首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper reports a study involving the use of Halomonas boliviensis, a moderate halophile, for co-production of compatible solute ectoine and biopolyester poly(3-hydroxybutyrate) (PHB) in a process comprising two fed-batch cultures. Initial investigations on the growth of the organism in a medium with varying NaCl concentrations showed the highest level of intracellular accumulation of ectoine (0.74 g L−1) at 10–15% (w/v) NaCl, while at 15% (w/v) NaCl, the presence of hydroxyectoine (50 mg L−1) was also noted. On the other hand, the maximum cell dry weight and PHB concentration of 10 and 5.8 g L−1, respectively, were obtained at 5–7.5% (w/v) NaCl. A process comprising two fed-batch cultivations was developed—the first culture aimed at obtaining high cell mass and the second for achieving high yields of ectoine and PHB. In the first fed-batch culture, H. boliviensis was grown in a medium with 4.5% (w/v) NaCl and sufficient levels of monosodium glutamate, NH4+, and PO43−. In the second fed-batch culture, the NaCl concentration was increased to 7.5% (w/v) to trigger ectoine synthesis, while nitrogen and phosphorus sources were fed only during the first 3 h and then stopped to favor PHB accumulation. The process resulted in PHB yield of 68.5 wt.% of cell dry weight and volumetric productivity of about 1 g L−1 h−1 and ectoine concentration, content, and volumetric productivity of 4.3 g L−1, 7.2 wt.%, and 2.8 g L−1 day−1, respectively. At salt concentration of 12.5% (w/v) during the second cultivation, the ectoine content was increased to 17 wt.% and productivity to 3.4 g L−1 day−1.  相似文献   

2.
High poly(3-hydroxybutyrate) (PHB) content and volumetric productivity were achieved by fed-batch culture of Halomonas boliviensis using a defined medium. Initial shake flask cultivations in a minimal medium revealed that the growth of H. boliviensis was supported only when the medium was supplemented with aspartic acid, glycine, or glutamine. Addition of 0.1% (w/v) glutamine in the medium resulted in the highest cell dry weight (CDW; 3.9 g l−1). Glutamine was replaced by the less expensive monosodium glutamate (MSG) in the medium without any notable change in the final cell density. Effect of initial concentrations of NH4Cl and K2HPO4 on cell growth and PHB accumulation by H. boliviensis was then analyzed using a fed-batch fermentation system. The best conditions for PHB production by H. boliviensis were attained using 0.4% (w/v) NH4Cl and 0.22% (w/v) K2HPO4 and adding MSG intermittently to the fermentor. Poly(3-hydroxybutyrate) content and CDW reached 90 wt.% and 23 g l−1, respectively, after 18 h of cultivation. In order to increase CDW and PHB content, MSG, NH4Cl, and K2HPO4 were initially fed to the fermentor to maintain their concentrations at 2%, 0.4%, and 0.22% (w/v), respectively, and subsequently their feed was suppressed. This resulted in a CDW of 44 g l−1, PHB content of 81 wt.%, and PHB volumetric productivity of 1.1 g l−1 h−1.  相似文献   

3.
Nine anaerobic promoters were cloned and constructed upstream of PHB synthesis genes phbCAB from Ralstonia eutropha for the micro- or anaerobic PHB production in recombinant Escherichia coli. Among the promoters, the one for alcohol dehydrogenase (P adhE ) was found most effective. Recombinant E. coli JM 109 (pWCY09) harboring P adhE and phbCAB achieved a 48% PHB accumulation in the cell dry weight after 48 h of static culture compared with only 30% PHB production under its native promoter. Sixty-seven percent PHB was produced in the dry weight (CDW) of an acetate pathway deleted (Δpta deletion) E. coli JW2294 harboring the vector pWCY09. In a batch process conducted in a 5.5-l NBS fermentor containing 3 l glucose LB medium, E. coli JW2294 (pWCY09) grew to 7.8 g/l CDW containing 64% PHB after 24 h of microaerobic incubation. In addition, molecular weight of PHB was observed to be much higher under microaerobic culture conditions. The high activity of P adhE appeared to be the reason for improved micro- or anaerobic cell growth and PHB production while high molecular weight contributed to the static culture condition.  相似文献   

4.
The effect of aeration level and iron concentration on Azotobacter chroococcum 23 growth, PHB accumulation and antioxidative enzyme activities was investigated in shake flask experiments. Biomass yield and carbon source conversation coefficients increased in the presence of iron in the growth medium and under decreased aeration. The highest biomass production was observed for the culture grown in a medium with 36 μM of initial iron concentration and moderate aeration level. The highest PHB accumulation level (70–72% from cell dry weight) under our experimental conditions was observed at decreased aeration in the growth medium with 180 μM of initial iron concentration. Results obtained prove that both aeration level and iron supply have a marked influence on the activity of SOD and catalase. Bearing in mind the necessity of iron for the synthesis of both enzymes, only catalase showed a specific dependence on the intracellular iron accumulation level.  相似文献   

5.
Sinorhizobium meliloti infects leguminous plants resulting in a nitrogen-fixing symbiosis. Free living cells accumulate poly(3-hydroxybutyrate) (PHB) as carbon and energy source under imbalanced growth conditions. The cphA1 7120 gene encoding a cyanophycin (CGP) synthetase of Anabaena sp. PCC7120 in plasmids pVLT31::cphA1 7120 and pBBR1MCS-3::cphA1 7120 was expressed in the wild-type S. meliloti 1021 and in a phbC-negative mutant generated in this study. Expression of cphA1 7120 and accumulation of CGP in cells were studied in various media. Yeast mannitol broth (YMB) and pBBR1MCS-3::cphA1 7120 yielded the highest CGP contents in both S. meliloti 1021 strains. Supplying the YMB medium with isopropyl-β-D-thiogalactopyranoside, aspartic acid, and arginine enhanced CGP contents about 2.5- and 2.8-fold in S. meliloti 1021 (pBBR1MCS-3::cphA1 7120) and S. meliloti 1021 phbCΩKm (pBBR1MCS-3::cphA1 7120), respectively. Varying the nitrogen-to-carbon ratio in the medium enhanced the CGP content further to 43.8% (w/w) of cell dry weight (CDW) in recombinant cells of S. meliloti 1021 phbCΩKm (pBBR1MCS-3::cphA1 7120). Cells of S. meliloti 1021 (pBBR1MCS-3::cphA1 7120) accumulated CGP up to 39.6% in addition to 12.1% PHB (w/w, of CDW). CGP from the S. meliloti strains consisted of equimolar amounts of aspartic acid and arginine and contained no other amino acids even if the medium was supplemented with glutamic acid, citrulline, ornithine, or lysine. CGP isolated from cells of S. meliloti 1021 (pBBR1MCS-3::cphA1 7120) and S. meliloti 1021 phbCΩKm (pBBR1MCS-3::cphA1 7120) exhibited average molecular weights between 20 and 25 kDa, whereas CGP isolated from Escherichia coli S17-1 (pBBR1MCS-3::cphA1 7120) exhibited average molecular weight between 22 and 30 kDa. Co-expression of cyanophycinase from Anabaena sp. PCC7120 encoded by cphB1 7120 in cphA1 7120-positive E. coli S17-1, S. meliloti 1021, and its phbC-negative mutant gave cyanophycinase activities in crude extracts, and no CGP granules occurred. A higher PHB content in S. meliloti 1021 (pBBR1MCS-3::cphB1 7120::cphA1 7120) in comparison to the control indicated that the cells used CGP degradation product (β-aspartate-arginine dipeptide) to fuel PHB biosynthesis.  相似文献   

6.
The molecular weight (M w) of poly-3-hydroxybutyrate (PHB), produced by shake-flask culture of Azotobacter chroococcum showed little variation with increasing glucose concentration as carbon source (being in the range of 400–500 kDa), while M w increased from 300–400 to 640 kDa when grown with increasing concentration of sugar cane molasses. Molecular weight increased nearly 30% from 48 to 72 h culture time when 5% molasses as carbon source was used, while with glucose the highest M w was reached at 48 h. Under fermentor cultivation A. chroococcum produced PHB with a relatively high M w of 1590 kDa at 53 h culture time when grown in modified Burk's medium with glucose as carbon source at an initial C/N ratio (molar basis) of 69 under fermentor cultivation. A batch glucose-grown ammonium-limited fermentor culture was repeatedly fed with sugar cane molasses (initial C/N ratio 69) and it was observed that PHB content curve decreased at a slower rate than in the fed-batch culture in which glucose and sucrose were not consumed in the culture medium after the feed.  相似文献   

7.
《Process Biochemistry》1999,34(2):109-114
The effects of phosphate supply and aeration on cell growth and PHB accumulation were investigated in Azotobacter chroococcum 23 with the aim of increasing PHB production. Phosphate limitation favoured PHB formation in Azotobacter chroococcum 23, but inhibited growth. Azotobacter chroococcum 23 cells demonstrated intensive uptake of orthophosphate during exponential growth. At the highest phosphate concentration (1·5 g/litre) and low aeration the amount of intracellular orthophosphate/g residual biomass was highest. Under conditions of fed-batch fermentation the possibility of controlling the PHB production process by the phosphate level in the cultivation medium was demonstrated. A 36 h fed-batch fermentation resulted in a biomass yield of 110 g/litre with a PHB cellular concentration of 75% dry weight, PHB content 82·5 g/litre, PHB yield YP/S = 0·24 g/g and process productivity 2·29 g/litre·h.  相似文献   

8.
Media components were optimized by statistical design for cell growth and PHB production of Methylobacterium extorquens DSMZ 1340. Four important components of growth media were optimized by central composite design. The growth increased from an OD = 1.35 for Choi medium as control to an OD = 2.15 for optimal medium. Then media components for PHB production were optimized. Optimization of five important factors was conducted by response surface method. The optimal composition of PHB production medium was found to be at 7.8 (g/L) Na2HPO4 · 12H2O, and surprisingly at zero concentration of (NH4)2SO4, KH2PO4, MgSO4 and MnSO4. The PHB production was found to be 2.95 (g/L) at this medium. RSM results indicated that a deficiency of nitrogen and magnesium is crucial for PHB accumulation in this microorganism. Also, PHB production was carried out in a 5 L fermentor at the optimum condition which resulted in 9.5 g/L PHB and 15.4 g/L cell dry weight with 62.3% polymer content.  相似文献   

9.
The present study reports two bacteria, designated 87I and 112A, which were isolated from soil and activated sludge samples from Hyderabad, India, and that are capable of producing poly-3-hydroxybutyrate (PHB). Based on phenotypical features and genotypic investigations, these microorganisms were identified as Bacillus spp. Their optimal growth occurred between 28°C and 30°C and pH 7. Bacillus sp. 87I yielded a maximum of 70.04% dry cell weight (DCW) PHB in medium containing glucose as carbon source, followed by 55.5% DCW PHB in lactose-containing medium, whereas Bacillus sp. 112A produced a maximum of 67.73% PHB from glucose, 58.5% PHB from sucrose, followed by 50.5% PHB from starch as carbon substrates. The viscosity average molecular mass (M v) of the polymers from Bacillus sp. 87I was 513 kDa and from Bacillus sp. 112A was 521 kDa. All the properties of the biopolymers produced by the two strains 87I and 112A were characterized.  相似文献   

10.
Azotobacter chroococcum MAL-201, when grown under nitrogen-free conditions with excess glucose, accumulated poly-β-hydroxybutyric acid amounting to 75% of cell dry weight at the late exponential phase. This led to induction of encystment, which increased steadily with concomitant intracellular degradation of the polymer. Increase in encystment and PHB production were parallel up to 0.5% (wt/vol) glucose. Further increase in glucose reduced cyst formation but enhanced PHB accumulation. Replacement of glucose by n-butyl alcohol and metabolically related compounds identified crotonate as the best encystment inducer followed by β-hydroxybutyrate and butyrate, but PHB production was inhibited in general. Supplementation of medium with these compounds enhanced the onset of encystment, and only β-hydroxybutyrate increased PHB accumulation significantly. Received: 23 April 1997 / Accepted: 31 May 1997  相似文献   

11.
The effect of different amino acid supplements to the basal medium on poly(3-hydroxybutyrate) (PHB) accumulation by recombinant pha Sa + Escherichia coli (ATCC: PTA-1579) harbouring the poly(3-hydroxybutyrate)-synthesizing genes from Streptomyces aureofaciens NRRL 2209 was studied. With the exception of glycine and valine, all other amino acid supplements brought about enhancement of PHB accumulation. In particular, cysteine, isoleucine or methionine supplementation increased PHB accumulation by 60, 45 and 61% respectively by the recombinant E. coli as compared with PHB accumulation by this organism in the basal medium. The effect of co-ordinated addition of assorted combinations of these three amino acids on PHB accumulation was studied using a 23 factorial design. The three-factor interaction analyses revealed that the effect of the three amino acids on PHB accumulation by the recombinant E. coli was in the order of cysteine > methionine > isoleucine. The defined medium supplemented with cysteine, methionine and isoleucine at the concentration of 150 mgl–1 each and glycerol as the carbon source was the optimum medium that resulted in the accumulation of about 52% PHB of cell dry weight.  相似文献   

12.
Water status of Pinus taeda L. callus supported on Murashige and Skoog (MS) liquid medium was characterized over an 8 week period using thermocouple psychrometry. Medium with 30 gl−1 sucrose was used to produce a high water potential (Ψw) of −0.4 MPa (H), and the same medium was used to create a moderate Ψw of −0.7 MPa (M) by the addition of 10% polyethylene glycol (PEG, w/v, MW=8000). Calli were produced from cotyledon explants on H medium for 2 weeks and then transferred to either M or H medium. Callus absorption of PEG accounted for 40% of the callus dry weight and less than 7% of the callus fresh weight. Callus dry weight (without the PEG fraction) on M medium was 40% of that observed on H medium. Fresh weight on M medium was only 15% of that observed on H medium. The Ψw of both H and M media remained constant throughout the culture period. On H medium, callus Ψw and osmotic potential (Ψs) both increased 0.05 MPa/week with the callus Ψw approaching that of the external medium. On M medium, callus Ψw and Ψs both decreased more than 0.1 MPa/week with the callus Ψw decreasing greatly below that of the external medium. The latter was attributed to a rapidly produced osmotic shock induced upon callus transfer and/or PEG which caused less callus hydration and resulted in reduced growth. Callus turgor potential (Ψp) was estimated to be +0.02 to +0.09 MPa and turgor was maintained as callus Ψw increased or decreased. After 8 weeks, cell volumes from callus on M medium were 50 to 60% less than on H medium, suggesting that reduced cell volumes were related to turgor maintenance.  相似文献   

13.
Metabolic activities of four Bacillus strains to transform glucose into hydrogen (H2) and polyhydroxybutyrate (PHB) in two stages were investigated in this study. Under batch culture conditions, Bacillus thuringiensis EGU45 and Bacillus cereus EGU44 evolved 1.67–1.92 mol H2/mol glucose, respectively during the initial 3 days of incubation at 37°C. In the next 2 days, the residual glucose solutions along with B. thuringiensis EGU45 shaken at 200 rpm was found to produce PHB yield of 11.3% of dry cell mass. This is the first report among the non-photosynthetic microbes, where the Bacillus spp.—B. thuringiensis and B. cereus strains have been shown to produce H2 and PHB in same medium under different conditions.  相似文献   

14.
In a limited-scale survey, 55 soil streptomycetes were screened for the accumulation of poly (3-hydroxybutyrate) [PHB]. Only 18% of the isolates accumulated PHB ranging between 1.9–7.8% of the dry biomass. The promising isolate DBCC-719, identified as Streptomyces griseorubiginosus, accumulated PHB amounting to 9.5% of the mycelial dry mass in the early stationary phase when grown in chemically defined medium with 2% (wt/vol) glucose as the sole source of carbon. Nitrogen-limiting conditions were inhibitory to growth and PHB accumulation. The isolated polymer was highly soluble in chloroform, gave a sharp peak at 235 nm on digestion with concentrated H2SO4, and had a characteristic infrared spectrum. Received: 26 March 1999 / Accepted: 3 May 1999  相似文献   

15.
Hypocotyls explants of 1-week-old Ruta gravoelens L. seedlings showed high regeneration ability on Murashige and Skoog’s medium supplemented with 5.2 mM H2PO4 , 250 mM adenine sulphate, 3.0% sucrose and 8.87 μM BA. Increasing phosphate and adenine sulphate concentrations had pronounced effects on organogenesis and shoot growth compared to the stander MS medium. Multiple shoots were successfully maintained for 60 days in static liquid medium without any hyperhydricity phenomena. Uncountable shoot buds and shoots were developed on the leaf surface which was in contact with the medium. The growth index increased linearly during the culture course (R 2 = 0.992–0.999) and the highest GI (30.43) was achieved on medium enriched with 90 mM nitrogen and 4.5% sucrose. Medium supplemented with 6.0% sucrose and 60 mM N yielded the highest biomass (4.37 g per flask). However, medium with the stander N content and 6.0% sucrose developed the maximum percentage of biomass (6.67%). The highest percentage of furanocoumarins (11.46 mg g−1 dry weight) calculated as xanthotoxin was produced in medium enriched with 90 mM N and 4.5 or 6.0% sucrose, whereas the maximum rutin (73.5 mg g−1 dry weight) was on medium supplemented with 90 mM N and 4.5% sucrose. Developing system seems to be used for secondary metabolites production because the shoot rooting did not appear. So, all energy is devoted for shoots multiplication, their growth and secondary metabolites production.  相似文献   

16.
Fed-batch culture of Alcaligenes latus, ATCC 29713, was investigated for producing the intracellular bioplastic poly(β–hydroxybutyric acid), PHB. Constant rate feeding, exponentially increasing feeding rate, and pH-stat fed batch methods were evaluated. pH-stat fed batch culture reduced or delayed accumulation of the substrate in the broth and led to significantly enhanced PHB productivity relative to the other modes of feeding. Presence of excessive substrate appeared to inhibit PHB synthesis, but not the production of cells. In fed-batch culture, the maximum specific growth rate (0.265?h?1) greatly exceeded the value (0.075?h?1) previously observed in batch culture of the same strain. Similarly, the maximum PHB production rate (up to 1.15?g?·?l?1?·?h?1) was nearly 8-fold greater than values observed in batch operations. Fed-batch operation was clearly superior to batch fermentation for producing PHB. A low growth rate was not a prerequisite for PHB accumulation, but a reduced or delayed accumulation of substrate appeared to enhance PHB accumulation. Under the best conditions, PHB constituted up to 63% of dry cell mass after 12?h of culture. The average biomass yield coefficient on sucrose was about 0.35, or a little less than in batch fermentations. The highest PHB concentrations attained were about 18?g?·?l?1.  相似文献   

17.
The recombinant strain of Ralstonia eutropha H16-PHB4-∆eda (pBBR1MCS-2::cphA 6308/eda H16) presenting a 2-keto-3-desoxy-phosphogluconate (KDPG) aldolase (eda) gene-dependent catabolic addiction system for plasmid maintenance when using gluconate or fructose as sole carbon source was used in this study. The effects of the initial pH, the nitrogen-to-carbon ratio, the inorganic components of medium, the oxygen supply, and the different carbon and nitrogen sources on the cell dry matter (CDM) and the cyanophycin granule polypeptide (CGP) content of the cells were studied in a mineral salts medium (MSM) without any additional amino acids or CGP precursor substrates. The experiments were designed to systematically find out the optimal conditions for growth of cells to high densities and for high CGP contents of the cells. Maximum contents of water-insoluble CGP and water-soluble CGP, contributing to 47.5% and 5.8% (w/w) of CDM, respectively, were obtained at the 30-L scale cultivation when cells were cultivated in MSM medium containing sufficient supplements of fructose, NH3, K2SO4, MgSO4⋅7H2O, Fe(Ш)NH4-citrate, CaCl2⋅2H2O, and trace elements (SL6). The molecular masses of water-insoluble and water-soluble CGP ranged from 25 to 31 kDa and from 15 to 21 kDa, respectively. High cell densities of up to 82.8 g CDM/L containing up to 37.8% (w/w) water-insoluble CGP at the 30-L scale cultivation were also obtained. This is by far the best combination of high cell density and high cellular CGP contents ever reported, and it showed that efficient production of CGP at the industrial scale in white biotechnology could be achieved.  相似文献   

18.
Biopolymers such as polyhydroxyalkanoates (PHAs) are a class of secondary metabolites with promising importance in the field of environmental, agricultural, and biomedical sciences. To date, high-cost commercial production of PHAs is being carried out with heterotrophic bacterial species. In this study, a photoautotrophic N2-fixing cyanobacterium, Aulosira fertilissima, has been identified as a potential source for the production of poly-β-hydroxybutyrate (PHB). An accumulation up to 66% dry cell weight (dcw) was recorded when the cyanobacterium was cultured in acetate (0.3%) + citrate (0.3%)-supplemented medium against 6% control. Aulosira culture supplemented with 0.5% citrate under P deficiency followed by 5?days of dark incubation also depicted a PHB accumulation of 51% (dcw). PHB content of A. fertilissima reached up to 77% (dcw) under P deficiency with 0.5% acetate supplementation. Optimization of process parameters by response surface methodology resulted into polymer accumulation up to 85% (dcw) at 0.26% citrate, 0.28% acetate, and 5.58?mg?L?1 K2HPO4 for an incubation period of 5?days. In the A. fertilissima cultures pre-grown in fructose (1.0%)-supplemented BG 11 medium, when subjected to the optimized condition, the PHB pool boosted up to 1.59?g?L?1, a value ~50-fold higher than the control. A. fertilissima is the first cyanobacterium where PHB accumulation reached up to 85% (dcw) by manipulating the nutrient status of the culture medium. The polymer extracted from A. fertilissima exhibited comparable material properties with the commercial polymer. As compared with heterotrophic bacteria, carbon requirement in A. fertilissima for PHB production is lower by one order magnitude; thus, low-cost PHB production can be envisaged.  相似文献   

19.
Although xylose is a major constituent of lignocellulosic feedstock and the second most abundant sugar in nature, only 22% of 3,152 screened bacterial isolates showed significant growth in xylose in 24 h. Of those 684, only 24% accumulated polyhydroxyalkanoates after 72 h. A mangrove isolate, identified as Bacillus sp. MA3.3, yielded the best results in literature thus far for Gram-positive strains in experiments with glucose and xylose as the sole carbon source. When glucose or xylose were supplied, poly-3-hydroxybutyrate (PHB) contents of cell dry weight were, respectively, 62 and 64%, PHB yield 0.25 and 0.24 g g−1 and PHB productivity (PPHB) 0.10 and 0.06 g l−1 h−1. This 40% PPHB difference may be related to the theoretical ATP production per 3-hydroxybutyrate (3HB) monomer calculated as 3 mol mol−1 for xylose, less than half of the ATP/3HB produced from glucose (7 mol mol−1). In PHB production using sugar mixtures, all parameters were strongly reduced due to carbon catabolite repression. PHB production using Gram-positive strains is particularly interesting for medical applications because these bacteria do not produce lipopolysaccharide endotoxins which can induce immunogenic reactions. Moreover, the combination of inexpensive substrates and products of more value may lead to the economical sustainability of industrial PHB production.  相似文献   

20.
【目的】为了研究不同磷、硫及二氧化碳浓度对标志链带藻(Desmodesmus insignis)生长与碳水化合物积累的影响,本实验以改良BG11培养基为基础,设计了8种不同初始K_2HPO_4浓度、8种不同初始MgSO_4浓度及4种二氧化碳浓度培养标志链带藻。【方法】采用干重法和苯酚-硫酸法分别测定其生物质浓度与总碳水化合物的含量。【结果】实验结果显示,在高磷浓度(0.460 mmol/L)下生物量达到最高为6.37 g/L,磷浓度为0.230 mmol/L (对照组)时总碳水化合物含量及单位体积产率达到最高,分别为45.40%(%干重)和0.20 g/(L·d)。不同初始MgSO_4浓度实验结果显示,高硫浓度有利于标志链带藻生长及碳水化合物的积累,生物量、总碳水化合物含量及单位体积产率分别在硫浓度为1.217 mmol/L、0.609 mmol/L和1.824 mmol/L时达到最高,分别为7.02 g/L、51.6%(%干重)及0.26 g/(L·d)。当二氧化碳浓度为3%(V/V)时,标志链带藻生物量、总碳水化合物含量及单位体积产率均达到最高,分别为6.81 g/L、44.03%和0.20 g/(L·d)。【结论】因此,磷浓度为0.230 mmol/L、硫浓度为1.824 mmol/L和二氧化碳浓度为3%时最有利于标志链带藻生长及碳水化合物的积累。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号