首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phylogenetic diversity and seasonal dynamics of freshwater Actinobacteria populations in four limnologically different lakes of the Mecklenburg-Brandenburg Lake District (northeastern Germany) were investigated. Fluorescence in situ hybridization was used to determine the seasonal abundances and dynamics of total Actinobacteria (probe HGC69a) and the three actinobacterial subclusters acI, acI-A, and acI-B (probes AcI-852, AcI-840-1, and AcI-840-2). Seasonal means of total Actinobacteria abundances in the epilimnia of the lakes varied from 13 to 36%, with maximum values of 30 to 58%, of all DAPI (4',6'-diamidino-2-phenylindole)-stained cells. Around 80% of total Actinobacteria belonged to the acI cluster. The two subclusters acI-A and acI-B accounted for 60 to 91% of the acI cluster and showed seasonal means of 49% (acI-B) and 23% (acI-A) in relation to the acI cluster. Total Actinobacteria and members of the clusters acI and acI-B showed distinct seasonal changes in their absolute abundances, with maxima in late spring and fall/winter. In eight clone libraries constructed from the lakes, a total of 76 actinobacterial 16S rRNA gene sequences were identified from a total of 177 clones. The majority of the Actinobacteria sequences belonged to the acI and acIV cluster. Several new clusters and subclusters were found (acSTL, scB1-4, and acIVA-D). The majority of all obtained 16S rRNA gene sequences are distinct from those of already-cultured freshwater Actinobacteria.  相似文献   

2.
We describe the first freshwater members of the class Actinobacteria that have been isolated. Nine ultramicro-size (<0.1 microm(3)) strains were isolated from five freshwater habitats in Europe and Asia. These habitats represent a broad spectrum of ecosystems, ranging from deep oligotrophic lakes to shallow hypertrophic lakes. Even when the isolated strains were grown in very rich media, the cell size was <0.1 microm(3) and was indistinguishable from the cell sizes of bacteria belonging to the smaller size classes of natural lake bacterioplankton. Hybridization of the isolates with oligonucleotide probes and phylogenetic analysis of the 16S rRNA gene sequences of the isolated strains revealed that they are affiliated with the class Actinobacteria and the family Microbacteriaceae. The previously described species with the highest levels of sequence similarity are Clavibacter michiganensis and Rathayibacter tritici, two phytopathogens of terrestrial plants. The 16S rRNA gene sequences of the nine isolates examined are more closely related to cloned sequences from uncultured freshwater bacteria than to the sequences of any previously isolated bacteria. The nine ultramicrobacteria isolated form, together with several uncultured bacteria, a diverse phylogenetic cluster (Luna cluster) consisting exclusively of freshwater bacteria. Isolates obtained from lakes that are ecologically different and geographically separated by great distances possess identical 16S rRNA gene sequences but have clearly different ecophysiological and phenotypic traits. Predator-prey experiments demonstrated that at least one of the ultramicro-size isolates is protected against predation by the bacterivorous nanoflagellate Ochromonas sp. strain DS.  相似文献   

3.
In this study, for the first time the diversity of bacteria associated with the endemic freshwater sponge Lubomirskia baicalensis collected from the Sousern Basin of Lake Baikal was investigated employing cultivation-independent approaches. In total, 102 bacterial 16S rRNA clones were screened using restriction fragment length polymorphism (RFLP) and 30 were selected for sequencing. BLASTN and phylogenetic analysis based on near full length 16S rDNA sequences showed that 22 operational taxonomic units (OTUs) were clustered in six known phyla: Actinobacteria (8 OTUs), alpha-Proteobacteria (4 OTUs), beta-Proteobacteria (4 OTUs), Verrucomicrobia (4 OTUs), Nitrospiracea (1 OTU) and Bacteroidetes (1 OTU). Remarkably all phylotypes were affiliated to uncultured microorganisms, however, all alpha-Proteobacteria sequences were closely related to bacteria derived from the freshwater sponge Spongilla lacustris. Our results reveal a high diversity in the L. baicalensis bacterial community and provide an insight into microbial ecology and diversity within freshwater sponges inhabiting the ancient Lake Baikal ecosystem.  相似文献   

4.
We have analysed the inter- and intra-lake variability of free-living and particle-associated freshwater Actinobacteria communities in four limnological different lakes of the Mecklenburg Lake District, Northeastern Germany. Denaturing gradient gel electrophoresis (DGGE) specific for Actinobacteria was used to investigate phylogenetic diversity and seasonal dynamics of actinobacterial communities in the epilimnion of all lakes (inter-lake variability) and to assess differences between Actinobacteria communities of the epi-, meta- and hypolimnion of a single lake (intra-lake variability) respectively. DGGE analyses showed significant inter- and intra-lake differences between Actinobacteria communities of all lakes and water layers as well as between free-living and particle-associated Actinobacteria. Phylogenetic inferences of 16S rRNA gene sequences suggest that particular members of particle-associated Actinobacteria were exclusively affiliated to certain actinobacterial lineages. The phylogenetic comparison of 16S rRNA gene sequences of all lakes and water layer, however, indicated the occurrence of almost similar phylogenetic lineages in all studied habitats and suggest high intracluster diversity within already known actinobacterial lineages. Non-metric multidimensional scaling (NMS) ordination analyses and Pearson's product moment correlations revealed several strong correlations between the investigated Actinobacteria communities and various limnological parameters, such as conductivity, total phosphorous, alkalinity or primary production. However, no uniform correlation patterns were found between lakes, water layers and bacterial fractions. These heterogeneous correlation patterns together with the phylogenetic similarities of Actinobacteria communities from different lakes indicate that particular Actinobacteria represent various ecotypes or exhibit a pronounced ecophysiological plasticity.  相似文献   

5.
We analysed the phylogenetic relatedness of 16S rRNA genes from freshwater bacteria affiliated with the class Actinobacteria. A polymerase chain reaction assay was developed to identify reliably rare Actinobacteria-related inserts within 16S rRNA gene clone libraries. In 18 libraries constructed from seven freshwater systems, altogether 63 actinobacterial sequence types were collected from a total of > 1800 clones. Sixty of the newly obtained sequences grouped within four distinct phylogenetic lineages. They constitute approximately 75% of the nearly complete sequences within these clusters that are presently available. A comparison with > 300 sequences from various soil habitats revealed that two of these monophyletic actinobacterial clades (acI and acII) almost exclusively harbour 16S rRNA sequence types from freshwaters and estuaries. This may indicate that such bacteria are not inoculated to freshwaters from terrestrial sources, but are autochthonous components of freshwater microbial assemblages. In contrast, sequence types from freshwaters, marine sediments and soils were clearly mixed in another of the actinobacterial lineages (acIV). Sequence divergence within acIV was the highest of all four lineages (88% minimum similarity), which potentially reflects its radiation across several habitat types. Within the freshwater lineages, groups of essentially identical sequence types were retrieved from geographically distant aquatic systems with strikingly different hydrological and limnological characteristics. This points to the necessity to investigate genotypic variability, in situ abundances and activities of these Actinobacteria in freshwater plankton in greater detail by cultivation-independent techniques.  相似文献   

6.
Bacterial abundances and diversity in the surface water of Lake Namco, the largest oligosaline lake on the Tibetan Plateau, were examined using flow cytometry approach and constructing 16S rRNA gene clone libraries. Bacterial abundances were from 0.08 × 106 to 1.6 × 106 cells mL?1, and were in the reported range of other lakes of the Tibetan Plateau and high mountain regions. Bacterial abundances were significantly correlated with the concentrations of chlorophyll a (chl a), but showed no significant relationship with the dissolved organic carbon (DOC), which suggested that the amount of DOC released by algae was the key factor determining the bacterial abundance rather than the total DOC. The total trace elements concentrations also obviously connected with bacterial abundances, and 9 of 20 elements showed significant relationship. Bacterial 16S rRNA gene clone sequences were affiliated to the α-, β-, γ-, δ-, and ?-Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, Acidobacteria, Planctomycetes, Verrucomicrobia, Candidate division OD1, or unclassified, and among these the β-Proteobacteria dominated. Bacteria in Lake Namco were most closely related to those retrieved from freshwater habitats. Relatively few sequences were closely related to those recovered from saline habitats. Eleven of 34 typical freshwater bacterial clusters were detected in the oligosaline Lake Namco. Bacterial diversity within the lake varied and was connected with the concentrations of DOC and chl a.  相似文献   

7.
贫营养湖泊花神湖和紫霞湖浮游细菌群落结构分析   总被引:1,自引:0,他引:1  
以南京市花神湖和紫霞湖两个贫营养型湖泊为研究对象,通过构建花神湖和紫霞湖16S rRNA基因克隆文库探讨了浮游细菌群落结构组成的变化。结果表明,花神湖和紫霞湖两湖泊水体中浮游细菌群落结构相似,主要隶属于放线菌门(Actinobacteria)、蓝藻门(Cyanobacteria)、α-变形菌门(Alphaproteobacteria)、β-变形菌门(Betaproteobacteria)、杆菌门(Bacteroidetes)、浮霉菌门(Planctomycetes)、疣微菌门(Verrucomicrobia)和芽单胞菌门(Gemmatimonadetes),其中放线菌门(Actinobacteria)、蓝藻门(Cyanobacteria)、β-变形菌门(Betaproteobacteria)是优势细菌类群。两个湖泊水体中75%的细菌与GenBank中已有的未培养细菌同源性高于97%,同时在两个克隆文库中还发现了6个淡水细菌新类群。通过对低纬度区域贫营养型湖泊浮游细菌群落结构的分析,加深了我们对浮游细菌多样性的了解,表明湖泊浮游细菌多样性有待进一步认识。  相似文献   

8.
We have constructed a large fosmid library from a mesophilic anaerobic digester and explored its 16S rDNA diversity using a high-density filter DNA–DNA hybridization procedure. We identified a group of 16S rDNA sequences forming a new bacterial lineage named WWE3 (Waste Water of Evry 3). Only one sequence from the public databases shares a sequence identity above 80% with the WWE3 group which hence cannot be affiliated to any known or candidate prokaryotic division. Despite representing a non-negligible fraction (5% of the 16S rDNA sequences) of the bacterial population of this digester, the WWE3 bacteria could not have been retrieved using the conventional 16S rDNA amplification procedure due to their unusual 16S rDNA gene sequence. WWE3 bacteria were detected by polymerase chain reaction (PCR) in various environments (anaerobic digesters, swine lagoon slurries and freshwater biofilms) using newly designed specific PCR primer sets. Fluorescence in situ hybridization (FISH) analysis of sludge samples showed that WWE3 microorganisms are oval-shaped and located deep inside sludge flocs. Detailed phylogenetic analysis showed that WWE3 bacteria form a distinct monophyletic group deeply branching apart from all known bacterial divisions. A new bacterial candidate division status is proposed for this group.  相似文献   

9.
To determine whether metagenomic libraries sample adequately the dominant bacteria in aquatic environments, we examined the phylogenetic make-up of a large insert metagenomic library constructed with bacterial DNA from the Delaware River, a polymerase chain reaction (PCR) library of 16S rRNA genes, and community structure determined by fluorescence in situ hybridization (FISH). The composition of the libraries and community structure determined by FISH differed for the major bacterial groups in the river, which included Actinobacteria, beta-proteobacteria and Cytophaga-like bacteria. Beta-proteobacteria were underrepresented in the metagenomic library compared with the PCR library and FISH, while Cytophaga-like bacteria were more abundant in the metagenomic library than in the PCR library and in the actual community according to FISH. The Delaware River libraries contained bacteria belonging to several widespread freshwater clusters, including clusters of Polynucleobacter necessarius, Rhodoferax sp. Bal47 and LD28 beta-proteobacteria, the ACK-m1 and STA2-30 clusters of Actinobacteria, and the PRD01a001B Cytophaga-like bacteria cluster. Coverage of bacteria with > 97% sequence identity was 65% and 50% for the metagenomic and PCR libraries respectively. Rarefaction analysis of replicate PCR libraries and of a library constructed with re-conditioned amplicons indicated that heteroduplex formation did not substantially impact the composition of the PCR library. This study suggests that although it may miss some bacterial groups, the metagenomic approach can sample other groups (e.g. Cytophaga-like bacteria) that are potentially underrepresented by other culture-independent approaches.  相似文献   

10.
Petroleum-contaminated groundwater discharged from underground crude oil storage cavities (cavity groundwater) harbored more than 10(6) microorganisms ml(-1), a density 100 times higher than the densities in groundwater around the cavities (control groundwater). To characterize bacterial populations growing in the cavity groundwater, 46 PCR-amplified almost full-length 16S ribosomal DNA (rDNA) fragments were cloned and sequenced, and 28 different sequences were obtained. All of the sequences were affiliated with the Proteobacteria; 25 sequences (43 clones) were affiliated with the epsilon subclass, 2 were affiliated with the beta subclass, and 1 was affiliated with the delta subclass. Two major clusters (designated clusters 1 and 2) were found for the epsilon subclass proteobacterial clones; cluster 1 (25 clones) was most closely related to Thiomicrospira denitrificans (88% identical in nucleotide sequence), while cluster 2 (11 clones) was closely related to Arcobacter spp. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rDNA fragments showed that one band was detected most strongly in cavity groundwater profiles independent of storage oil type and season. The sequence of this major band was identical to the sequences of most of the cluster 1 clones. Fluorescence in situ hybridization (FISH) indicated that the cluster 1 population accounted for 12 to 24% of the total bacterial population. This phylotype was not detected in the control groundwater by DGGE and FISH analyses. These results indicate that the novel members of the epsilon subclass of the Proteobacteria grow as major populations in the petroleum-contaminated cavity groundwater.  相似文献   

11.
The phylogenetic diversity and seasonal dynamics of freshwater Actinobacteria populations in four limnologically different lakes of the Mecklenburg-Brandenburg Lake District (northeastern Germany) were investigated. Fluorescence in situ hybridization was used to determine the seasonal abundances and dynamics of total Actinobacteria (probe HGC69a) and the three actinobacterial subclusters acI, acI-A, and acI-B (probes AcI-852, AcI-840-1, and AcI-840-2). Seasonal means of total Actinobacteria abundances in the epilimnia of the lakes varied from 13 to 36%, with maximum values of 30 to 58%, of all DAPI (4′,6′-diamidino-2-phenylindole)-stained cells. Around 80% of total Actinobacteria belonged to the acI cluster. The two subclusters acI-A and acI-B accounted for 60 to 91% of the acI cluster and showed seasonal means of 49% (acI-B) and 23% (acI-A) in relation to the acI cluster. Total Actinobacteria and members of the clusters acI and acI-B showed distinct seasonal changes in their absolute abundances, with maxima in late spring and fall/winter. In eight clone libraries constructed from the lakes, a total of 76 actinobacterial 16S rRNA gene sequences were identified from a total of 177 clones. The majority of the Actinobacteria sequences belonged to the acI and acIV cluster. Several new clusters and subclusters were found (acSTL, scB1-4, and acIVA-D). The majority of all obtained 16S rRNA gene sequences are distinct from those of already-cultured freshwater Actinobacteria.  相似文献   

12.
In wastewater treatment plants based on the rhizosphere zone (rhizoremediation technology), ammonia-oxidizing bacteria (AOB) play an important role in the removal of fixed nitrogen. However, the diversity of these bacteria in rhizoremediation wastewater treatment plants is largely unknown. We employed direct PCR amplification and cloning of 16S rRNA genes to determine the phylogenetic affiliation of AOB occurring in root and soil samples of a wastewater treatment plant (Merzdorf plant, Brandenburg, Germany). 16S rDNA clone libraries were screened by hybridization using an oligonucleotide probe specific for AOB of the beta subclass of proteobacteria. Comparative sequence analysis of all hybridization-positive clones revealed that the majority of rDNA sequences was affiliated to members of the genus Nitrosospira and formed a novel subcluster (SM cluster), whereas only three sequences were most closely related to Nitrosomonas species. Affiliation of the novel Nitrosospira-like sequences with those of isolates from soil and rhizosphere suggests that phylogenetic clusters reflect physiological differences between members of this genus.  相似文献   

13.
To provide insight into the phylogenetic bacterial diversity of the freshwater sponge Spongilla lacustris, a 16S rRNA gene libraries were constructed from sponge tissues and from lake water. Restriction fragment length polymorphism (RFLP) analysis of >190 freshwater sponge-derived clones resulted in six major restriction patterns, from which 45 clones were chosen for sequencing. The resulting sequences were affiliated with the Alphaproteobacteria (n = 19), the Actinobacteria (n = 15), the Betaproteobacteria (n = 2), and the Chloroflexi (n = 2) lineages. About half of the sequences belonged to previously described actinobacterial (hgc-I) and betaproteobacterial (beta-II) sequence clusters of freshwater bacteria that were also present in the lake water 16S rRNA gene library. At least two novel, deeply rooting alphaproteobacterial lineages were recovered from S. lacustris that showed <89% sequence similarity to known phylogenetic groups. Electron microscopical observations revealed that digested bacterial remnants were contained within food vacuoles of sponge archaeocytes, whereas the extracellular matrix was virtually free of bacteria. This study is the first molecular diversity study of a freshwater sponge and adds to a growing database on the diversity and community composition of sponge-associated microbial consortia.  相似文献   

14.
Sponges (class Porifera) are evolutionarily ancient metazoans that populate the tropical oceans in great abundances but also occur in temperate regions and even in freshwater. Sponges contain large numbers of bacteria that are embedded within the animal matrix. The phylogeny of these bacteria and the evolutionary age of the interaction are virtually unknown. In order to provide insights into the species richness of the microbial community of sponges, we performed a comprehensive diversity survey based on 190 sponge-derived 16S ribosomal DNA (rDNA) sequences. The sponges Aplysina aerophoba and Theonella swinhoei were chosen for construction of the bacterial 16S rDNA library because they are taxonomically distantly related and they populate nonoverlapping geographic regions. In both sponges, a uniform microbial community was discovered whose phylogenetic signature is distinctly different from that of marine plankton or marine sediments. Altogether 14 monophyletic, sponge-specific sequence clusters were identified that belong to at least seven different bacterial divisions. By definition, the sequences of each cluster are more closely related to each other than to a sequence from nonsponge sources. These monophyletic clusters comprise 70% of all publicly available sponge-derived 16S rDNA sequences, reflecting the generality of the observed phenomenon. This shared microbial fraction represents the smallest common denominator of the sponges investigated in this study. Bacteria that are exclusively found in certain host species or that occur only transiently would have been missed. A picture emerges where sponges can be viewed as highly concentrated reservoirs of so far uncultured and elusive marine microorganisms.  相似文献   

15.
We report here on novel groups of Archaea in the bacterioplankton of a small boreal forest lake studied by the culture-independent analysis of the 16S rRNA genes amplified directly from lake water in combination with fluorescent in situ hybridization (FISH). Polymerase chain reaction products were cloned and 28 of the 160 Archaea clones with around 900-bp-long 16S rRNA gene inserts, were sequenced. Phylogenetic analysis, including 642 Archaea sequences, confirmed that none of the freshwater clones were closely affiliated with known cultured Archaea. Twelve Archaea sequences from lake Valkea Kotinen (VAL) belonged to Group I of uncultivated Crenarchaeota and affiliated with environmental sequences from freshwater sediments, rice roots and soil as well as with sequences from an anaerobic digestor. Eight of the Crenarchaeota VAL clones formed a tight cluster. Sixteen sequences belonged to Euryarchaeota. Four of these formed a cluster together with environmental sequences from freshwater sediments and peat bogs within the order Methanomicrobiales. Five were affiliated with sequences from marine sediments situated close to marine Group II and three formed a novel cluster VAL III distantly related to the order Thermoplasmales. The remaining four clones formed a distinct clade within a phylogenetic radiation characterized by members of the orders Methanosarcinales and Methanomicrobiales on the same branch as rice cluster I, detected recently on rice roots and in anoxic bulk soil of flooded rice microcosms. FISH with specifically designed rRNA-targeted oligonucleotide probes revealed the presence of Methanomicrobiales in the studied lake. These observations indicate a new ecological niche for many novel 'non-extreme' environmental Archaea in the pelagic water of a boreal forest lake.  相似文献   

16.
The occurrence, identity, and activity of microbes from the class Actinobacteria was studied in the surface waters of 10 oligo- to mesotrophic mountain lakes located between 913 m and 2,799 m above sea level. Oligonucleotide probes were designed to distinguish between individual lineages within this group by means of fluorescence in situ hybridization (FISH). Bacteria of a single phylogenetic lineage (acI) represented >90% of all Actinobacteria in the studied lakes, and they constituted up to 70% of the total bacterial abundances. In the subset of eight lakes situated above the treeline, the community contribution of bacteria from the acI lineage was significantly correlated with the ambient levels of solar UV radiation (UV transparency, r(2) = 0.72; P < 0.01). Three distinct genotypic subpopulations were distinguished within acI that constituted varying fractions of all Actinobacteria in the different lakes. The abundance of growing actinobacterial cells was estimated by FISH and immunocytochemical detection of bromodeoxyuridine (BrdU) incorporation into de novo-synthesized DNA. The percentages of Actinobacteria with visible DNA synthesis approximately corresponded to the average percentages of BrdU-positive cells in the total assemblages. Actinobacteria from different subclades of the acI lineage, therefore, constituted an important autochthonous element of the aquatic microbial communities in many of the studied lakes, potentially also due to their higher UV resistance.  相似文献   

17.
The phylogenetic composition of a bacterial community from a hypertrophic freshwater lake in China was investigated by sequencing cloned 16S rRNA genes. Three hundred and thirty-six bacterial clones from four clone libraries in different months (March, May, July and September in 2004) were classified into 142 operational taxonomic units, most of which were affiliated with bacterial divisions commonly found in freshwater ecosystem, e.g. Alpha-, Beta-, Gamma- and Deltaproteobacteria, Bacteriodetes and Actinobacteria. The results showed that the composition of bacterial community in the July library was the most diverse one. Actinobacteria was the most significant lineage in Lake Taihu, with dominant numbers of operational taxonomic units in the May, July and September libraries. Phylogenetic analysis suggested that 53 sequences were grouped into six novel clusters which may represent specific populations indigenous to the environment. Coverage analyses indicated that the clone libraries could provide a fine inventory of bacterial diversity in the lake.  相似文献   

18.
The bacterial microbiota from the whole gut of soldier and worker castes of the termite Reticulitermes grassei was isolated and studied. In addition, the 16S rDNA bacterial genes from gut DNA were PCR-amplified using Bacteria-selective primers, and the 16S rDNA amplicons subsequently cloned into Escherichia coli. Sequences of the cloned inserts were then used to determine closest relatives by comparison with published sequences and with sequences from our previous work. The clones were found to be affiliated with the phyla Spirochaetes, Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Synergistetes, Verrucomicrobia, and candidate phyla Termite Group 1 (TG1) and Termite Group 2 (TG2). No significant differences were observed with respect to the relative bacterial abundances between soldier and worker phylotypes. The phylotypes obtained in this study were compared with reported sequences from other termites, especially those of phylotypes related to Spirochaetes, Wolbachia (an Alphaproteobacteria), Actinobacteria, and TG1. Many of the clone phylotypes detected in soldiers grouped with those of workers. Moreover, clones CRgS91 (soldiers) and CRgW68 (workers), both affiliated with 'Endomicrobia', were the same phylotype. Soldiers and workers also seemed to have similar relative protist abundances. Heterotrophic, poly-β-hydroxyalkanoate-accumulating bacteria were isolated from the gut of soldiers and shown to be affiliated with Actinobacteria and Gammaproteobacteria. We noted that Wolbachia was detected in soldiers but not in workers. Overall, the maintenance by soldiers and workers of comparable axial and radial redox gradients in the gut is consistent with the similarities in the prokaryotes and protists comprising their microbiota.  相似文献   

19.
To understand the functioning of sponges, knowledge of the structure of their associated microbial communities is necessary. However, our perception of sponge-associated microbiomes remains mainly restricted to marine ecosystems. Here, we report on the molecular diversity and composition of bacteria in the freshwater sponge Ephydatia fluviatilis inhabiting the artificial lake Vinkeveense Plassen, Utrecht, The Netherlands. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprints revealed that the apparent diversities within the domain Bacteria and the phylum Actinobacteria were lower in E. fluviatilis than in bulk water. Enrichment of specific PCR-DGGE bands in E. fluviatilis was detected. Furthermore, sponge- and bulk water-derived bacterial clone libraries differed with respect to bacterial community composition at the phylum level. E. fluviatilis-derived sequences were affiliated with six recognized phyla, i.e., Proteobacteria, Planctomycetes, Actinobacteria, Bacteroidetes, Chlamydiae and Verrucomicrobia, in order of relative abundance; next to the uncultured candidate phylum TM7 and one deeply rooted bacterial lineage of undefined taxonomy (BLUT). Actinobacteria, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in the freshwater clone library whereas sequences affiliated with Planctomycetes, Verrucomicrobia, Acidobacteria and Armatimonadetes were found at lower frequencies. Fine-tuned phylogenetic inference showed no or negligible overlaps between the E. fluviatilis and water-derived phylotypes within bacterial taxa such as Alphaproteobacteria, Bacteroidetes and Actinobacteria. We also ascertained the status of two alphaproteobacterial lineages as freshwater sponge-specific phylogenetic clusters, and report on high distinctiveness of other E. fluviatilis specific phylotypes, especially within the Bacteroidetes, Planctomycetes and Chlamydia taxa. This study supports the contention that the composition and diversity of bacteria in E. fluviatilis is partially driven by the host organism.  相似文献   

20.
Aims:  To explore the association of microbial community structure with the development of eutrophication in a large shallow freshwater lake, Lake Taihu.
Methods and Results:  The bacterial and archaeal assemblages in sediments of different lake areas were analysed using denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA fragments. The bacterial DGGE profiles showed that eutrophied sites, grass-bottom areas and relatively clean sites with a eutrophic (albeit dredged) site are three respective clusters. Fifty-one dominant bacterial DGGE bands were detected and 92 corresponding clones were sequenced, most of which were affiliated with bacterial phylotypes commonly found in freshwater ecosystems. Actinobacteria were detected in the centre of the lake and not at eutrophied sites whereas the opposite was found with respect to Verrucomicrobiales . Twenty-five dominant archaeal DGGE bands were detected and 31 corresponding clones were sequenced, most of which were affiliated with freshwater archaeal phylotypes.
Conclusions:  The bacterial community structures in the sediments of different areas with similar water quality and situation tend to be similar in Taihu Lake.
Significance and Impact of the Study:  This study may expand our knowledge on the relationship between the overall microbial assemblages and the development of eutrophication in the shallow freshwater lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号