, the total mass of NO exhaled in phase I and II after a 20-s breath hold was reduced by 36%. A single-path trumpet model that considers axial diffusion predicts a 50% increase in the maximum airway flux of NO and a near-zero alveolar concentration (Ca(NO)) and source. Furthermore, when NO elimination is plotted vs. constant exhalation flow rate (range 50-500 ml/s), the slope has been previously interpreted as a nonzero Ca(NO) (range 1-5 ppb); however, the trumpet model predicts a positive slope of 0.4-2.1 ppb despite a zero Ca(NO) because of a diminishing impact of axial diffusion as flow rate increases. We conclude that axial diffusion leads to a significant backdiffusion of NO from the airways to the alveolar region that significantly impacts the partitioning of airway and alveolar contributions to exhaled NO.  相似文献   

12.
Exhaled nitric oxide (NO) is elevated in asthma, but the underlying mechanisms remain poorly understood. Recent results in subjects with asthma have reported a decrease in exhaled breath pH and ammonia, as well as altered expression and activity of glutaminase in both alveolar and airway epithelial cells. This suggests that pH-dependent nitrite conversion to NO may be a source of exhaled NO in the asthmatic airway epithelium. However, the anatomic location (i.e., airway or alveolar region) of this pH-dependent NO release has not been investigated and could impact potential therapeutic strategies. We quantified airway (proximal) and alveolar (peripheral) contributions to exhaled NO at baseline and then after PBS inhalation in stable (mild-intermittent to severe) asthmatic subjects (20-44 yr old; n = 9) and healthy controls (22-41 yr old; n = 6). The mean (SD) maximum airway wall flux (pl/s) and alveolar concentration (ppb) at baseline in asthma subjects and healthy controls was 2,530 (2,572) and 5.42 (7.31) and 1,703 (1,567) and 1.88 (1.29), respectively. Compared with baseline, there is a significant decrease in the airway wall flux of NO in asthma as early as 15 min and continuing for up to 60 min (maximum -28% at 45 min) after PBS inhalation without alteration of alveolar concentration. Healthy control subjects did not display any changes in exhaled NO. We conclude that elevated airway NO at baseline in asthma is reduced by inhaled PBS. Thus airway NO may be, in part, due to nitrite conversion to NO and is consistent with airway pH dysregulation in asthma.  相似文献   

13.
Exhaled nitric oxide (Fe(NO)) measurements provide a noninvasive approach to the evaluation of airway inflammation. Flow-independent NO exchange parameters [airway NO transfer factor (D(NO)) and airway wall NO concentration (Cw(NO))] can be estimated from Fe(NO) measurements at low flows and may elucidate mechanisms of disturbances in NO exchange. We measured Fe(NO) in sedated infants by using an adaptation of a raised lung volume rapid thoracic compression technique that creates forced expiration through a mass-flow controller that lasts 5-10 s, at a constant preset flow. We measured Fe(NO) at expired flows of 50, 25, and 15 ml/s in five healthy infants (7-31 mo). Median Fe(NO) increased [24, 40, and 60 parts per billion (ppb)] with decreasing expiratory flows (50, 25, and 15 ml/s). Group median (range) for D(NO) and Cw(NO) were 12.7 (3.2-37) x 10(-3) nl. s(-1). ppb(-1) and 108.9 (49-385) ppb, respectively, similar to values reported in healthy adults. Exhaled NO is flow dependent; flow-independent parameters of exhaled NO kinetics can be assessed in infants and are similar to values described in adults.  相似文献   

14.

Background

Asthma is a chronic airway inflammatory disease characterized by an imbalance in both Th1 and Th2 cytokines. Exhaled nitric oxide (NO) is elevated in asthma, and is a potentially useful non-invasive marker of airway inflammation. However, the origin and underlying mechanisms of intersubject variability of exhaled NO are not yet fully understood. We have previously described NO gas phase release from normal human bronchial epithelial cells (NHBEs, tracheal origin). However, smaller airways are the major site of morbidity in asthma. We hypothesized that IL-13 or cytomix (IL-1β, TNF-α, and IFN-γ) stimulation of differentiated small airway epithelial cells (SAECs, generation 10–12) and A549 cells (model cell line of alveolar type II cells) in culture would enhance NO gas phase release.

Methods

Confluent monolayers of SAECs and A549 cells were cultured in Transwell plates and SAECs were allowed to differentiate into ciliated and mucus producing cells at an air-liquid interface. The cells were then stimulated with IL-13 (10 ng/mL) or cytomix (10 ng/mL for each cytokine). Gas phase NO release in the headspace air over the cells was measured for 48 hours using a chemiluminescence analyzer.

Results

In contrast to our previous result in NHBE, baseline NO release from SAECs and A549 is negligible. However, NO release is significantly increased by cytomix (0.51 ± 0.18 and 0.29 ± 0.20 pl.s-1.cm-2, respectively) reaching a peak at approximately 10 hours. iNOS protein expression increases in a consistent pattern both temporally and in magnitude. In contrast, IL-13 only modestly increases NO release in SAECs reaching a peak (0.06 ± 0.03 pl.s-1.cm-2) more slowly (30 to 48 hours), and does not alter NO release in A549 cells.

Conclusion

We conclude that the airway epithelium is a probable source of NO in the exhaled breath, and intersubject variability may be due, in part, to variability in the type (Th1 vs Th2) and location (large vs small airway) of inflammation.  相似文献   

15.
Nitric oxide (NO) levels are increased in the exhaled air of asthmatics. As NO levels correlate with allergic airway inflammation, NO measurement has been suggested for disease monitoring. In patients with asthma, we previously demonstrated that intrabronchial treatment with a natural porcine surfactant enhanced airway inflammation after segmental allergen provocation. We studied whether local levels of NO reflect the degree of allergic airway inflammation following segmental allergen challenge with or without surfactant pretreatment. Segmental NO, as well as nitrite and nitrate in bronchoalveolar lavage (BAL) fluid, was measured before and after segmental challenge with either saline, saline plus allergen, or surfactant plus allergen in 16 patients with asthma and five healthy subjects. The data were compared with inflammatory BAL cells. Segmental NO levels were increased after instillation of saline (p < 0.05), or surfactant plus allergen in asthmatics (p < 0.05), and values were higher after surfactant plus allergen compared to saline challenge. Nitrate BAL levels were not altered after saline challenge but increased after allergen challenge (p < 0.05) and further raised by surfactant (p < 0.05), whereas nitrite levels were not altered by any treatment. Segmental NO and nitrate levels correlated with the degree of eosinophilic airway inflammation, and nitrate levels also correlated with neutrophil and lymphocyte numbers in BAL. In healthy subjects, NO, nitrite, and nitrate were unaffected. Thus, segmental NO and nitrate levels reflect the degree of allergic airway inflammation in patients with asthma. Measurement of both markers can be useful in studies using segmental allergen provocation, to assess local effects of potential immunomodulators.  相似文献   

16.
Volatile hydrocarbons such as ethane and n-pentane are known to originate from peroxidation of polyunsaturated fatty acids in membrane lipids and they are accepted as a sensitive and direct index of lipid peroxidation both in vitro and in vivo. Until now, an appropriate and commonly accepted method for the analysis of volatile hydrocarbons in exhalation air has not been described. We therefore developed a methodology for routine application in humans that is based on cryofocusing in combination with gas chromatography and is adaptable to mass spectrometry. The samples may be stored in stainless steel bombs up to 3 weeks, and sample volumes necessary to analysis are variable and can be adapted to analytical requirements. The interference by water and carbon dioxide, always present in excess, is strongly reduced. Mass spectroscopic analysis of exhalation air in human control subjects demonstrates, however, the presence of isoprene as the major constituent hitherto identified as n-pentane. The commonly used columns fail to separate n-pentane and isoprene. Based upon studies of the diverse methodologies reported in literature, it must be assumed that the reported responses of the gas chromatographic "n-pentane" peak in exhalation air of humans and animals, hitherto identified exclusively by authentic reference gases, are actually responses to isoprene or, at least, a mixture of both n-pentane and isoprene.  相似文献   

17.
Whether exhaled NO helps to identify a specific phenotype of asthmatic patients remains debated. Our aims were to evaluate whether exhaled NO (FENO0.05) is independently associated (1) with underlying pathophysiological characteristics of asthma such as airway tone (bronchodilator response) and airway inflammation (inhaled corticosteroid [ICS]-dependant inflammation), and (2) with clinical phenotypes of asthma.We performed multivariate (exhaled NO as dependent variable) and k-means cluster analyses in a population of 169 asthmatic children (age ± SD: 10.5 ± 2.6 years) recruited in a monocenter cohort that was characterized in a cross-sectional design using 28 parameters describing potentially different asthma domains: atopy, environment (tobacco), control, exacerbations, treatment (inhaled corticosteroid and long-acting bronchodilator agonist), and lung function (airway architecture and tone).Two subject-related characteristics (height and atopy) and two disease-related characteristics (bronchodilator response and ICS dose > 200 μg/d) explained 36% of exhaled NO variance. Nine domains were isolated using principal component analysis. Four clusters were further identified: cluster 1 (47%): boys, unexposed to tobacco, with well-controlled asthma; cluster 2 (26%): girls, unexposed to tobacco, with well-controlled asthma; cluster 3 (6%): girls or boys, unexposed to tobacco, with uncontrolled asthma associated with increased airway tone, and cluster 4 (21%): girls or boys, exposed to parental smoking, with small airway to lung size ratio and uncontrolled asthma. FENO0.05 was not different in these four clusters.In conclusion, FENO0.05 is independently linked to two pathophysiological characteristics of asthma (ICS-dependant inflammation and bronchomotor tone) but does not help to identify a clinically relevant phenotype of asthmatic children.  相似文献   

18.

Background

Exhaled, endogenous particles are formed from the epithelial lining fluid in small airways, where surfactant protein A (SP-A) plays an important role in pulmonary host defense. Based on the knowledge that chronic obstructive pulmonary disease (COPD) starts in the small airway epithelium, we hypothesized that chronic inflammation modulates peripheral exhaled particle SP-A and albumin levels. The main objective of this explorative study was to compare the SP-A and albumin contents in exhaled particles from patients with COPD and healthy subjects and to determine exhaled particle number concentrations.

Methods

Patients with stable COPD ranging from moderate to very severe (n = 13), and healthy non-smoking subjects (n = 12) were studied. Subjects performed repeated breath maneuvers allowing for airway closure and re-opening, and exhaled particles were optically counted and collected on a membrane using the novel PExA® instrument setup. Immunoassays were used to quantify SP-A and albumin.

Results

COPD patients exhibited significantly lower SP-A mass content of the exhaled particles (2.7 vs. 3.9 weight percent, p = 0.036) and lower particle number concentration (p<0.0001) than healthy subjects. Albumin mass contents were similar for both groups.

Conclusions

Decreased levels of SP-A may lead to impaired host defense functions of surfactant in the airways, contributing to increased susceptibility to COPD exacerbations. SP-A in exhaled particles from small airways may represent a promising non-invasive biomarker of disease in COPD patients.  相似文献   

19.
呼出气温度是一种新的呼吸系统疾病监测手段。从被发现开始,呼出气温度就引起了众多学者的兴趣。人们发现在哮喘等呼吸系统疾病患者身上测出的呼出气温度较正常健康人的呼出气温度要高。大量的研究结果表明呼出气温度的变化与患者肺部的炎症改变有关,学者们研究推断肺部的炎症改变使得肺部病变部位局部血管增生及血流量增加因而导致了肺部气道热量交换和损失的改变,最终导致患者呼出气温度的改变。这一发现在呼吸系统疾病中有着重要意义,科学家们认为呼出气温度可以作为一种非侵入性的新监测手段。  相似文献   

20.
The dugong (Dugong dugon) is an herbivorous marine mammal that inhabits tropical inshore waters and thus may be vulnerable to pollutants and terrestrial pathogens as a result of coastal runoff. In this study, serum samples collected from live, wild dugongs (n = 114) in an embayment located on the urbanized southeast Queensland coast of Australia during 2008–2014, were measured for IgG antibody levels specific to Toxoplasma gondii and Neospora caninum. An ELISA used to measure T. gondii tachyzoite antibodies indicated a non-Gaussian distribution of antibody level, with five dugongs identified as high outliers. Mean levels of antibodies specific for T. gondii in dugongs sampled in 2014 were significantly higher than in 2010 (p = .006) and 2011 (p = .009) with an elevation in mean antibody levels after a major 2011 flood event relative to antibody levels prior to the flood (p < .0001). A competitive ELISA to detect N. caninum antibody indicated a normal distribution of antibody with no high outliers. Mean antibody level for N. caninum was highest in 2012 and declined significantly in 2014 (p = .004). This is the first survey of antibodies directed against T. gondii and N. caninum in dugongs and suggests future health monitoring of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号