首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A shallow, RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)-contaminated aquifer at Naval Submarine Base Bangor has been characterized as predominantly manganese-reducing, anoxic with local pockets of oxic conditions. The potential contribution of microbial RDX degradation to localized decreases observed in aquifer RDX concentrations was assessed in sediment microcosms amended with [U-14C] RDX. Greater than 85% mineralization of 14C-RDX to 14CO2 was observed in aquifer sediment microcosms under native, manganese-reducing, anoxic conditions. Significant increases in the mineralization of 14C-RDX to 14CO2 were observed in anoxic microcosms under NO3-amended or Mn(IV)-amended conditions. No evidence of 14C-RDX biodegradation was observed under oxic conditions. These results indicate that microbial degradation of RDX may contribute to natural attenuation of RDX in manganese-reducing aquifer systems.  相似文献   

2.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a toxic, mobile groundwater contaminant common to military sites. Biodegradation of RDX is an alternative, cost effective and environmentally friendly remediation approach. The effects of carbon amendments (waste glycerol and cheese whey) used alone or with a potential electron shuttle (ammonium lignosulfonate) on RDX biodegradation were assessed. These substrates are readily available waste materials that can be used as nutrients to promote oxygen consumption, creating a more reducing environment. Nutrient amended batch assays were conducted using RDX spiked contaminated demolition range soil under anaerobic conditions. The amendments that improved RDX mineralization the most were subsequently tested in a scaled up repacked soil column study to verify if this strategy could be effectively implemented on-site. Microcosm results indicated that RDX mineralization by indigenous anaerobic microorganisms was enhanced the most by the low carbon amendment concentration. The use of ammonium lignosulfonate was not effective, exhibiting an inhibitory effect on RDX biodegradation that was stronger at higher concentrations. The soil column study showed that the low concentration of waste was the most promising treatment scenario. These results offer good prospects for the use of waste glycerol for in situ treatment of soils contaminated with energetic-materials, such as RDX.  相似文献   

3.
Native soil microbial populations and unadapted municipal anaerobic sludges were compared for nitramine explosive degradation in microcosm assays under various conditions. Microbial populations from an explosive-contaminated soil were only able to mineralize 12% hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) (at a concentration of 800 mg/kg slurry) or 4% octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) (at a concentration of 267 mg/kg slurry). In contrast, municipal anaerobic sludges were able to mineralize them to carbon dioxide, with efficiencies of up to 65%. Reduction of RDX and HMX into their corresponding nitroso-derivatives was notably faster than their mineralization. The biodegradation of HMX was typically delayed by the presence of RDX in the microcosm, confirming RDX is used as an electron acceptor preferentially to HMX. The laboratory-scale bioslurry reactor reproduced the results of the microcosm assays, yet with much higher RDX and HMX degradation rates. A radiolabel-based mass balance in the soil slurry indicated that, besides a significant mineralization to carbon dioxide, 25% and 31% of RDX and HMX, respectively, appeared as acetonitrile-extractable metabolites, while the remaining part was incorporated into biomass and irreversibly bound to the soil matrix. About 10% of the HMX derivatives were estimated to be chemically bound to the soil matrix, while for RDX the estimation was nil.  相似文献   

4.
以亚热带红壤丘陵区典型水田和旱地土壤为研究对象,向土壤中添加14C标记稻草,培养30 d后,提取与原位土壤中结构相似的14C可溶性有机碳(DOC);将14C DOC加入水田和旱地土壤中,并设置45%、60%、75%、90%和105%田间持水量(WHC)5个水分梯度,在标准状态下(25 ℃)培养100 d,监测14C DOC在土壤中的矿化过程.结果表明: 培养100 d后,两种土壤中28.7%~61.4%的标记DOC被矿化为CO2,且5个水分条件下,水田土壤DOC的矿化率均显著高于旱地,这主要是由于水田土壤DOC的结构组成比旱地土壤更简单.好气条件(56%~75%WHC)有利于两种土壤DOC的分解,淹水条件(105%WHC)则有利于DOC的积累.土壤处于好气条件(45%~90%WHC)时,DOC的生物可分解率及易分解态所占比例均随着含水量的增加而增加.100 d内,水田和旱地易分解态DOC分别占其累积矿化量的80.5%~91.1%和66.3%~72.4%,说明DOC的生物可分解率主要由其易分解态组分所占比例决定.  相似文献   

5.
Extensive biodegradation of hexahydro-1,3,5 -trinitro-1,3,5 -triazine (RDX) by the white-rot fungus Phanerochaete chrysosporium in liquid and solid matrices was observed. Some degradation in liquid occurred under nonligninolytic conditions, but was approximately 10 times higher under ligninolytic conditions. Moreover, elimination was accounted for almost completely as carbon dioxide. No RDX metabolites were detected. The degradation rates in liquid appeared to be limited to RDX concentration in solution (approximately 80 mg/L), but degradation rates in soil were nonsaturable to 250 mg/kg. Manganese-dependent peroxidase (MnP) and cellobiose dehydrogenase (CDH) from P. chrysosporium, but not lignin peroxidase, were able to degrade RDX. MnP degradation of RDX required addition of manganese, but CDH degraded RDX anaerobically without addition of mediators. Attempts to improve biodegradation by supplementing cultures with micronutrients showed that addition of manganese and oxalate stimulated degradation rates in liquid, sawdust, and sand by the fungus, but not in loam soil. RDX degradation by P. chrysosporium in sawdust and sand was better than observed in liquid. However, degradation in solid matrices by the fungus only began after a lag period of 2 to 3 weeks, during which time extractable metabolites from wood were degraded.  相似文献   

6.
Lignin biodegradation in a variety of natural materials was examined using specifically labeled synthetic C-lignins. Natural materials included soils, sediments, silage, steer bedding, and rumen contents. Both aerobic and anaerobic incubations were used. No C-labeled lignin biodegradation to labeled gaseous products under anaerobic conditions was observed. Aerobic C-labeled lignin mineralization varied with respect to type of natural material used, site, soil type and horizon, and temperature. The greatest observed degradation occurred in a soil from Yellowstone National Park and amounted to over 42% conversion of total radioactivity to CO(2) during 78 days of incubation. Amounts of C-labeled lignin mineralization in Wisconsin soils and sediments were significantly correlated with organic carbon, organic nitrogen, nitrate nitrogen, exchangeable calcium, and exchangeable potassium.  相似文献   

7.
We hypothesized that biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)—a widely used explosive contaminating soil and groundwater—by Rhodococcus strain YH1 is controlled by the presence of external nitrogen sources. This strain is capable of degrading RDX while using it as sole nitrogen source under aerobic conditions. Both inorganic and organic nitrogen sources were found to have a profound impact on RDX-biodegradation activity. This effect was tested in growing and resting cells of strain YH1. Nitrate and nitrite delayed the onset of RDX degradation by strain YH1, while ammonium inhibited it almost completely. In addition, 2,4,6-trinitrotoluene (TNT) inhibited RDX degradation and growth of strain YH1. On the other hand, tetrahydrophthalamide did not influence biodegradation or growth. Growth on RDX induced the expression of a cytochrome P-450 enzyme that is suggested to be involved in the first step in the aerobic pathway of RDX degradation, as identified by SDS-PAGE analysis. Ammonium and nitrite strongly repressed cytochrome P-450 expression. Our findings suggest that effective RDX bioremediation by strain YH1 requires the design of a treatment scheme that includes initial removal of ammonium, nitrite, nitrate and TNT before RDX degradation can take place.  相似文献   

8.
Past handling practices associated with the manufacturing and processing of the high explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) has resulted in extensive environmental contamination. In-situ biodegradation is a promising technology for remediating RDX contaminated sites but often relies on the addition of a cosubstrate. A sulfate-reducing bacterium isolated from an RDX-degrading enrichment culture was studied for its ability to grow on RDX as a sole source of carbon and nitrogen and for its ability to mineralize RDX in the absence of a cosubstrate. The results showed the isolate degraded 140 μM RDX in 63 days when grown on RDX as a carbon source. Biomass within the carbon limited culture increased 9-fold compared to the RDX unamended controls. When the isolate was incubated with RDX as sole source of nitrogen it degraded 160 μM RDX in 41 days and exhibited a 4-fold increase in biomass compared to RDX unamended controls. Radiolabeled studies under carbon limiting conditions with 14C-hexahydro-1,3,5-trinitro-1,3,5-triazine confirmed mineralization of the cyclic nitramine. After 60 days incubation 26% of the radiolabel was recovered as 14CO2, while in the control bottles less than 1% of the radiolabel was recovered as 14CO2. Additionally, ~2% of the radiolabeled carbon was found to be associated with the biomass. The 16S rDNA gene was sequenced and identified the isolate as a novel species of Desulfovibrio, having a 95.1% sequence similarity to Desulfovibrio desulfuricans. This is the first known anaerobic bacterium capable of mineralizing RDX when using it as a carbon and energy source for growth.  相似文献   

9.
Ground water beneath the U.S. Department of Energy (USDOE) Pantex Plant is contaminated with the high explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). The authors evaluated biodegradation as a remedial option by measuring RDX mineralization in Pantex aquifer microcosms spiked with 14C-labeled RDX (75 g soil, 15 ml of 5 mg RDX/L). Under anaerobic conditions and constant temperature (16°C), cumulative 14CO2 production ranged between 52% and 70% after 49 days, with nutrient-amended (C, N, P) microcosms yielding the greatest mineralization (70%). The authors also evaluated biodegradation as a secondary treatment for removing RDX degradates following oxidation by permanganate (KMnO4) or reduction by dithionite-reduced aquifer solids (i.e., redox barriers). Under this coupled abiotic/biotic scenario, we found that although unconsumed permanganate initially inhibited biodegradation, > 48% of the initial 14C-RDX was recovered as 14CO2 within 77 days. Following exposure to dithionite-reduced solids, RDX transformation products were also readily mineralized (> 47% in 98 days). When we seeded Pantex aquifer material into Ottawa Sand that had no prior exposure to RDX, mineralization increased 100%, indicating that the Pantex aquifer may have an adapted microbial community that could be exploited for remediation purposes. These results indicate that biodegradation effectively transformed and mineralized RDX in Pantex aquifer microcosms. Additionally, biodegradation may be an excellent secondary treatment for RDX degradates produced from in situ treatment with permanganate or redox barriers.  相似文献   

10.
Aim: The goal of this study was to compare the degradation of hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) by three Rhodococcus strains under anaerobic, microaerophilic (<0·04 mg l?1 dissolved oxygen) and aerobic (dissolved oxygen (DO) maintained at 8 mg l?1) conditions. Methods and Results: Three Rhodococcus strains were incubated with no, low and ambient concentrations of oxygen in minimal media with succinate as the carbon source and RDX as the sole nitrogen source. RDX and RDX metabolite concentrations were measured over time. Under microaerophilic conditions, the bacteria degraded RDX, albeit about 60‐fold slower than under fully aerobic conditions. Only the breakdown product, 4‐nitro‐2,4‐diazabutanal (NDAB) accumulated to measurable concentrations under microaerophilic conditions. RDX degraded quickly under both aerated and static aerobic conditions (DO allowed to drop below 1 mg l?1) with the accumulation of both NDAB and methylenedinitramine (MEDINA). No RDX degradation was observed under strict anaerobic conditions. Conclusions: The Rhodococcus strains did not degrade RDX under strict anaerobic conditions, while slow degradation was observed under microaerophilic conditions. The RDX metabolite NDAB was detected under both microaerophilic and aerobic conditions, while MEDINA was detected only under aerobic conditions. Impact and Significance of the Study: This work confirmed the production of MEDINA under aerobic conditions, which has not been previously associated with aerobic RDX degradation by these organisms. More importantly, it demonstrated that aerobic rhodococci are able to degrade RDX under a broader range of oxygen concentrations than previously reported.  相似文献   

11.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitroamine explosive that is a major component in many military high-explosive formulations. In this study, two aerobic bacteria that are capable of using RDX as the sole source of carbon and nitrogen to support their growth were isolated from surface soil. These bacterial strains were identified by their fatty acid profiles and 16S ribosomal gene sequences as Williamsia sp. KTR4 and Gordonia sp. KTR9. The physiology of each strain was characterized with respect to the rates of RDX degradation and [U-14C]RDX mineralization when RDX was supplied as a sole carbon and nitrogen source in the presence and absence of competing carbon and nitrogen sources. Strains KTR4 and KTR9 degraded 180 microM RDX within 72 h when RDX served as the only added carbon and nitrogen source while growing to total protein concentrations of 18.6 and 16.5 microg/ml, respectively. Mineralization of [U-14C]RDX to 14CO2 was 30% by strain KTR4 and 27% by KTR9 when RDX was the only added source of carbon and nitrogen. The addition of (NH4)2SO4- greatly inhibited KTR9's degradation of RDX but had little effect on that of KTR4. These are the first two pure bacterial cultures isolated that are able to use RDX as a sole carbon and nitrogen source. These two genera possess different physiologies with respect to RDX mineralization, and each can serve as a useful microbiological model for the study of RDX biodegradation with regard to physiology, biochemistry, and genetics.  相似文献   

12.
Assessing petroleum biodegradation rates is an important part of predicting natural attenuation in subsurface sediments. Monitoring carbon dioxide (CO2) and methane (CH4) produced in situ, and their radiocarbon 14C), stable carbon (13C) and deuterium (D). signature provide a novel method to assess anaerobic microbial processes. Our objectives were to: (1) estimate the rate of anaerobic petroleum hydrocarbon (PH) mineralization by monitoring the production of soil gas CH4 and CO2 in the vadose zone of low-permeability sediment, (2) evaluate the dominant microbial processes using δ13C and δD, and (3) determine the proportion of CH4 and CO2 attributable to anaerobic mineralization of PH using 14C analysis. Argon was sparged into the subsurface to dilute existing CO2 and CH4 concentrations. Vadose zone CO2, CH4, oxygen, total combustible hydrocarbons, and argon concentrations were measured for 75 days. CO2 and CH4 samples were collected on day 86 and analyzed for 14C, δ13C, and δD. Based on CH4 soil gas production, the anaerobic biodegradation rate was estimated between 0.017 to 0.055 mg/kg soil-d. CH4 14C (2.6 pMC), δ13C (-45.64‰), and δD (-316‰) values indicated that fermentation of PH was the sale source of CH4 in the vadose zone. CO2 14C (62 pMC) indicated that approximately 47% of the total CO2 was from PH mineralization and 53% from plant root respiration. Although low-permeability sediment increases the difficulty of completely replacing in situ soil gas and assuring anaerobic conditions, this novel respiration method distinguished between anaerobic processes responsible for PH degradation.  相似文献   

13.
We examined the bioremediation of soils contaminated with the munition compounds 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine by a procedure that produced anaerobic conditions in the soils and promoted the biodegradation of nitroaromatic contaminants. This procedure consisted of flooding the soils with 50 mM phosphate buffer, adding starch as a supplemental carbon substrate, and incubating under static conditions. Aerobic heterotrophs, present naturally in the soil or added as an inoculum, quickly removed the oxygen from the static cultures, creating anaerobic conditions. Removal of parent TNT molecules from the soil cultures by the strictly anaerobic microflora occurred within 4 days. The reduced intermediates formed from TNT and hexahydro-1,3,5-trinitro-1,3,5-triazine were removed from the cultures within 24 days, completing the first stage of remediation. The procedure was effective over a range of incubation temperatures, 20 to 37 degrees C, and was improved when 25 mM ammonium was added to cultures buffered with 50 mM potassium phosphate. Ammonium phosphate buffer (50 mM), however, completely inhibited TNT reduction. The optimal pH for the first stage of remediation was between 6.5 and 7.0. When soils were incubated under aerobic conditions or under anaerobic conditions at alkaline pHs, the TNT biodegradation intermediates polymerized. Polymerization was not observed at neutral to slightly acidic pHs under anaerobic conditions. Completion of the first stage of remediation of munition compound-contaminated soils resulted in aqueous supernatants that contained no munition residues or aminoaromatic compounds.  相似文献   

14.
Lignin biodegradation in a variety of natural materials was examined using specifically labeled synthetic 14C-lignins. Natural materials included soils, sediments, silage, steer bedding, and rumen contents. Both aerobic and anaerobic incubations were used. No 14C-labeled lignin biodegradation to labeled gaseous products under anaerobic conditions was observed. Aerobic 14C-labeled lignin mineralization varied with respect to type of natural material used, site, soil type and horizon, and temperature. The greatest observed degradation occurred in a soil from Yellowstone National Park and amounted to over 42% conversion of total radioactivity to 14CO2 during 78 days of incubation. Amounts of 14C-labeled lignin mineralization in Wisconsin soils and sediments were significantly correlated with organic carbon, organic nitrogen, nitrate nitrogen, exchangeable calcium, and exchangeable potassium.  相似文献   

15.
Biodegradation of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine   总被引:15,自引:8,他引:7       下载免费PDF全文
Biodegradation of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) occurs under anaerobic conditions, yielding a number of products, including: hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine, hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine, hexahydro-1,3,5-trinitroso-1,3,5-triazine, hydrazine, 1,1-dimethyl-hydrazine, 1,2-dimethylhydrazine, formaldehyde, and methanol. A scheme for the biodegradation of RDX is proposed which proceeds via successive reduction of the nitro groups to a point where destabilization and fragmentation of the ring occurs. The noncyclic degradation products arise via subsequent reduction and rearrangement reactions of the fragments. The scheme suggests the presence of several additional compounds, not yet identified. Several of the products are mutagenic or carcinogenic or both. Anaerobic treatment of RDX wastewaters, which also contain high nitrate levels, would permit the denitrification to occur, with concurrent degradation of RDX ultimately to a mixture of hydrazines and methanol. The feasibility of using an aerobic mode in the further degradation of these products is discussed.  相似文献   

16.
A sequential anaerobic–aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was studied. The results demonstrated that: (i) a complete degradation of RDX was achieved within 20 days using a consortium of bacteria from a wastewater activated sludge, (ii) RDX degradation did not occur under aerobic conditions alone, (iii) RDX-degrading bacterial strain that was isolated from the activated sludge completely degraded RDX within 2 days, and (iv) RDX- induced protein expressions were observed in the RDX-degrading bacterial strain. Based on fatty acid composition and a confirmation with a 16S rRNA analysis, the RDX-degrading bacterial strain was identified as a Bacillus pumilus—GC subgroup B.  相似文献   

17.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitroamine explosive that is a major component in many military high-explosive formulations. In this study, two aerobic bacteria that are capable of using RDX as the sole source of carbon and nitrogen to support their growth were isolated from surface soil. These bacterial strains were identified by their fatty acid profiles and 16S ribosomal gene sequences as Williamsia sp. KTR4 and Gordonia sp. KTR9. The physiology of each strain was characterized with respect to the rates of RDX degradation and [U-14C]RDX mineralization when RDX was supplied as a sole carbon and nitrogen source in the presence and absence of competing carbon and nitrogen sources. Strains KTR4 and KTR9 degraded 180 μM RDX within 72 h when RDX served as the only added carbon and nitrogen source while growing to total protein concentrations of 18.6 and 16.5 μg/ml, respectively. Mineralization of [U-14C]RDX to 14CO2 was 30% by strain KTR4 and 27% by KTR9 when RDX was the only added source of carbon and nitrogen. The addition of (NH4)2SO4 greatly inhibited KTR9's degradation of RDX but had little effect on that of KTR4. These are the first two pure bacterial cultures isolated that are able to use RDX as a sole carbon and nitrogen source. These two genera possess different physiologies with respect to RDX mineralization, and each can serve as a useful microbiological model for the study of RDX biodegradation with regard to physiology, biochemistry, and genetics.  相似文献   

18.
Microbial degradation of explosives: biotransformation versus mineralization   总被引:22,自引:0,他引:22  
The nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) is a reactive molecule that biotransforms readily under both aerobic and anaerobic conditions to give aminodinitrotoluenes. The resulting amines biotransform to give several other products, including azo, azoxy, acetyl and phenolic derivatives, leaving the aromatic ring intact. Although some Meisenheimer complexes, initiated by hydride ion attack on the ring, can be formed during TNT biodegradation, little or no mineralization is encountered during bacterial treatment. Also, although the ligninolytic physiological phase and manganese peroxidase system of fungi can cause some TNT mineralization in liquid cultures, little to no mineralization is observed in soil. Therefore, despite more than two decades of intensive research to biodegrade TNT, no biomineralization-based technologies have been successful to date. The non-aromatic cyclic nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) lack the electronic stability enjoyed by TNT or its transformed products. Predictably, a successful enzymatic change on one of the N–NO2 or C–H bonds of the cyclic nitramine would lead to a ring cleavage because the inner C–N bonds in RDX become very weak (<2 kcal/mol). Recently this hypothesis was tested and proved feasible, when RDX produced high amounts of carbon dioxide and nitrous oxide following its treatment with either municipal anaerobic sludge or the fungus Phanaerocheate chrysosporium. Research aimed at the discovery of new microorganisms and enzymes capable of mineralizing energetic chemicals and/or enhancing irreversible binding (immobilization) of their products to soil is presently receiving considerable attention from the scientific community. Received: 14 February 2000 / Received revision: 9 June 2000 / Accepted: 13 June 2000  相似文献   

19.
A procedure, based on measurement of the stable carbon isotope 13C, has been developed for determining the extent to which petroleum carbon is incorporated into soil organic matter (SOM) by humification of biomass produced during biodegradation of the petroleum in soil. We have shown that a crude oil having a δ13C of-27.4%, when biodegraded in a soil containing SOM with a δ13C of-15.7%, resulted in a change of the δ13C of the bound SOM reflecting that of petroleum carbon. Comparison of five soil biodegradation tests using different amounts and types of fertilizer to stimulate biodegradation of the oil in this soil showed that the extent of the δ13C change in the bound SOM varied with the extent of oil biodegradation observed. To obtain 13C data on the SOM, the residual petroleum was first removed by rigorous extraction with dichloromethane using a Soxhlet apparatus. The extracted soil was then combusted to release bound carbon as CO2, which was analyzed for 13C. Where the SOM has a δ13C similar to that of petroleum, 14C measurements of SOM would give similar results. This type of data, referred to as the petroleum “footprint” in the SOM, could be useful in identifying or confirming intrinsic biodegradation of petroleum in contaminated soil.  相似文献   

20.
Microcosm tests simulating bioslurry reactors with 40% soil content, containing high concentrations of TNT and/or RDX, and spiked with either [14C]-TNT or [14C]-RDX were conducted to investigate the fate of explosives and their metabolites in bioslurry treatment processes. RDX is recalcitrant to indigenous microorganisms in soil and activated sludge under aerobic conditions. However, soil indigenous microorganisms alone were able to mineralize 15% of RDX to CO2 under anaerobic condition, and supplementation of municipal anaerobic sludge as an exogenous source of microorganisms significantly enhanced the RDX mineralization to 60%. RDX mineralizing activity of microorganisms in soil and sludge was significantly inhibited by the presence of TNT. TNT mineralization was poor (< 2%) and was not markedly improved by the supplement of aerobic or anaerobic sludge. Partitioning studies of [14C]-TNT in the microcosms revealed that the removal of TNT during the bioslurry process was due mainly to the transformation of TNT and irreversible binding of TNT metabolites onto soil matrix. In the case of RDX under anaerobic conditions, a significant portion (35%) of original radioactivity was also incorporated into the biomass and bound to the soil matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号