首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper reports the successful excitation of surface plasmon polaritons (SPPs) through 1D metallic grating on higher refractive index GaP substrate. Coupling efficiency (η) of a free-space transverse-magnetic (TM) plane-wave mode into a SPP mode is crucial for many plasmonic devices. This η predominantly depends on the fabrication (milling) parameters and the factors (under- and over-milling) affecting the η is investigated experimentally and numerically. First of all, η is estimated by measuring the transmission spectra obtained through the plasmonic grating structures by varying the slit width (a) for a fixed period (Λ) and the thickness (t) of the gold (Au) film in which the grating is formed. The wave vector of the incident light is tuned to match the wave vector of the SPP, to get maximum η. For an optimum Au film thickness, a slit width of half of the periodicity of 770 nm in the grating device yields a maximum η. Such grating devices support only a fundamental plasmonic mode because the profile/shape of the slit in the grating device is more like a sinusoidal nature. Furthermore, such grating offers intermediate scattering to the incident light and the SPP as well which in-truns couple more incident energy to the SPPs. Moreover, over-milling results in decreased η where the crystalline plane of the substrate is disturbed. Finite element method (FEM) in COMSOL modeling is used to understand the underlying physics. This study is very useful for the development of the device application in real word.  相似文献   

2.
The adsorption behaviour of gas molecules on detector surfaces has a profound influence on the sensitivity of the detector. For this reason, this study used molecular dynamics simulation to explore the dynamic adsorption behaviour of hydrogen sulphide (H2S) molecules on various types of Au surfaces, including a planar Au(1?1?0) structure and three types of slit array structures. The influence of system temperature, adsorbate concentration and the slit width of nanoarrays on diffusivity, average adsorption energy and static adsorption amount were systematically examined. Simulation results indicate that the self-diffusivity of the adsorbate molecules increases with temperature but decreases with adsorbate concentration. At low concentrations (~3 mol/L), each type of Au(1?1?0) surface structure shows good capacity to adsorb all H2S molecules. With increasing concentration at 6.5 mol/L, the high concentration leads to adsorption saturation and many free H2S molecules in the planar Au(1?1?0) structure. Moreover, desorption also begins to appear on the planar structures at a temperature of 300 K (at 6.5 mol/L). The simulation results indicate that the columnar array structures with a slit width ≥5.76 Å allow molecules to swiftly spread into the slits and provide more stable adsorption sites (i.e. with a higher adsorption energy), which can effectively address the issues of high-temperature desorption and adsorption saturation. Particularly at low temperatures (≤100 K), slit structures presented a level of static adsorption of H2S that was 30% to 35 higher than that of planar structures.  相似文献   

3.
Due to the limit of nanofabrication methods of the nano-hole array (i.e., focused ion beam, nanoimprint/electron beam lithography, and metal film evaporation on top of the free standing membrane), the nano-hole arrays patterned in a noble metal film always has a non-vertical sidewall profile. In this work, the optical transmittance of the non-vertical profile nano-hole array with different tapered angle (α) and structural periodicity (P) was numerically investigated. The optimum tapered angle in case of positive profile of the nano-hole arrays was found as 10° and 12° at structural period of 450 and 500 nm, respectively. However, in case of negative profile, the optimum tapered angle of the nano-hole array was obtained as 4° at both structural period of 450 and 500 nm. The first and the second resonance modes of the nano-hole arrays with negative profile were shown a blueshift of 16 and 9 nm on increasing the tapered angle from 0° to 16° at structural period of 450 and 500 nm, respectively. It was also found that nano-hole arrays with positive tapered profile result in higher transmission than the negative profile one.  相似文献   

4.
Dogs of the soft-coated wheaten terrier breed (SCWT) are predisposed to adult-onset, genetically complex, protein-losing nephropathy (average onset age = 6.3 ± 2.0 years). A genome-wide association study using 62 dogs revealed a chromosomal region containing three statistically significant SNPs (p raw ≤ 4.13 × 10?8; p genome ≤ 0.005) when comparing DNA samples from affected and geriatric (≥14 years) unaffected SCWTs. Sequencing of candidate genes in the region revealed single nucleotide changes in each of two closely linked genes, NPHS1 and KIRREL2, which encode the slit diaphragm proteins nephrin and Neph3/filtrin, respectively. In humans, mutations in nephrin and decreased expression of Neph3 are associated with podocytopathy and protein-losing nephropathy. The base substitutions change a glycine to arginine in the fibronectin type 3 domain of nephrin and a proline to arginine in a conserved proline-rich region in Neph3. These novel mutations are not described in other species, nor were they found in 550 dogs of 105 other breeds, except in 3 dogs, including an affected Airedale terrier, homozygous for both substitutions. Risk for nephropathy is highest in dogs homozygous for the mutations (OR = 9.06; 95 % CI = 4.24–19.35). This is the first molecular characterization of an inherited podocytopathy in dogs and may serve as a model for continued studies of complex genetic and environmental interactions in glomerular disease.  相似文献   

5.
We computationally demonstrate one-way optical transmission characteristics of a subwavelength slit. We comparatively study the effect in single layer and double layer metallic corrugations. We also investigate the effect of a dielectric spacer layer between double corrugations to control the volumetric coupling of plasmon and optical modes. We computationally show unidirectional transmission behavior with an ultrahigh contrast ratio of 53.4 dB at λ?=?1.56 μm. Volumetric coupling efficiency through the nanoslit strongly depends on the efficient excitation of both the surface plasmon resonance and metal–insulator–metal waveguide modes. We show that the behavior is tunable in a wide spectral range.  相似文献   

6.
Solvent-accessible surfaces of nucleic acids   总被引:14,自引:0,他引:14  
Static solvent-accessible surface areas were calculated for DNA and RNA double helices of varied conformation, composition and sequence, for the single helix of poly(rC), and for a transfer RNA. The results show that for DNA and RNA double helices, two thirds of the water-accessible surface area become buried on double helix formation; phosphate oxygens retain near maximal exposure while the bases are 80% buried. Transfer RNA exposes slightly less surface per residue than does double-helical RNA, despite the presence of several additional “modified” groups, all of which are exposed significantly.When a probe corresponding to a single water molecule is used, both the total and atom type exposures are very similar for A-DNA and B-DNA, although marked differences appear in the major and minor groove exposures between the two conformations. For a given base-pair, the accessible surface area buried upon double-helical stacking is nearly constant (within 5%) for different sequences of neighboring base-pairs.For probes larger than single water molecules, there exist considerable differences in the total and atom type exposures of A-DNA and B-DNA. Conformational transitions between the A-DNA and B-DNA helical forms can thus be related to differences in the accessible areas for “structured” water, or a secondary hydration shell, rather than to interactions with individual water molecules of the primary hydration shell. The base-composition dependence of DNA helical conformation can be explained in terms of the opposing effects of thymine methyl groups of A · T base-pairs and the amino groups of G · C base-pairs upon the solvent within the grooves.The area calculations show that primarily the major groove of B-DNA and the minor groove of A-DNA have sufficient accessible surface area to be recognized by a probe size corresponding to the side-chains of amino acids.  相似文献   

7.
The effect of an RF field on a steady-state beam-plasma discharge with a plane electrode placed parallel to a sheetlike electron beam is studied experimentally. The plasma parameters were measured by a single probe, and the electron distribution function was determined with the use of an electrostatic analyzer. The energy and current of the electron beam were E B=2.5 keV and J B=0.05–1.5 A, respectively. The working pressure was p=2×10?5–10?3 torr. The frequency of the external RF field was 13.56 MHz. Both the steady-state regimes in which the RF field had no effect on the plasma parameters and regimes with a pronounced effect of the RF field were observed. The experiments show that the regime of the discharge depends strongly on the plasma density and the magnetic field. The parametric instability is studied theoretically in the weak-turbulence approximation. It is shown that, due to the decay nature of the spectrum of plasma oscillations, the onset of instability is accompanied by the transfer of the energy of fluctuations over the spectrum, from the pump frequency toward its harmonics.  相似文献   

8.
Conventionally, plasmonic lenses introduce a phase delay distribution across their surfaces by modulating the dimensions of nanostructures within a metal film. However, there is very limited modulation of the phase delay due to the small dependence of the mode propagation constant on the structure dimensions. In this paper, a novel design of plasmonic zone plate lenses (PZPL) with both slit width and refractive index modulation is proposed to enable integrating more slits in a fixed lens aperture with the extended phase delay range and, therefore, greatly enhance the performance of the devices. More than three-time enhancement of the light intensity at the focus is achieved compared to the structure with only slit width modulation. Like a conventional immersion system, a PZPL embedded in a dielectric is found to have a further improved focusing performance, where light is focused down to a 0.44λ spot using a PZPL with an aperture of 12λ and a focal length of 6λ. Dispersive light-focusing behaviour is also analysed and the modulation of the focal length by colour has a potential application in stacked image sensors and multi-dimensional optical data storage.  相似文献   

9.
The crystal structure of the double-helical B-DNA dodecamer of sequence C-G-C-G-A-A-T-T-C-G-C-G has been solved and refined independently in three forms: (1) the parent sequence at room temperature; (2) the same sequence at 16 K; and (3) the 9-bromo variant C-G-C-G-A-A-T-TBrC-G-C-G at 7 °C in 60% (v/v) 2-methyl-2.4-pentanediol. The latter two structures show extensive hydration along the phosphate backbone, a feature that was invisible in the native structure because of high temperature factors (indicating thermal or static disorder) of the backbone atoms. Sixty-five solvent peaks are associated with the phosphate backbone, or an average of three per phosphate group. Nineteen other molecules form a first shell of hydration to base edge N and O atoms within the major groove, and 36 more are found in upper hydration layers. The latter tend to occur in strings or clusters spanning the major groove from one phosphate group to another. A single spermine molecule also spans the major groove. In the minor groove, the zig-zag spine of hydration that we believe to be principally responsible for stabilizing the B form of DNA is found in all three structures. Upper level hydration in the minor groove is relatively sparse, and consists mainly of strings of water molecules extending across the groove, with few contacts to the spine below. Sugar O-1′ atoms are closely associated with water molecules, but these are chiefly molecules in the spine, so the association may reflect the geometry of the minor groove rather than any intrinsic attraction of O-1′ atoms for hydration. The phosphate O-3′ and O-5′ atoms within the backbone chain are least hydrated of all, although no physical or steric impediment seems to exist that would deny access to these oxygen atoms by water molecules.  相似文献   

10.
Intrinsic properties of surface plasmons (SPs) excited with Kretschmann configuration were analyzed as a function of wavelength, including the propagation length, the penetration depth, the Goos–Hänchen (GH) shift, and the field enhancement. The calculated results indicate that there exists a critical thickness (t cr) of the gold layer and that the maximum GH shift occurring exactly at the SP resonance wavelength (λ R) rapidly varies from positive to negative with changing of the gold layer thickness from t?<?t cr to t?>?t cr. The maximum field enhancement happens not at λ R but at a wavelength smaller than λ R due to the phase retardation between the transmitted and reflected light. Simulations also reveal that a broadband collimated near-infrared beam can simultaneously excite two SPs with different responses to a refractive index (RI) change: the shorter-wavelength SP able to make a small redshift and the longer-wavelength SP capable of yielding a large blueshift. Only the shorter-wavelength SP was experimentally observed and its RI sensitivity was measured to increase from 3,539 nm/RIU at λ R?=?707.6 nm to 57,143 nm/RIU at λ R?=?1,398 nm. The SP at λ R?=?1,013 nm moved to λ R?=?1,029 nm in response to the saturation adsorption of bovine serum albumin, and the corresponding surface coverage was determined to be Γ?=?1.565 ng/mm2 based on a quasilinear dependence of Γ on the resonance wavelength shift (?λ R) deduced theoretically. Butyrylcholinesterase adsorption from a dilute solution of 10 nM protein in phosphate buffer solution leads to a redshift of ?λ R?=?10 nm, corresponding to Γ?≈?0.97 ng/mm2.  相似文献   

11.
In previously reported work, we developed a new technique, synchronization modulation, to electrically activate Na/K pump molecules. The fundamental mechanism involved in this technique is a dynamic entrainment procedure of the pump molecules, carried out in a stepwise pattern. The entrainment procedure consists of two steps: synchronization and modulation. We theoretically predicted that the pump functions can be activated exponentially as a function of the membrane potential. We have experimentally demonstrated synchronization of the Na/K pump molecules and acceleration of their pumping rates by many fold through use of voltage-clamp techniques, directly monitoring the pump currents. We further applied this technique to intact skeletal muscle fibers from amphibians and found significant effects on the membrane resting potential. Here, we extend our study to intact mammalian cardiomyocytes. We employed a noninvasive confocal microscopic fluorescent imaging technique to monitor electric field–induced changes in ionic concentration gradient and membrane resting potential. Our results further confirm that the well-designed synchronization modulation electric field can effectively accelerate the Na/K pumping rate, increasing the ionic concentration gradient across the cell membrane and hyperpolarizing the membrane resting potential.  相似文献   

12.
We study an active modulation of surface plasmon resonance (SPR) of Au nanoparticles based on highly doped graphene in visible and near-infrared regions. We find that compared to the traditional metal SPR, the SPR of Au nanoparticles based on graphene causes a remarkable blue shift. The field intensity in the gap is redistributed to standing wave. The field intensity of standing wave is about one order of magnitude higher than the traditional model. Moreover, the SPR of Au nanoparticles can be actively modulated by varying the graphene Fermi energy. We find the maximum modulation of field intensity of absorption spectra is more than 21.6 % at λ?=?822?nm and the amount of blue shift is 17.4 nm, which is about 2.14 % of the initial wavelength λ 0?=?813.4?nm, with increasing monolayer graphene Fermi energy from 1.0 to 1.5 ev. We find that the SPR sensitivity to the refractive index n of the environment is about 642 nm per refractive index unit (RIU). The SPR wavelengths have a big blue shift, which is about 33 nm, with increasing number of graphene layers from 1 to 3, and some shoulders on the absorption spectra are observed in the models with multilayer graphene. Finally, we study the Au nanorod array based on monolayer graphene. We find that the blue shift caused by the graphene increases from 14 to 24 nm, with increasing gap g y from 10 to 20 nm. Then, it decreases from 24 to 14 nm, with increasing gap g y from 20 to 50 nm. This study provides a new way for actively modulating the optical and optoelectronic devices.  相似文献   

13.

Objective

Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit.

Method

We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology.

Result

Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value (P < 0.01, P < 0.05); high, medium and low doses of nano-silver hydrogel coating film group significantly decreased skin irritation, infection integral value (P < 0.01, P < 0.05); high, medium and low doses of nano-silver hydrogel coating film significantly reduced film rabbits’ scalded skin crusting time (P < 0.01), significantly shortened the rabbit skin burns from the scab time (P < 0.01), and significantly improved the treatment of skin diseases in rabbits scald model change (P < 0.01, P < 0.05).

Conclusion

The nano-silver hydrogel coating film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing.  相似文献   

14.
Molecular photoswitches provide a promising way for selective regulation of nanoscaled biological systems. It has been shown that conformational changes of azobenzene, one of the widely used photoswitches, can be used to reversibly control DNA duplex formation. Here, we investigate the conformational response of DNA upon azobenzene binding and isomerization, using a threoninol linker that has been experimentally investigated recently. To this end, nonequilibrium molecular dynamics simulations are carried out using a switching potential describing the photoinduced isomerization. Attachment of azobenzene leads to a distortion of the DNA helical conformation that is similar for the trans and cis forms. However, the trans form is stabilized by favorable stacking interactions whereas the cis form is found to remain flipped out of the basepair-stacked position. Multiple azobenzene attachment augments the distortion in DNA helical conformation. The distorted DNA retains nativelike pairing of bases at ambient temperatures, but shows weaker basepairing compared to native DNA at an elevated temperature.  相似文献   

15.
The reproductive cycle of female wild marble trout Salmo marmoratus was studied in a prealpine watercourse (Northeast Italy). Gonadosomatic index, oocyte growth and plasma levels of 17β-oestradiol and testosterone were bimonthly measured during one year to obtain a detailed dataset and to gain useful tools for the identification of the reproductive stage without impact for the species. Monitored features showed significant variations during the study period: gonadosomatic index and oocyte size increased slightly but significantly during the first part of the cycle (from February to June), while steroid levels remained quite constant; for all parameters, major increases were highlighted between August and the spawning season (which occurred from the middle of November to the middle of December). Ranges and trends observed for gonadosomatic index (from 0.87 ± 0.41% to 10.91 ± 3.37%) and oocyte diameter (from 0.692 ± 0.031 mm to 4.624 ± 0.208 mm) were generally in agreement with literature regarding salmonids, while plasma levels of 17β-oestradiol (from 0.214 ± 0.015 ng ml?1 to 78.090 ± 23.882 ng ml?1) and testosterone (from 0.327 ± 0.086 ng ml?1 to 71.800 ± 29.406 ng ml?1) showed wider ranges. A strong non-linear relationship was found between oocyte size and 17β-oestradiol plasma concentration (r 2 = 0.890) and especially between oocyte size and testosterone plasma concentration (r 2 = 0.947). This last relationship could likely be used to obtain information relative to the gonadal development, especially in the case of an endangered species like Salmo marmoratus, which needs non-invasive tools for management.  相似文献   

16.
Synchronization modulation (SM) electric field has been shown to effectively activate function of Na+/K+ pumps in various cells and tissues, including skeletal muscle cells, cardiomyocyte, monolayer of cultured cell line, and peripheral blood vessels. We are now reporting the in vivo studies in application of the SM electric field to kidney of living rats. The field-induced changes in the transepithelial potential difference (TEPD) or the lumen potential from the proximal convoluted tubules were monitored. The results showed that a short time (20 s) application of the SM electric field can significantly increase the magnitude of TEPD from 1–2 mV to about 20 mV. The TEPD is an active potential representing the transport current of the Na/K pumps in epithelial wall of renal tubules. This study showed that SM electric field can increase TEPD by activation of the pump molecules. Considering renal tubules, many active transporters are driven by the Na+ concentration gradient built by the Na+/K+ pumps, activation of the pump functions and increase in the magnitude of TEPD imply that the SM electric field may improve reabsorption functions of the renal tubules.  相似文献   

17.
We report the design, fabrication, and characterization of a periodic grating of shallow rectangular grooves in a metallic film with the goal of maximizing the coupling efficiency of an extended plane wave (PW) of visible or near-infrared light into a single surface plasmon polariton (SPP) mode on a flat metal surface. A PW-to-SPP power conversion factor >45% is demonstrated at a wavelength of 780?nm, which exceeds by an order of magnitude the experimental performance of SPP grating couplers reported to date at any wavelength. Conversion efficiency is maximized by matching the dissipative SPP losses along the grating surface to the local coupling strength. This critical coupling condition is experimentally achieved by tailoring the groove depth and width using a focused ion beam.  相似文献   

18.
Surface plasmonic-enhanced light trapping from metal nanoparticles is a promising way of increasing the light absorption in the active silicon layer and, therefore, the photocurrent of the silicon solar cells. In this paper, we applied silver nanoparticles on the rear side of polycrystalline silicon thin film solar cell and systematically studied the dielectric environment effect on the absorption and short-circuit current density (Jsc) of the device. Three different dielectric layers, magnesium fluoride (MgF2, n?=?1.4), tantalum pentoxide (Ta2O5, n?=?2.2), and titanium dioxide (TiO2, n?=?2.6), were investigated. Experimentally, we found that higher refractive index dielectric coatings results in a redshift of the main plasmonic extinction peak and higher modes were excited within the spectral region that is of interest in our thin film solar cell application. The optical characterization shows that nanoparticles coated with highest refractive index dielectric TiO2 provides highest absorption enhancement 75.6 %; however, from the external quantum efficiency characterization, highest short-circuit current density Jsc enhancement of 45.8 % was achieved by coating the nanoparticles with lower refractive index MgF2. We also further optimize the thickness of MgF2 and a final 50.2 % Jsc enhancement was achieved with a 210-nm MgF2 coating and a back reflector.  相似文献   

19.
Karyotypic characters, mitotic metaphase chromosomes, monoploid idiograms and karyograms of Minuartia anatolica (Boiss.) Woronow var. phrygia (Bornm.) McNeill, Minuartia anatolica (Boiss.) Woronow var. scleranthoides (Boiss. & Noe) McNeill, Minuartia corymbulosa (Boiss. & Balansa) McNeill var. gypsophilloides McNeill and Minuartia aksoyi M.Koç & Hamzao?lu were investigated for the first time. Analysis of somatic metaphases showed that the chromosome numbers and the formulas of these taxa were 2n = 24 = 14m + 6sm + 4st for Minuartia anatolica var. phrygia, 2n = 14 = 6m + 8sm for Minuartia anatolica var. scleranthoides, 2n = 14 = 6m + 4sm + 4st for Minuartia corymbulosa var. gypsophilloides and 2n = 30 = 14m + 10sm + 6st for Minuartia aksoyi. No satellites were observed in the karyotypes of these taxa. Karyotype asymmetry was estimated by many different methods, namely the Stebbins classification, the karyotype asymmetry index (As K %), the total form percent (TF %), the Rec and Syi indices, the intrachromosomal asymmetry index (A1) and interchromosomal asymmetry index (A2), the dispersion index (DI), the degree of asymmetry of karyotype (A index) and the asymmetry index (AI).  相似文献   

20.
Two main types of cognitive maps, route-based and coordinate-based, have been proposed to explain how animals navigate through their environments. We examined patterns of feeding and ranging in Weddell’s saddleback tamarins (Saguinus fuscicollis weddelli) in northern Bolivia to assess which type of cognitive map best explains the tamarins’ movement patterns in large-scale space, e.g., when moving between distant and out-of-sight goals. We observed the tamarins for 236 h over the course of 32 d and used a GPS unit to record the location of nighttime sleeping sites and feeding trees and the locations of individuals at 10-min intervals. Based on an evaluation of 109 travel segments of >20 m in which the monkeys traveled from the tree of one major feeding species to another without stopping to rest, forage for insects, or interact with neighbors, we calculated a circuity index (actual distance traveled divided by the straight-line distance) of 1.43. We also plotted the monkeys’ daily movement patterns using GIS software. These analyses showed that tamarin travel was not random, that a limited set of route segments (N?=?29) was reused on multiple occasions, and that certain areas of the forest appeared to serve as switch points (N?=?9) where the monkeys reoriented travel. These results support the contention that the tamarins encoded the spatial relationships among many feeding and sleeping sites in their home range, and navigated in large-scale space using a route-based spatial representation. These results are consistent with those reported for a variety of primate taxa, suggesting that many primate species reuse a familiar set of travel routes and switch points to orient in large-scale space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号