首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Leyser O 《Cell》2005,121(6):819-822
The plant hormone auxin is central in patterning diverse plant tissues. The direction of auxin flow and the distribution of auxin within tissues are regulated by auxin efflux transporters that are polarly localized in cells. Feedback regulation between auxin and its transporters establishes homeostatic patterns of auxin accumulation but allows dynamic repatterning in response to developmental or environmental cues.  相似文献   

2.
Regulated transport of the plant hormone auxin is central to many aspects of plant development. Directional transport, mediated by membrane transporters, produces patterns of auxin distribution in tissues that trigger developmental processes, such as vascular patterning or leaf formation. Experimentation has produced many, largely qualitative, data providing strong evidence for multiple feedback systems between auxin and its transport. However, the exact mechanisms concerned remain elusive and the experiments required to evaluate alternative hypotheses are challenging. Because of this, computational modelling now plays an important role in auxin transport research. Here we review some current approaches and underlying assumptions of computational auxin transport models. We focus on self‐organising models for polar auxin transport and on recent attempts to unify conflicting mechanistic explanations. In addition, we discuss in general how these computer simulations are proving to be increasingly effective in hypothesis generation and testing, and how simulation can be used to direct future experiments. Editor's suggested further reading in BioEssays Local auxin production: a small contribution to a big field Abstract  相似文献   

3.
The phytohormone auxin is vital to plant growth and development. A unique property of auxin among all other plant hormones is its cell-to-cell polar transport that requires activity of polarly localized PIN-FORMED (PIN) auxin efflux transporters. Despite the substantial molecular insight into the cellular PIN polarization, the mechanistic understanding for developmentally and environmentally regulated PIN polarization is scarce. The long-standing belief that auxin modulates its own transport by means of a positive feedback mechanism has inspired both experimentalists and theoreticians for more than two decades. Recently, theoretical models for auxin-dependent patterning in plants include the feedback between auxin transport and the PIN protein localization. These computer models aid to assess the complexity of plant development by testing and predicting plausible scenarios for various developmental processes that occur in planta. Although the majority of these models rely on purely heuristic principles, the most recent mechanistic models tentatively integrate biologically testable components into known cellular processes that underlie the PIN polarity regulation. The existing and emerging computational approaches to describe PIN polarization are presented and discussed in the light of recent experimental data on the PIN polar targeting.  相似文献   

4.
The plant hormone auxin plays a critical role in plant development. Central to its function is its distribution in plant tissues, which is, in turn, largely shaped by intercellular polar transport processes. Auxin transport relies on diffusive uptake as well as carrier-mediated transport via influx and efflux carriers. Mathematical models have been used to both refine our theoretical understanding of these processes and to test new hypotheses regarding the localization of efflux carriers to understand auxin patterning at the tissue level. Here we review models for auxin transport and how they have been applied to patterning processes, including the elaboration of plant vasculature and primordium positioning. Second, we investigate the possible role of auxin influx carriers such as AUX1 in patterning auxin in the shoot meristem. We find that AUX1 and its relatives are likely to play a crucial role in maintaining high auxin levels in the meristem epidermis. We also show that auxin influx carriers may play an important role in stabilizing auxin distribution patterns generated by auxin-gradient type models for phyllotaxis.  相似文献   

5.
Lateral organ position along roots and shoots largely determines plant architecture, and depends on auxin distribution patterns. Determination of the underlying patterning mechanisms has hitherto been complicated because they operate during growth and division. Here, we show by experiments and computational modeling that curvature of the Arabidopsis root influences cell sizes, which, together with tissue properties that determine auxin transport, induces higher auxin levels in the pericycle cells on the outside of the curve. The abundance and position of the auxin transporters restricts this response to the zone competent for lateral root formation. The auxin import facilitator, AUX1, is up-regulated by auxin, resulting in additional local auxin import, thus creating a new auxin maximum that triggers organ formation. Longitudinal spacing of lateral roots is modulated by PIN proteins that promote auxin efflux, and pin2,3,7 triple mutants show impaired lateral inhibition. Thus, lateral root patterning combines a trigger, such as cell size difference due to bending, with a self-organizing system that mediates alterations in auxin transport.  相似文献   

6.
7.
Auxin-signaling: short and long   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
10.
The plant hormone auxin controls many aspects of plant development. Membrane trafficking processes, such as secretion, endocytosis and recycling, regulate the polar localization of auxin transporters in order to establish an auxin concentration gradient. Here, we investigate the function of the Arabidopsis thaliana R-SNAREs VESICLE-ASSOCIATED MEMBRANE PROTEIN 721 (VAMP721) and VAMP722 in the post-Golgi trafficking required for proper auxin distribution and seedling growth. We show that multiple growth phenotypes, such as cotyledon development, vein patterning and lateral root growth, were defective in the double homozygous vamp721 vamp722 mutant. Abnormal auxin distribution and root patterning were also observed in the mutant seedlings. Fluorescence imaging revealed that three auxin transporters, PIN-FORMED 1 (PIN1), PIN2 and AUXIN RESISTANT 1 (AUX1), aberrantly accumulate within the cytoplasm of the double mutant, impairing the polar localization at the plasma membrane (PM). Analysis of intracellular trafficking demonstrated the involvement of VAMP721 and VAMP722 in the endocytosis of FM4-64 and the secretion and recycling of the PIN2 transporter protein to the PM, but not its trafficking to the vacuole. Furthermore, vamp721 vamp722 mutant roots display enlarged trans-Golgi network (TGN) structures, as indicated by the subcellular localization of a variety of marker proteins and the ultrastructure observed using transmission electron microscopy. Thus, our results suggest that the R-SNAREs VAMP721 and VAMP722 mediate the post-Golgi trafficking of auxin transporters to the PM from the TGN subdomains, substantially contributing to plant growth.  相似文献   

11.
Plants continuously generate new organs through the activity of populations of stem cells called meristems. The shoot apical meristem initiates leaves, flowers, and lateral meristems in highly ordered, spiralled, or whorled patterns via a process called phyllotaxis. It is commonly accepted that the active transport of the plant hormone auxin plays a major role in this process. Current hypotheses propose that cellular hormone transporters of the PIN family would create local auxin maxima at precise positions, which in turn would lead to organ initiation. To explain how auxin transporters could create hormone fluxes to distinct regions within the plant, different concepts have been proposed. A major hypothesis, canalization, proposes that the auxin transporters act by amplifying and stabilizing existing fluxes, which could be initiated, for example, by local diffusion. This convincingly explains the organised auxin fluxes during vein formation, but for the shoot apical meristem a second hypothesis was proposed, where the hormone would be systematically transported towards the areas with the highest concentrations. This implies the coexistence of two radically different mechanisms for PIN allocation in the membrane, one based on flux sensing and the other on local concentration sensing. Because these patterning processes require the interaction of hundreds of cells, it is impossible to estimate on a purely intuitive basis if a particular scenario is plausible or not. Therefore, computational modelling provides a powerful means to test this type of complex hypothesis. Here, using a dedicated computer simulation tool, we show that a flux-based polarization hypothesis is able to explain auxin transport at the shoot meristem as well, thus providing a unifying concept for the control of auxin distribution in the plant. Further experiments are now required to distinguish between flux-based polarization and other hypotheses.  相似文献   

12.
13.
Auxin is required for leaf vein pattern in Arabidopsis   总被引:11,自引:0,他引:11       下载免费PDF全文
Sieburth LE 《Plant physiology》1999,121(4):1179-1190
To investigate possible roles of polar auxin transport in vein patterning, cotyledon and leaf vein patterns were compared for plants grown in medium containing polar auxin transport inhibitors (N-1-naphthylphthalamic acid, 9-hydroxyfluorene-9-carboxylic acid, and 2,3,5-triiodobenzoic acid) and in medium containing a less well-characterized inhibitor of auxin-mediated processes, 2-(p-chlorophynoxy)-2-methylpropionic acid. Cotyledon vein pattern was not affected by any inhibitor treatments, although vein morphology was altered. In contrast, leaf vein pattern was affected by inhibitor treatments. Growth in polar auxin transport inhibitors resulted in leaves that lacked vascular continuity through the petiole and had broad, loosely organized midveins, an increased number of secondary veins, and a dense band of misshapen tracheary elements adjacent to the leaf margin. Analysis of leaf vein pattern developmental time courses suggested that the primary vein did not develop in polar auxin transport inhibitor-grown plants, and that the broad midvein observed in these seedlings resulted from the coalescence of proximal regions of secondary veins. Possible models for leaf vein patterning that could account for these observations are discussed.  相似文献   

14.
Endocytosis is a crucial mechanism by which eukaryotic cells internalize extracellular and plasma membrane material, and it is required for a multitude of cellular and developmental processes in unicellular and multicellular organisms. In animals and yeast, the best characterized pathway for endocytosis depends on the function of the vesicle coat protein clathrin. Clathrin-mediated endocytosis has recently been demonstrated also in plant cells, but its physiological and developmental roles remain unclear. Here, we assessed the roles of the clathrin-mediated mechanism of endocytosis in plants by genetic means. We interfered with clathrin heavy chain (CHC) function through mutants and dominant-negative approaches in Arabidopsis thaliana and established tools to manipulate clathrin function in a cell type-specific manner. The chc2 single mutants and dominant-negative CHC1 (HUB) transgenic lines were defective in bulk endocytosis as well as in internalization of prominent plasma membrane proteins. Interference with clathrin-mediated endocytosis led to defects in constitutive endocytic recycling of PIN auxin transporters and their polar distribution in embryos and roots. Consistent with this, these lines had altered auxin distribution patterns and associated auxin transport-related phenotypes, such as aberrant embryo patterning, imperfect cotyledon specification, agravitropic growth, and impaired lateral root organogenesis. Together, these data demonstrate a fundamental role for clathrin function in cell polarity, growth, patterning, and organogenesis in plants.  相似文献   

15.
The polar orientation of cells within a tissue is an intensively studied research area in animal cells. The term planar polarity refers to the common polar arrangement of cells within the plane of an epithelium. In plants, the subcellular analysis of tissue polarity has been limited by the lack of appropriate markers. Recently, research on plant tissue polarity has come of age. Advances are based on studies of Arabidopsis patterning, cell polarity and auxin transport mutants employing the coordinated, polar localization of auxin transporters and the planar polarity of root epidermal hairs as markers. These approaches have revealed auxin transport and response, vesicular trafficking, membrane sterol and cytoskeletal requirements of tissue polarity. This review summarizes recent progress in research on vascular tissue and planar epidermal polarity in the Arabidopsis root and compares it to findings on planar polarity in animals and cell polarity in yeast.  相似文献   

16.
17.
Phytohormone auxin plays an indispensable role in the plethora of plant developmental process starting from the cell division, and cell elongation to morphogenesis. Auxins are transported to different parts of the plant by different sophisticated transporter molecules known as ‘auxin transporters’.There are four auxin transporter families that have been reported so far in the plant kingdom which includes AUX/LAX (AUXIN-RESISTANT1–LIKES), PIN (PIN-FORMED, auxin efflux carriers), ABCB ((ATP-binding cassette-B (ABCB)/P-glycoprotein (PGP)) and PILS (PIN-Likes). Auxin influx and efflux carriers are distributed in a polar fashion in the plasma membrane whereas ABCB and PILS are present in a non-polar fashion. Other than AUX/LAX, other auxin transporters harbor N-and C-terminal conserved domains along with a variable hydrophilic loop in the transmembrane domain. The AUX/LAX, ABCB and PIN transporters mediate long distance auxin transport whereas PILS and PIN5 protein involved in intracellular auxin homeostasis.  相似文献   

18.
19.
Flowering plants have evolved sophisticated and complicated reproductive structures to ensure optimal conditions for the next generation. Successful reproduction relies on careful timing and coordination of tissue development, which requires constant communication between these tissues. Work on flower and fruit development over the last decade places the phytohormone auxin in a key role as a master of patterning and tissue specification of reproductive organs. Although many questions still remain, it is now clear that auxin mediates its function in flowers and fruits through an integrated process of biosynthesis, transport, and signaling, as well as interaction with other hormonal pathways. In addition, the knowledge obtained so far about auxin function already allows researchers to develop tools for crop improvement and precision agriculture.Flower and fruit development requires a precise patterning of organs and tissues, which also have to be coordinated for the successful fulfillment of the tasks inherited. The plant hormone auxin has received a lot of attention for its prominent role in organ positioning as well as in organ polarity formation and differentiation, and flowers and fruits make no exception to the dependency on auxin in these aspects. In addition, auxin appears to participate in the coordination of processes within, as well as between, floral organs, aiding for example in successful fertilization. In this article, we focus on the role of auxin in the establishment of the flower, and specifically in the development and dehiscence of the reproductive floral organs.  相似文献   

20.
Polar auxin movement is a primary regulator of programmed and plastic plant development. Auxin transport is highly regulated at the cellular level and is mediated by coordinated transport activity of plasma membrane-localized PIN, ABCB, and AUX1/LAX transporters. The activity of these transporters has been extensively analyzed using a combination of pharmacological inhibitors, synthetic auxins, and knock-out mutants in Arabidopsis. However, efforts to analyze auxin-dependent growth in other species that are less tractable to genetic manipulation require more selective inhibitors than are currently available. In this report, we characterize the inhibitory activity of 5-alkoxy derivatives of indole 3-acetic acid and 7-alkoxy derivatives of naphthalene 1-acetic acid, finding that the hexyloxy and benzyloxy derivatives act as potent inhibitors of auxin action in plants. These alkoxy-auxin analogs inhibit polar auxin transport and tropic responses associated with asymmetric auxin distribution in Arabidopsis and maize. The alkoxy-auxin analogs inhibit auxin transport mediated by AUX1, PIN, and ABCB proteins expressed in yeast. However, these analogs did not inhibit or activate SCF(TIR1) auxin signaling and had no effect on the subcellular trafficking of PIN proteins. Together these results indicate that alkoxy-auxins are inactive auxin analogs for auxin signaling, but are recognized by PIN, ABCB, and AUX1 auxin transport proteins. Alkoxy-auxins are powerful new tools for analyses of auxin-dependent development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号