首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
An acid phosphatase species which is activated by Fe2+ was purified 3,700-fold from rat spleen by chromatography on columns containing Blue-Sepharose, concanavalin A-Sepharose, Sephadex G-100, and CM-Sephadex. The enzyme hydrolyzed aryl phosphates, nucleoside di- and triphosphates, phosphoproteins, and thiamine pyrophosphate with Km values of 10(-4) to 10(-3) M at an optimal pH of 5.0-5.8. Co-purification of the acid phosphatase and acid phosphoprotein phosphatase indicated that they were identical. The purified enzyme was glycoprotein in nature, showing four heterogeneous forms on acid polyacrylamide gel electrophoresis (pI values, 7.8, 8.0, 8.3, and 8.5), but it gave a molecular weight of 33,000 on sodium dodecyl sulfate-gel electrophoresis and gel permeation chromatography. The enzyme had a purple color (lambda max 545 nm) and contained 2 iron atoms per enzyme molecule. Among reductants, ascorbic acid and Fe2+ were the best activators, although their combined effect was not additive. Fe2+ and ascorbic acid both changed the purple enzyme into the same active form (lambda max 515 nm), giving almost the same kinetic constants for substrates and for inhibitors such as molybdate, phosphate and fluoride. However, low concentrations of Fe2+, from 0.01 mM to 1.0 mM, immediately and reversibly activated the enzyme, whereas high concentrations of ascorbic acid over 1 mM were required for maximal activation, which was slow and irreversible.  相似文献   

2.
Tartrate-resistant acid phosphatase is one of the major enzymes produced and secreted by osteoclasts. To obtain sufficient enzyme for biochemical characterization, we have purified this enzyme from human osteoclastomas by sequential chromatography on SP-Sephadex, CM-Sephadex, hydroxylapatite, Sephadex G-150 and concanavalin A-Sepharose. The purification over the original tumour extract was about 2000-fold, with a yield of 10%. The enzyme appeared to be homogeneous when assessed by SDS/polyacrylamide-gel electrophoresis. Both gel filtration and SDS/polyacrylamide-gel electrophoresis indicated an Mr of about 30,000. The reduced and alkylated enzyme consists of two subunits with Mrs of 15,000 and 17,500. The N-terminal amino acid sequence of both subunits indicates that there is a high degree of identity between the osteoclastoma enzyme and similar enzymes purified from spleen and uterus. Using 4-methylumbelliferyl phosphate as substrate, the specific activity of the purified enzyme was 387 units.mg-1, and the Km was 284 microns. The pH optimum was 5.7. Unlike similar enzymes purified from human and bovine bone, osteoclastoma acid phosphatase is not activated by reducing agents (2-mercaptoethanol or ascorbic acid). The enzyme contains 4.8 mol of Fe2+/3+, 0.3 mol of Mn2+ and 1.7 mol of Mg2+ per mol of enzyme. Although the enzyme loses 50% of its activity in the presence of EDTA, it is not inhibited by the iron chelator 1,10-phenanthroline. However, the enzyme is activated to a small extent by Mn2+ and Mg2+. Using a variety of substrates and inhibitors, we demonstrate that there are differences between the osteoclastoma acid phosphatase and the enzyme purified from other sources.  相似文献   

3.
The progesterone-induced purple phosphatase isolated from the uterine flushings of pigs is activated by a variety of reagents that cleave disulfide bonds, including 2-mercaptoethanol, dithiothreitol, L-ascorbate, L-cysteine, sulfite, and cyanide. It is inhibited by various mercurials, iodoacetamide, O-iodosobenzoate, and hydrogen peroxide. Thiols increase the specific phosphatase activity from 25 to about 300 units per mg of enzyme. This activation is accompanied by a shift in the extinction maximum to higher energy to yield a protein with a pink coloration. Following maximum activation there is a gradual decrease in enzyme activity and protein color which is accompanied by loss of ferrous iron from the protein. Sodium dithionite at 10 mM or higher causes an immediate inhibition of phosphatase activity and bleaching of color, and can be used to prepare the iron-free apoprotein. The latter can be partially reactivated by Fe3+ salts but not by Fe2+. The Fe3+ restores the pink form of the enzyme with a specific activity of about 200 units/mg of protein. Cu2+ also causes some reactivation, but other metal ions were ineffective. ESR studies showed that the pink form of phosphatase contains approximately 1 atom of high spin ferric iron per molecule. It is concluded that the phosphatase requires a free thiol and Fe3+ for activity. Reduction of the iron leads to complete loss of both color and enzyme activity. The color change from purple to pink represents disulfide reduction and is not due to reduction of iron.  相似文献   

4.
When purified with hydroxylapatite, bovine spleen purple acid phosphatase, bearing two iron atoms/molecule, is EPR-silent. In contrast, enzyme purified without hydroxylapatite exhibits the distinctive g' = 1.74 EPR signal characteristic of porcine uteroferrin, with an intensity accounting for about 10% of the total iron. The intensity of the signal is increased 8-fold by the addition of ferrous iron. This treatment, while shifting the visible absorption maximum of the protein from 550 to 525 nm, does not significantly alter the intensity of its visible absorption. Loss of the g' = 1.74 EPR signal upon addition of phosphate to EPR-active preparations and the detection of virtually stoichiometric amounts of phosphate in the protein as isolated suggest that phosphate-binding may abolish the g' = 1.75 EPR signal. Such binding may bring the two iron atoms of the enzyme into juxtaposition, causing loss of EPR signal intensity either through spin-lattice relaxation broadening or antiferromagnetic exchange coupling, perhaps involving phosphate or other ligands intercalated between the two paramagnetic iron atoms.  相似文献   

5.
The lower molecular weight (35 kDa) acid phosphatase from the frog (Rana esculenta) liver is a glycometalloenzyme susceptible to activation by reducing agents and displaying tartrate and fluoride resistance. Metal chelators (EDTA, 1,10-phenanthroline) inactivate the enzyme reversibly in a time- and temperature-dependent manner. The apoenzyme is reactivated by divalent transition metal cations, i. e. cobalt, zinc, ferrous, manganese, cadmium and nickel to 130%, 75%, 63%, 62%, 55% and 34% of the original activity, respectively. Magnesium, calcium, cupric and ferric ions were shown to be ineffective in this process. Metal analysis by the emission spectrometry method (inductively coupled plasma-atomic emission spectrometry) revealed the presence of zinc, iron and magnesium. The time course of the apoenzyme reactivation, the stabilization effect and the relatively high resistance to oxidizing conditions indicate that the zinc ion is crucial for the enzyme activity. The presence of iron was additionally confirmed by the visible absorption spectrum of the enzyme with a shoulder at 417 nm and by the electron paramagnetic resonance line of high spin iron(III) with geff of 2.4. The active center containing only zinc or both zinc and iron ions is proposed. The frog liver lower molecular weight acid phosphatase is a novel metallophosphatase of lower vertebrate origin, distinct from the mammalian tartrate-resistant, purple acid phosphatases.  相似文献   

6.
Tartrate-resistant acid phosphatase (TRAP) is a mammalian di-iron- containing enzyme that belongs to the family of purple acid phosphatases (PAP). It is highly expressed in a limited number of tissues, predominantly in bone-resorbing osteoclasts and in macrophages of spleen. We have determined the crystal structure of rat TRAP in complex with a phosphate ion to 2.7 A resolution. The fold resembles that of the catalytic domain of kidney bean purple acid phosphatase (KBPAP), although the sequence similarity is limited to the active site residues. A surface loop near the active site is absent due to proteolysis, leaving the active-site easily accessible from the surrounding solvent. This, we believe, gives a structural explanation for the observed proteolytic activation of TRAP. The current structure was determined at a relatively high pH and without any external reducing agents. It is likely that it represents an oxidized and therefore catalytically inactive form of the enzyme.  相似文献   

7.
Characterization of Fe2+-activated acid phosphatase in rat epidermis   总被引:1,自引:0,他引:1  
A particulate acid phosphatase (EC 3.1.3.2, orthophosphoric monoester phosphohydrolase (acid optimum)) was extracted in 1 M KCl, from 2-day rat epidermis. The enzyme has a Mr of 32,000, but two forms, F1 and F2 with pI values of 8.6 and 8.3, respectively, were identified while the pI values of other acid phosphatases soluble in sucrose and Triton X-100 were all acidic. F1 and F2 also differed from other epidermal acid phosphatases because they were (a) activated by Fe2+ and reducing agents, (b) showed immunological cross-reactivity with purple acid phosphatase of rat spleen and (c) dephosphorylated phosvitin and alpha-casein even though they had rather high Km values.  相似文献   

8.
A purple acid phosphatase was purified to homogeneity from Euphorbia characias latex. The native protein has a molecular mass of 130 ± 10 kDa and is formed by two apparently identical subunits, each containing one Fe(III) and one Zn(II) ion. The two subunits are connected by a disulfide bridge. The enzyme has an absorbance maximum at 540 nm, conferring a characteristic purple color due to a charge-transfer transition caused by a tyrosine residue (Tyr172) coordinated to the ferric ion. The cDNA nucleotide sequence contains an open reading frame of 1392 bp, and the deduced sequence of 463 amino acids shares a very high degree of identity (92–99%) to other purple acid phosphatases isolated from several higher plants. The enzyme hydrolyzes well p-nitrophenyl phosphate, a typical artificial substrate, and a broad range of natural phosphorylated substrates, such as ATP, ADP, glucose-6-phosphate, and phosphoenolpyruvate. The enzyme displays a pH optimum of 5.75 and is inhibited by molybdate, vanadate, and Zn2+, which are typical acid phosphatase inhibitors.  相似文献   

9.
An acid phosphatase species which was activated by Fe2+ was determined to be partially soluble but mainly particulate in rat spleen. The particulate enzyme could be extracted into 1 M KCl. This enzyme bound to Cibacron Blue-immobilized Sepharose (Blue-Sepharose) and was desorbed by 2 M KCl with a good yield, while the other acid phosphatases in rat spleen did not adsorb on Blue-Sepharose. The enzymes eluted on Blue-Sepharose chromatography of both the soluble and particulate fractions were electrophoretically identical. The enzyme hydrolyzed aryl monophosphates, phosphoproteins, and nucleoside di- and triphosphates. The activity for the three kinds of substrate was similarly activated by Fe2+, ascorbic acid and cysteine, and inhibited by molybdate, Cu2+ and F-. Cibacron Blue inhibited the enzyme competitively with respect to a substrate, p-nitrophenyl phosphate, but kinetic analysis suggested that more than one dye molecule binds to the enzyme. The Blue-Sepharose technique could be applied not only to quantitative separation of acid phosphatases similar to the spleen enzyme from bone and epidermis of rat, but also to that of a tartrate-resistant acid phosphatase from human spleen with Gaucher's disease.  相似文献   

10.
Reaction of the reduced (pink) form of the purple acid phosphatase from beef spleen with excess phosphate at pH 5.0, monitored by optical and low temperature EPR spectroscopy and by measurement of enzymatic activity, results in parallel loss of activity and oxidation of the iron chromophore. Colorimetric and radiochemical (32P) experiments indicate the presence of one mole of tightly bound phosphate in the oxidized (purple) form of the enzyme; this phosphate is released upon reduction. Acid hydrolysis of 32P-phosphate-containing enzyme, followed by high voltage paper electrophoresis, gave no evidence for significant amounts of acid-stable phosphoamino acids.  相似文献   

11.
An enzymatic oxidation of kojic acid to comenic aldehyde was found in the decomposition process of kojic acid by Arthrobacter ureafaciens strain (K-l), a kojic acid decomposing bacteria.

This enzyme was (probable a new type of non-heme iron protein) is assumed to catalyze the dehydrogenation of kojic acid, while the ferric ion contained in the enzyme is considered to serve as an acceptor of hydrogen released from kojic acid. The resulted ferrous ions are oxidized either by molecular oxygen under aerobic conditions or by NAD under anaerobic conditions, accompanying hydrogen peroxide in the former and reduced NAD in the latter. The enzyme was partially purified by using ammonium sulfate precipitation, gel filtration on Sephadex G-200 column and column chromatography with DEAE-Sephadex A-50. The activity increased to 85 fold, compared with crude extracts and the recovery of the activity was 33.9%. The optimum pH of the reaction was 7.75. The enzyme was inactivated by PCMB, and unstable upon heat treatment. A loss of about 50% of the activity was caused by heating at 35%C for 5 min, but some reducing agents protected the enzyme from PCMB inhibition and the heat inactivation. Not only kojic acid, but also benzyl kojic acid or 5-methoxy kojic acid may be substrates. Km value for kojic acid was 1.43 × 10?5m. The molecular weight of the enzyme was estimated to be about 55,000 and the enzyme contained about two atoms of iron in one molecule. The reaction mechanism for kojic acid oxidase is discussed.  相似文献   

12.
Tartrate-resistant purple acid phosphatase (TRAP) of osteoclasts and certain cells of the monocyte-macrophage lineage belongs to the family of purple acid phosphatases (PAPs). We provide here evidence for TRAP/PAP expression in the central and peripheral nervous systems in the rat. TRAP/PAP protein was partially purified and characterized from the trigeminal ganglion, brain, and spinal cord. The TRAP activity (U/mg tissue) in these tissues was about 10-20 times lower than in bone. Reducing agents, e.g. ascorbate and ferric iron, increased the TRAP activity from the neural tissues (nTRAP) and addition of oxidizing agents completely inactivated both bone and nTRAP. The IC(50) for three known oxyanion inhibitors of TRAP/PAP was similar for bone and nTRAP with the same rank order of potency (molybdate > tungstate > phosphate). This indicates that the redox-sensitive binuclear iron center characteristic of mammalian PAPs is present also in nTRAP. Western blots of partially purified nTRAP revealed a band with the expected size of 35 kD. The expression of TRAP in the trigeminal ganglion, brain, and spinal cord was confirmed at the mRNA level by RT-PCR. In situ hybridization histochemistry demonstrated TRAP mRNA expression in small ganglion cells of the trigeminal ganglion, in alpha-motor neurons of the ventral spinal cord, and in Purkinje cells of the cerebellum. TRAP-like immunoreactivity was encountered in the cytoplasm of neuronal cell bodies in specific areas of both the central and the peripheral nervous system. Together, the data demonstrate that active TRAP/PAP is expressed in certain parts of the rat nervous system.  相似文献   

13.
Purple acid phosphatase in the walls of tobacco cells   总被引:1,自引:0,他引:1  
Kaida R  Hayashi T  Kaneko TS 《Phytochemistry》2008,69(14):2546-2551
Purple acid phosphatase isolated from the walls of tobacco cells appears to be a 220 kDa homotetramer composed of 60 kDa subunits, which is purple in color and which contains iron as its only metal ion. Although the phosphatase did not require dithiothreitol for activity and was not inhibited by phenylarsine oxide, the enzyme showed a higher catalytic efficiency (kcat/Km) for phosphotyrosine-containing peptides than for other substrates including p-nitrophenyl-phosphate and ATP. The phosphatase formed as a 120 kDa dimer in the cytoplasm and as a 220 kDa tetramer in the walls, where Brefeldin A blocked its secretion during wall regeneration. According to our double-immunofluorescence labeling results, the enzyme might be translocated through the Golgi apparatus to the walls at the interphase and to the cell plate during cytokinesis.  相似文献   

14.
There is continuing controversy as to whether iron can be exchanged from the purple phosphatase, uteroferrin (Uf), to fetal transferrin (Tf) and whether this process might be of physiological relevance during pregnancy in the pig. Here, iron transfer from Uf to apoTf at pH 7.1 was followed by measuring the loss of acid phosphatase activity from native Uf as a function of incubation conditions and time. In the presence of apoTf and 1 mM ascorbate (but not in the presence of either agent alone), 50% of enzyme activity was lost in about 12 h. Loss of activity was accompanied by bleaching of Uf purple color and the appearance of the characteristic visual absorption spectrum of Fe-Tf. Citrate could replace ascorbate in the reaction. Loss of Uf iron did not occur at pH 5.3, at which pH Tf cannot bind Fe. [59Fe]Uf was prepared and shown to be identical in its enzymatic and physical properties with unmodified Uf. Transfer of 59Fe from Uf to apo-Tf was promoted by conditions identical to those which led to loss of purple color and acid phosphatase activity. However, the results suggested that only one of the two iron atoms at the bi-iron center on Uf was readily lost, and that exchange of the second iron occurred more slowly. Loss of iron made Uf more susceptible to denaturation. A third technique, quantitation of the g' = 4.3 signal of iron specifically bound to Tf by EPR, was also tested as a means assaying accumulation of Fe-Tf, but the method was too insensitive to measure the kinetics of iron transfer at physiological protein concentrations. We conclude that iron can be transferred directly from Uf to apoTf in the presence of low molecular weight chelators, and that the process is likely to be of physiological significance.  相似文献   

15.
An acid phosphatase activity that displayed phosphotyrosyl-protein phosphatase has been purified from bovine cortical bone matrix to apparent homogeneity. The overall yield of the enzyme activity was greater than 25%, and overall purification was approximately 2000-fold with a specific activity of 8.15 mumol of p-nitrophenyl phosphate hydrolyzed per min/mg of protein at pH 5.5 and 37 degrees C. The purified enzyme was judged to be purified based on its appearance as a single protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (silver staining technique). The enzyme could be classified as a band 5-type tartrate-resistant acid phosphatase isoenzyme. The apparent molecular weight of this enzyme activity was determined to be 34,600 by gel filtration and 32,500 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of reducing agent, indicating that the active enzyme is a single polypeptide chain. Kinetic evaluations revealed that the acid phosphatase activity appeared to catalyze its reaction by a pseudo Uni Bi hydrolytic two-step transfer reaction mechanism and was competitively inhibited by transition state analogs of Pi. The enzyme activity was also sensitive to reducing agents and several divalent metal ions. Substrate specificity evaluation showed that this purified bovine skeletal acid phosphatase was capable of hydrolyzing nucleotide tri- and diphosphates, phosphotyrosine, and phosphotyrosyl histones, but not nucleotide monophosphates, phosphoserine, phosphothreonine, phosphoseryl histones, or low molecular weight phosphoryl esters. Further examination of the phosphotyrosyl-protein phosphatase activity indicated that the optimal pH at a fixed substrate concentration (50 nM phosphohistones) for this activity was 7.0. Kinetic analysis of the phosphotyrosyl-protein phosphatase activity indicated that the purified enzyme had an apparent Vmax of approximately 60 nmol of [32P]phosphate hydrolyzed from [32P]phosphotyrosyl histones per min/mg of protein at pH 7.0 and an apparent Km for phosphotyrosyl proteins of approximately 450 nM phosphate group. In summary, the results of these studies represent the first purification of a skeletal acid phosphatase to apparent homogeneity. Our observation that this purified bovine bone matrix acid phosphatase was able to dephosphorylate phosphotyrosyl proteins at neutral pH is consistent with our suggestion that this enzyme may function as a phosphotyrosyl-protein phosphatase in vivo.  相似文献   

16.
Mannosylphosphodolichol phosphodiesterase, which catalyzes the release of mannose from mannosylphosphodolichol, was solubilized from chicken liver microsomes by treatment with the non-ionic detergent, Emulgen 909. The enzyme was partially purified using ammonium sulfate precipitation, DEAE-cellulose chromatography, and gel filtration on Sepharose 6B. The enzyme showed absolute requirement for sulfhydryl reducing agents. The enzyme activity was stimulated by the addition of CaCl2 and Emulgen 909 and exhibited a pH optimum around 5.3. The Km value for mannosylphosphodolichol was found to be 0.43 microM. The activity was competitively inhibited by dolichyl phosphate and dolichol and the Ki value for dolichyl phosphate was estimated to be 12.5 microM. The purified preparation had no activity toward N-acetylglucosaminyldiphosphodolichol, glucosylphosphodolichol, mannose 1-phosphate, or artificial substrates for mannosidases, glucosidases, acid phosphatase, and acid phosphodiesterase. A heat-stable factor which stabilizes the mannosylphosphodolichol phosphodiesterase was separated from the enzyme by DEAE-cellulose chromatography. It was precipitated by trichloroacetic acid and not extracted into lipid solvents. The separation resulted in the complete loss of the enzyme activity and the restoration of the activity was not observed when the factor was added back to the enzyme solution.  相似文献   

17.
Summary A tartrate-resistant acid phosphatase activity was detected in the human placenta. This enzyme displayed immunological properties similar to those of the group of purple acid phosphatases that can be demonstrated with a rabbit polyclonal antibody against bovine spleen purple acid phosphatase. The placental enzyme was mainly localized immunohistochemically to neutrophil granulocytes of the maternal blood between the placental villi and within foetal capillaries using the bovine spleen antibody and the commercial monoclonal antibody M1 directed against an antigen found on mature granulocytes. A minor activity was detected in decidual cells and the syncytiotrophoblast. The presence of purple acid phosphatase in placental granulocytes may be related to special immunological conditions of pregnancy.  相似文献   

18.
The localization of the purple tartrate-resistant, iron-containing acid phosphatase in the bovine spleen was studied by enzyme histochemistry at the light and electron microscopic levels as well as by immunohistochemistry. The purple phosphatase was localized only in lysosome-like-organelles of cells belonging to the reticulo-phagocytic system. The same cells were identified as containing large iron(III)-deposits as ferritin in homogeneously granular accumulations and freely in the cytoplasm, or as hemosiderin in siderosomes. The phagocytosing cells containing purple phosphatase and ferritin often had close contact with clusters of aged and deformed erythrocytes. A possible catabolic role of the purple enzyme as a phosphatase degrading phosphoproteins of the erythrocyte membrane and the cytoskeleton was assumed.  相似文献   

19.
Summary The localization of the purple tartrate-resistant, iron-containing acid phosphatase in the bovine spleen was studied by enzyme histochemistry at the light and electron microscopic levels as well as by immunohistochemistry. The purple phosphatase was localized only in lysosome-like organelles of cells belonging to the reticulo-phagocytic system. The same cells were identified as containing large iron(III)-deposits as ferritin in homogeneously granular accumulations and freely in the cytoplasm, or as hemosiderin in siderosomes. The phagocytosing cells containing purple phosphatase and ferritin often had close contact with clusters of aged and deformed erythrocytes.A possible catabolic role of the purple enzyme as a phosphatase degrading phosphoproteins of the erythrocyte membrane and the cytoskeleton was assumed.  相似文献   

20.
A particulate form of protein-phosphotyrosine phosphatase was solubilized and purified over 2,000-fold from the particulate fraction of rat spleen. Phosphorylated poly(Glu, Tyr), a random copolymer of glutamic acid and tyrosine, was used as substrate for measuring protein-phosphotyrosine phosphatase activity. Nonionic detergents like Triton X-100 increased the protein-phosphotyrosine phosphatase activity of the particulate fraction (but not of the soluble fraction) by 4-8-fold. Chromatography of the Triton extract of the particulate fraction on DEAE-Sephacel gave three peaks of protein-phosphotyrosine phosphatase activity. The major peak of activity was further purified on Bio-Gel HTP, Sephadex G-75, and phosphocellulose columns. On polyacrylamide gel electrophoresis in the presence of Na-dodecyl-SO4 the purified enzyme showed a major protein band of Mr 36,000 which comigrated with enzyme activity on the phosphocellulose column. The apparent Vmax and Km for phosphorylated poly(Glu,Tyr) were 6,150 nmol min-1 mg-1 and 1.6 microM, respectively. This enzyme was strongly inhibited by microM concentrations of orthovanadate and zinc acetate. Fluoride (50 mM) inhibited this enzyme only by 30-40%. Divalent metal ions Ca2+, Mg2+, and Mn2+ were inhibitory at 1-10 mM concentration. EDTA had no effect on the activity of the purified enzyme. This phosphatase could dephosphorylate and inactivate the phosphorylated form of a tyrosine-specific protein kinase (TK-I) previously purified from rat spleen. Dephosphorylation and inactivation of TK-I by purified phosphatase were inhibited by orthovanadate. After dephosphorylation and inactivation by phosphatase, TK-I could be rephosphorylated and reactivated on incubation with ATP. These results suggest that this protein-phosphotyrosine phosphatase may be involved in the regulation of the kinase activity of TK-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号