首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bread wheat (Triticum aestivum L.) is a staple food crop eaten in different ways like pan and other food products. High molecular weight glutenin subunits (HMW-GS) are major determinants of the different wheat end-use qualities. Ethyl-methanesulfonate (EMS) mutagenized populations in plants can be used for the discovery of valuable mutants for basic research and breeding purposes. In this study, we report the identification of 27 HMW-GS M3 mutants based on SDS-PAGE patterns from an EMS mutagenized population of the cultivar Baguette Premium 11. Nine mutations were detected in Ax2*, five in Bx7, four in By8, six in Dx5 and three in Dy10 subunit. Two Ax2* null mutants were characterized at molecular level finding in both cases premature stop codons associated. EMS would tend to generate more premature stop codons in glutenins genes than in others because these have a high frequency of glutamine codons. This type of mutation generates null alleles, therefore they are easily detectable by a low cost protocol like SDS-PAGE. The potential use of knock-out (null alleles) and SDS-PAGE size altered mutants for HMW-GS in wheat quality and nutrition is discussed.  相似文献   

2.
Low-molecular-weight glutenin subunits (LMW-GSs) are encoded by a multi-gene family and are essential for determining the quality of wheat flour products, such as bread and noodles. However, the exact role or contribution of individual LMW-GS genes to wheat quality remains unclear. This is, at least in part, due to the difficulty in characterizing complete sequences of all LMW-GS gene family members in bread wheat. To identify full-length LMW-GS genes, a polymerase chain reaction (PCR)-based method was established, consisting of newly designed conserved primers and the previously developed LMW-GS gene molecular marker system. Using the PCR-based method, 17 LMW-GS genes were identified and characterized in Xiaoyan 54, of which 12 contained full-length sequences. Sequence alignments showed that 13 LMW-GS genes were identical to those found in Xiaoyan 54 using the genomic DNA library screening, and the other four full-length LMW-GS genes were first isolated from Xiaoyan 54. In Chinese Spring, 16 unique LMW-GS genes were isolated, and 13 of them contained full-length coding sequences. Additionally, 16 and 17 LMW-GS genes in Dongnong 101 and Lvhan 328 (chosen from the micro-core collections of Chinese germplasm), respectively, were also identified. Sequence alignments revealed that at least 15 LMW-GS genes were common in the four wheat varieties, and allelic variants of each gene shared high sequence identities (>95%) but exhibited length polymorphism in repetitive regions. This study provides a PCR-based method for efficiently identifying LMW-GS genes in bread wheat, which will improve the characterization of complex members of the LMW-GS gene family and facilitate the understanding of their contributions to wheat quality.  相似文献   

3.
Bread-making quality in hexaploid wheats is a complex trait. It has been shown that the amount and composition of protein can influence dough rheological properties. The high-molecular-weight (HMW) glutenins are encoded by a complex locus, Glu-1, on the long arm of group-1 homoeologus chromosome of the A, B and D genomes. In this work we used PCR-based DNA markers as a substitution tool to distinguish wheat bread-making quality. We detected PCR-based DNA markers for coding sequence of Glu-A1x, Glu-B1x and Glu-D1x to be 2300 bp, 2400 bp and 2500 bp respectively. DNA markers related to coding sequence of Glu-A1y, Glu-B1y and Glu-D1y were; 1800 bp, 2100 bp and 1950 bp, however, the repetitive region of their coding sequence were shown to be about 1300 bp, 1500 bp and 1600 bp. The results demonstrate that the size variation was due to different lengths of the central repetitive domain. Good or poor bread-making quality in wheat is associated with two allelic pairs of Glu-D1, designated 1Dx5-1Dy10 and 1Dx2-1Dy12. The 1Bx7 allele has moderate-to-good quality score. The specific DNA markers, of 450 bp, 576 bp, 612 bp and 2400 bp respectively were characterized for 1Dx5, 1Dy10, 1Dy12 and 1Bx7 alleles. These markers are very important in screening of wheat for bread-making quality.  相似文献   

4.
The study is a continuation of investigation of prolamins in brown rust-resistant introgressive lines of common wheat, produced with participation of Triticum timopheeevi Zhuk. [1]. Two wheat lines with a substitution of the Glu-1 loci of T. timopheevi were identified. Line 684 had high-molecular-weight glutenin subunits encoded by 1Ax, as well as by 1Ay gene, which was silent in commercial lines. It was demonstrated that line 684 could serve as a source of the Glu-A t 1 locus. Line 186 carried the Glu-B1/Glu-G1 substitution. Comparative analysis of storage proteins from the introgression lines of common wheat Triticum aestivum L. with those from parental forms demonstrated polymorphism among the lines, resulted from natural varietal polymorphism, and introgression of the Glu-3 and Gli-1 loci from the genome of T. timopheevi.  相似文献   

5.
OsGW7 (also known as OsGL7) is homologous to the Arabidopsis thaliana gene that encodes LONGIFOLIA protein, which regulates cell elongation, and is involved in regulating grain length in rice. However, our knowledge on its ortholog in wheat, TaGW7, is limited. In this study, we identified and mapped TaGW7 in wheat, characterized its nucleotide and protein structures, predicted the cis-elements of its promoter, and analysed its expression patterns. The GW7 orthologs in barley (HvGW7), rice (OsGW7), and Brachypodium distachyon (BdGW7) were also identified for comparative analyses. TaGW7 mapped onto the short arms of group 2 chromosomes (2AS, 2BS, and 2DS). Multiple alignments indicated GW7 possesses five exons and four introns in all but two of the species analysed. An exon–intron junction composed of introns 3–4 and exons 4–5 was highly conserved. GW7 has a conserved domain (DUF 4378) and two neighbouring low complexity regions. GW7 was mainly expressed in wheat spikes and stems, in barley seedling crowns, and in rice anthers and embryo-sacs during early development. Drought and heat significantly increased and decreased GW7 expression in wheat, respectively. In barley, GW7 was significantly down-regulated in paleae and awns but up-regulated in seeds under drought treatment and down-regulated under Fusarium and stem rust inoculation. In rice, OsGW7 expression differed significantly under drought treatments. Collectively, these results provide insights into GW7 structure and expression in wheat, barley and rice. The GW7 sequence structure and expression data are the foundation for manipulating GW7 and uncovering its roles in plants.  相似文献   

6.
The puroindoline genes (Pina and Pinb) are the functional components of the common or bread wheat (Triticum aestivum L.) grain hardness locus that are responsible for kernel texture. In this study, four puroindoline b-2 variants were physically mapped using nulli-tetrosomic lines of bread wheat cultivar Chinese Spring and substitution lines of durum wheat (Triticum turgidum L.) cultivar Langdon. Results indicated that Pinb-2v1 was on 7D of Chinese Spring, Pinb-2v2 on 7B of Chinese Spring, Pinb-2v3 on 7B of Chinese Spring and Langdon, and Pinb-2v4 on 7A of Chinese Spring and Langdon. A new puroindoline b-2 variant, designated Pinb-2v5, was identified at the puroindoline b-2 locus of durum wheat cultivar Langdon, with a difference of only five single nucelotide polymorphisms compared with Pinb-2v4. Sequencing results indicated that, in comparison with the Pinb-2v3 sequence (AM99733 and GQ496618 with one base-pair modification of G to T at 6th position, designated Pinb-2v3a) in bread wheat cultivar Witchta, the coding region of Pinb-2v3 in 12 durum wheat cultivars had a single nucleotide change from T to C at the 311th position, resulting in a corresponding amino acid change from valine to alanine at the 104th position. This new allele was designated Pinb-2v3b. The study of puroindoline b-2 gene polymorphism in CIMMYT and Italian durum wheat germplasm and discovery of a novel puroindoline b-2 variant could provide useful information for further understanding the molecular and genetic basis of kernel hardness and illustrating gene duplication events in wheat.  相似文献   

7.

Key message

Recombination at the Glu-3 loci was identified, and strong genetic linkage was observed only between the amplicons representing i-type and s-type genes located, respectively, at the Glu-A3 and Glu-B3 loci.

Abstract

The low-molecular weight glutenin subunits (LMW-GSs) are one of the major components of wheat seed storage proteins and play a critical role in the determination of wheat end-use quality. The genes encoding this class of proteins are located at the orthologous Glu-3 loci (Glu-A3, Glu-B3, and Glu-D3). Due to the complexity of these chromosomal regions and the high sequence similarity between different LMW-GS genes, their organization and recombination characteristics are still incompletely understood. This study examined intralocus recombination at the Glu-3 loci in two recombinant inbred line (RIL) and one doubled haploid (DH) population, all segregating for the Glu-A3, Glu-B3, and Glu-D3 loci. The analysis was conducted using a gene marker system that consists of the amplification of the complete set of the LMW-GS genes and their visualization by capillary electrophoresis. Recombinant marker haplotypes were detected in all three populations with different recombination rates depending on the locus and the population. No recombination was observed between the amplicons representing i-type and s-type LMW-GS genes located, respectively, at the Glu-A3 and Glu-B3 loci, indicating tight linkage between these genes. Results of this study contribute to better understanding the genetic linkage and recombination between different LMW-GS genes, the structure of the Glu-3 loci, and the development of more specific molecular markers that better represent the genetic diversity of these loci. In this way, a more precise analysis of the contribution of various LMW-GSs to end-use quality of wheat may be achieved.
  相似文献   

8.
The objective of this study is to demonstrate characteristics of a y-type high molecular weight glutenin subunit (D1y HMW-GS) at Glu-D1 found in IT212991, a North Korean landrace wheat compared to Dy12 and Dy12.K as a novel HMW-GS in JB20, a Korean wheat line onto molecular analyses as PCR, cloning, DNA sequencing, and RP-HPLC and proteomic analyses as sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE), two-dimensional electrophoresis (2-DE), Fourier-transform mass spectrometry (LTQ-FT-MS). The D1y of IT212991 was identified to have faster electrophoretic mobility than that of Dy12 by SDS–PAGE. HMW-GS components of IT212991 were identified to be different from Chinese Spring (CS) and JB20, a Korean wheat line by RP-HPLC. The result of mass spectrometric analysis, the D1y of IT212991 (68510.8 Da) was similar to that of Dy12.K of JB20 (68514.4 Da), and lower than Dy12 of CS (69151.2 Da). The result of LTQ-FT-MS based on 2-DE, the D1y of IT212991 was identified to be similar with Dy12 corresponding to the protein function as ‘Glutenin, high molecular weight subunit 12’. The D1y encoding the D1y of IT212991 was identified to consist of 652 amino acid sequences corresponding to 1962 bp according to DNA sequencing. The gene was identified to have a insertion and deletion (InDel) corresponding to 18 bp sequences ‘AACAGGACAAGGGCAACA’ compared to ordinary Dy12 gene. It was demonstrated that the D1y of IT212991 is the same as Dy12.K.  相似文献   

9.
Successful plant establishment is critical to the development of high-yielding crops. Short coleoptiles can reduce seedling emergence particularly when seed is sown deep as occurs when moisture necessary for germination is deep in the subsoil. Detailed molecular maps for a range of wheat doubled-haploid populations (Cranbrook/Halberd, Sunco/Tasman, CD87/Katepwa and Kukri/Janz) were used to identify genomic regions affecting coleoptile characteristics length, cross-sectional area and degree of spiralling across contrasting soil temperatures. Genotypic variation was large and distributions of genotype means were approximately normal with evidence for transgressive segregation. Narrow-sense heritabilities were high for coleoptile length and cross-sectional area indicating a strong genetic basis for differences among progeny. In contrast, heritabilities for coleoptile spiralling were small. Molecular marker analyses identified a number of significant quantitative trait loci (QTL) for coleoptile growth. Many of the coleoptile growth QTL mapped directly to the Rht-B1 or Rht-D1 dwarfing gene loci conferring reduced cell size through insensitivity to endogenous gibberellins. Other QTL for coleoptile growth were identified throughout the genome. Epistatic interactions were small or non-existent, and there was little evidence for any QTL × temperature interaction. Gene effects at significant QTL were approximately one-half to one-quarter the size of effects at the Rht-B1 and Rht-D1 regions. However, selection at these QTL could together alter coleoptile length by up to 50 mm. In addition to Rht-B1b and Rht-D1b, genomic regions on chromosomes 2B, 2D, 4A, 5D and 6B were repeatable across two or more populations suggesting their potential value for use in breeding and marker-aided selection for greater coleoptile length and improved establishment.  相似文献   

10.
Genetic diversity among 49 wheat varieties (37 durum and 12 bread wheat) was assayed using 32 microsatellites representing 34 loci covering almost the whole wheat genome. The polymorphic information content (PIC) across the tested loci ranged from 0 to 0.88 with average values of 0.57 and 0.65 for durum and bread wheat respectively. B-genome had the highest mean number of alleles (10.91) followed by A genome (8.3) whereas D genome had the lowest number (4.73). The correlation between PIC and allele number was significant in all genome groups accounting for 0.87, 074 and 0.84 for A, B and D genomes respectively, and over all genomes, the correlation was higher in tetraploid (0.8) than in hexaploid wheat varieties (0.5). The cluster analysis discriminated all varieties and clearly divided the two ploidy levels into two separate clusters that reflect the differences in genetic diversity within each cluster. This study demonstrates that microsatellites markers have unique advantages compared to other molecular and biochemical fingerprinting techniques in revealing the genetic diversity in Syrian wheat varieties that is crucial for wheat improvement.  相似文献   

11.
Differences in isoenzyme pattern of aromatic alcohol dehydrogenase, NADP-AADH or CAD, were found in the Triticum aestivum L. winter bread wheat cultivars by the method of electrophoresis in the starch gel. A standard three-component spectrum is present in the cv. Zitnica (former Yugoslavia); additional fact-migrating isoenzymes appear in the cv. Novosibirskaya 9 (Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Russia). The presence of fast-migrating CAD isoenzymes is designated as FF phenotype; their absence, as 00 phenotype. Hybridological analysis was carried out; the excess of “null” genotypes was found in F2 progenies. Hybridization with nulli-tetrasomic lines of the chromosomes of the fifth homeologous group was conducted for the gene localization. The segregation analysis demonstrated the most probable localization of the CAD1-F gene in the chromosome 5A. The plants with FF and 00 genotypes differed in a number of chemical and anatomical traits, as well as in grain productivity. The results obtained are discussed in connection with the function of this enzyme in the wheat plant tissues.  相似文献   

12.
The glutenin and gliadin proteins of wild emmer wheat, Triticum turgidum L. var. dicoccoides, have potential for improvement of durum wheat (T. turgidum L. var. durum) quality. The objective of this study was to determine the chromosomes controlling the high molecular weight (HMW) glutenin subunits and gliadin proteins present in three T. turgidum var. dicoccoides accessions (Israel-A, PI-481521, and PI-478742), which were used as chromosome donors in Langdon durum- T. turgidum var. dicoccoides (LDN-DIC) chromosome substitution lines. The three T. turgidum var. dicoccoides accessions, their respective LDN-DIC substitution lines, and a number of controls with known HMW glutenin subunits were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), urea/SDS-PAGE, and acid polyacrylamide gel electrophoresis (A-PAGE). The results revealed that all three T. turgidum var. dicoccoides accessions possess Glu-A1 alleles that are the same as or similar to those reported previously. However, each T. turgidum var. dicoccoides accession had a unique Glu-B1 allele. PI-478742 had an unusual 1Bx subunit, which had mobility slightly slower than the 1Ax subunit in 12% SDS-PAGE gels. The subunits controlled by chromosome 1B of PI-481521 were slightly faster in mobility than the subunits of the Glu-B1n allele, and the 1By subunit was identified as band 8. The 1B subunits of Israel-A had similar mobility to subunits 14 and 16. The new Glu-B1 alleles were designated as Glu-B1be in Israel-A, Glu-B1bf in PI-481521, and Glu-B1bg in PI-478742. Results from A-PAGE revealed that PI-481521, PI-478742, and Israel-A had eight, 12, and nine unique gliadin bands, respectively, that were assigned to specific chromosomes. The identified glutenin subunits and gliadin proteins in the LDN-DIC substitution lines provide the basis for evaluating their effects on end-use quality, and they are also useful biochemical markers for identifying specific chromosomes or chromosome segments of T. turgidum var. dicoccoides.Communicated by B. Friebe  相似文献   

13.

Key message

A comprehensive comparison of LMW-GS genes between Ae. tauschii and its progeny common wheat.

Abstract

Low molecular weight glutenin subunits (LMW-GSs) are determinant of wheat flour processing quality. However, the LMW-GS gene composition in Aegilops tauschii, the wheat D genome progenitor, has not been comprehensively elucidated and the impact of allohexaploidization on the Glu-D3 locus remains elusive. In this work, using the LMW-GS gene molecular marker system and the full-length gene-cloning method, LMW-GS genes at the Glu-D3 loci of 218 Ae. tauschii and 173 common wheat (Triticum aestivum L.) were characterized. Each Ae. tauschii contained 11 LMW-GS genes, and the whole collection was divided into 25 haplotypes (AeH01–AeH25). The Glu-D3 locus in common wheat lacked the LMW-GS genes D3-417, D3-507 and D3-552, but shared eight genes of identical open reading frame (ORF) sequences when compared to that of Ae. tauschii. Therefore, the allohexaploidization induces deletions, but exerts no influence on LMW-GS gene coding sequences at the Glu-D3 locus. 92.17% Ae. tauschii had 7-9 LMW-GSs, more than the six subunits in common wheat. The haplotypes AeH16, AeH20 and AeH23 of Ae. tauschii ssp. strangulate distributed in southeastern Caspian Iran were the main putative D genome donor of common wheat. These results facilitate the utilization of the Ae. tauschii glutenin gene resources and the understanding of wheat evolution.
  相似文献   

14.
15.

Background  

Pairing and synapsis of homologous chromosomes is required for normal chromosome segregation and the exchange of genetic material via recombination during meiosis. Synapsis is complete at pachytene following the formation of a tri-partite proteinaceous structure known as the synaptonemal complex (SC). In yeast, HOP1 is essential for formation of the SC, and localises along chromosome axes during prophase I. Homologues in Arabidopsis (AtASY1), Brassica (BoASY1) and rice (OsPAIR2) have been isolated through analysis of mutants that display decreased fertility due to severely reduced synapsis of homologous chromosomes. Analysis of these genes has indicated that they play a similar role to HOP1 in pairing and formation of the SC through localisation to axial/lateral elements of the SC.  相似文献   

16.
Proline and glutamine-rich wheat seed endosperm proteins are collectively referred to as prolamins. They are comprised of HMW-GSs, LMW-GSs and gliadins. HMW-GSs are major determinants of gluten elasticity and LMW-GSs considerably affect dough extensibility and maximum dough resistance. The inheritance of glutenin subunits follows Mendelian genetics with multiple alleles in each locus. Identification of the banding patterns of glutenin subunits could be used as an estimate for screening high quality wheat germplasm. Here, by means of a two-step 1D-SDS-PAGE procedure, we identified the allelic variations in high and low-molecular-weight glutenin subunits in 65 hexaploid wheat (Triticum aestivum L.) cultivars representing a historical trend in the cultivars introduced or released in Iran from the years 1940 to 1990. Distinct alleles 17 and 19 were detected for Glu-1 and Glu-3 loci, respectively. The allelic frequencies at the Glu-1 loci demonstrated unimodal distributions. At Glu-A1, Glu-B1 and Glu-D1, we found that the most frequent alleles were the null, 7 + 8, 2 + 12 alleles, respectively, in Iranian wheat cultivars. In contrast, Glu-3 loci showed bimodal or trimodal distributions. At Glu-A3, themost frequent alleles were c and e. At Glu-B3 the most frequent alleles were a, b and c. At Glu-D3 locus, the alleles b and a, were the most and the second most frequent alleles in Iranian wheat cultivars. This led to a significantly higher Nei coefficient of genetic variations in Glu-3 loci (0.756) as compared to Glu-1 loci (0.547). At Glu-3 loci, we observed relatively high quality alleles in Glu-A3 and Glu-D3 loci and low quality alleles at Glu-B3 locus.  相似文献   

17.
Low-molecular-weight glutenin subunits (LMW-GS) have great effect on wheat processing quality, but were numerous and difficult to dissect by SDS-PAGE. The development of functional markers may be the most effective way for a clear discrimination of different LMW-GS genes. In the present study, three different approaches were used to identify SNPs of different genes at Glu-D3 and Glu-B3 loci in bread wheat for the development of six STS markers (3 for Glu-D3 and 3 for Glu-B3 genes) that were validated with distinguished wheat cultivars. Firstly, seven LMW-GS gene sequences ( AY585350, AY585354, AY585355, AY585356, AY585349, AY585351 and AY585353 ) from Aegilops tauschii, the diploid donor of the D-genome of bread wheat, were chosen to design seven pairs of AS-PCR primers for Glu-D3 genes. By amplifying the corresponding genes from five bread wheat cultivars with different Glu-D3 alleles (a, b, c, d and e) and Ae. tauschii, a primer set, S13F2/S13R1, specific to the gene AY585356, was found to be positive to cultivars with alleles Glu-D3c and d. Nevertheless, the other five pairs of primers designed from AY585350, AY585349, AY585353, AY585354 and AY585355, respectively, did not produce specific PCR products to the cultivars tested. Secondly, all the PCR products from the five primer sets without specific characteristics were sequenced and an SNP from the gene AY585350 was detected in the cultivar Hartog, which resulted in the second STS marker S1F1/S1R3 specific to the allelic variant of AY585350. Thirdly, three Glu-D3 sequences (AB062851, AB062865 and AB062872) and three Glu-B3 sequences (AB062852, AB062853 and AB062860) defined by Ikeda et al. (2002) were chosen to query wheat EST and NR databases, and DNA markers were developed based on the putative SNPs among the sequences. Using this approach, four STS markers were developed and validated with 16-19 bread wheat cultivars. The primer set T1F4/T1R1 was also a Glu-D3 gene-specific marker for AB062872, while T2F2/T2R2, T5F3/T5R1 and T13F4/T13R3 were all Glu-B3 gene specific markers for AB062852, BF293671 and AY831800, respectively. The chromosomal locations of the six markers were verified by amplifying the genomic DNA of Ae. tauschii (DD), T. monococcum (AA) and T. turgidum (AABB) entries, as well as Chinese Spring and its group 1 chromosome nulli-tetrasomic lines. The results are useful to discriminate the corresponding Glu-D3 and Glu-B3 genes in wheat breeding programs.  相似文献   

18.
Previously, we reported on the development of procedures for chromosome analysis and sorting using flow cytometry (flow cytogenetics) in bread wheat. That study indicated the possibility of sorting large quantities of intact chromosomes, and their suitability for analysis at the molecular level. However, due to the lack of sufficient differences in size between individual chromosomes, only chromosome 3B could be sorted into a high-purity fraction. The present study aimed to identify wheat stocks that could be used to sort other chromosomes. An analysis of 58 varieties and landraces demonstrated a remarkable reproducibility and sensitivity of flow cytometry for the detection of numerical and structural chromosome changes. Changes in flow karyotype, diagnostic for the presence of the 1BL·1RS translocation, have been found and lines from which translocation chromosomes 5BL·7BL and 4AL·4AS-5BL could be sorted have been identified. Furthermore, wheat lines have been identified which can be used for sorting chromosomes 4B, 4D, 5D and 6D. The ability to sort any single arm of the hexaploid wheat karyotype, either in the form of a ditelosome or a isochromosome, has also been demonstrated. Thus, although originally considered recalcitrant, wheat seems to be suitable for the development of flow cytogenetics and the technology can be applied to the physical mapping of DNA sequences, the targeted isolation of molecular makers and the construction of chromosome- and arm-specific DNA libraries. These approaches should facilitate the analysis of the complex genome of hexaploid bread wheat.  相似文献   

19.
A microsatellite consensus map was constructed by joining four independent genetic maps of bread wheat. Three of the maps were F1-derived, doubled-haploid line populations and the fourth population was Synthetic × Opata, an F6-derived, recombinant-inbred line population. Microsatellite markers from different research groups including the Wheat Microsatellite Consortium, GWM, GDM, CFA, CFD, and BARC were used in the mapping. A sufficient number of common loci between genetic maps, ranging from 52 to 232 loci, were mapped on different populations to facilitate joining the maps. Four genetic maps were developed using MapMaker V3.0 and JoinMap V3.0. The software CMap, a comparative map viewer, was used to align the four maps and identify potential errors based on consensus. JoinMap V3.0 was used to calculate marker order and recombination distances based on the consensus of the four maps. A total of 1,235 microsatellite loci were mapped, covering 2,569 cM, giving an average interval distance of 2.2 cM. This consensus map represents the highest-density public microsatellite map of wheat and is accompanied by an allele database showing the parent allele sizes for every marker mapped. This enables users to predict allele sizes in new breeding populations and develop molecular breeding and genomics strategies.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

20.
The deterioration in the quality of ex situ conserved seed over time reflects a combination of both physical and chemical changes. Intraspecific variation for longevity is, at least in part, under genetic control. Here, the grain of 183 bread wheat accessions maintained under low-temperature storage at the IPK-Gatersleben genebank over some decades have been tested for their viability, along with that of fresh grain subjected to two standard artificial ageing procedures. A phenotype–genotype association analysis, conducted to reveal the genetic basis of the observed variation between accessions, implicated many regions of the genome, underling the genetic complexity of the trait. Some, but not all, of these regions were associated with variation for both natural and experimental ageing, implying some non-congruency obtains between these two forms of testing for longevity. The genes underlying longevity appear to be independent of known genes determining dormancy and pre-harvest sprouting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号