首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bihl F  Brahic M  Bureau JF 《Genetics》1999,152(1):385-392
Theiler's virus persistently infects the white matter of the spinal cord in susceptible strains of mice. This infection is associated with inflammation and primary demyelination and is studied as a model of multiple sclerosis. The H-2D gene is the major gene controlling viral persistence. However, the SJL/J strain is more susceptible than predicted by its H-2(s) haplotype. An (SJL/J x B10. S)F1 x B10.S backcross was analyzed, and one quantitative trait locus (QTL) was located in the telomeric region of chromosome 10 close to the Ifng locus. Another one was tentatively mapped to the telomeric region of chromosome 18, close to the Mbp locus. We now report the study of 14 congenic lines that carry different segments of these two chromosomes. Although the presence of a QTL on chromosome 18 was not confirmed, two loci controlling viral persistence were identified on chromosome 10 and named Tmevp2 and Tmevp3. Furthermore, the Ifng gene was excluded from the regions containing Tmevp2 and Tmevp3. Analysis of the mode of inheritance of Tmevp2 and Tmevp3 identified an effect of sex, with males being more infected than females.  相似文献   

2.
The Tmevp3 locus controls the load of Theiler's virus RNA during persistent infection of the mouse central nervous system (CNS). We identified a candidate gene at this locus, Tmevpg1, by using a positional cloning approach. Tmevpg1 and its human ortholog, TMEVPG1, are expressed in the immune system and encode what appears to be a noncoding RNA. They are located in a cluster of cytokine genes that includes the genes for gamma interferon and one or two homolog of interleukin-10. We now report that Tmevpg1 is expressed in CNS-infiltrating immune cells of resistant B10.S mice, but not in those of susceptible SJL/J mice, following inoculation with Theiler's virus. The pattern of expression of Tmevpg1 is the same in B10.S mice and in SJL/J mice congenic for the resistant B10.S haplotype of Tmevp3. Nineteen polymorphisms were identified when the Tmevpg1 genes of B10.S and SJL/J mice were compared. Interestingly, Tmevpg1 is down regulated after in vitro stimulation of murine CD4(+) or CD8(+) splenocytes, whereas Ifng is up regulated. Similar patterns of expression of TMEVPG1 and IFNG were observed in human NK cells and CD4(+) and CD8(+) T lymphocytes. Therefore, Tmevpg1 is a strong candidate gene for the Tmevp3 locus and may be involved in the control of Ifng gene expression.  相似文献   

3.
Theiler's murine encephalomyelitis virus is responsible for a chronic inflammatory demyelinating disease of the central nervous system of the mouse. The disease is associated with persistent viral infection of the spinal cord. Some strains of mice are susceptible to viral infection, and other strains are resistant. The effect of the genetic background of the host on viral persistence has not been thoroughly investigated. We studied the amount of viral RNA in the spinal cords of 17 inbred strains of mice and their F1 crosses with the SJL/J strain and observed a large degree of variability among strains. The pattern of viral persistence among mouse strains could be explained by the interaction of two loci. One locus is localized in the H-2D region of the major histocompatibility complex, whereas the other locus is outside this complex and is not linked to the Tcrb locus on chromosome 6.  相似文献   

4.
Mouse hepatitis virus strain A59 produces chronic central nervous system demyelination in rodents. As late as 6 months after intracerebral inoculation of mice 4 to 6 weeks old, when infectious virus cannot be recovered and viral antigens cannot be detected in the central nervous systems and livers of these animals, primary demyelination is still evident. Using cloned virus-specific DNAs and the highly sensitive and specific technique of in situ hybridization, we have detected low levels of mouse hepatitis virus A59 RNA in the central nervous systems and livers of mice 10 months after inoculation. We suggest that viral persistence may play a role in mouse hepatitis virus A59-induced chronic demyelination.  相似文献   

5.
Theiler's virus causes a persistent infection with demyelination that is studied as a model for multiple sclerosis. Inbred strains of mice differ in their susceptibility to viral persistence due to both H-2 and non-H-2 genes. A locus with a major effect on persistence has been mapped on chromosome 10, close to the Ifng locus, using a cross between susceptible SJL/J and resistant B10.S mice. We now confirm the existence of this locus using two lines of congenic mice bearing the B10.S Ifng locus on an SJL/J background, and we describe a deletion in the promoter of the Ifng gene of the SJL/J mouse. We studied the expression of IFN-gamma, IL-2, IL-10, and IL-12 in the brains of SJL/J mice, B10.S mice, and the two lines of congenic mice during the first 2 wk following inoculation. We found a greater expression of IFN-gamma and IL-2 mRNA in the brains of B10.S mice compared with those of SJL/J mice. Also, the ratio of IL-12 to IL-10 mRNA levels was higher in B10.S mice. However, the cytokine profiles were the same for the two lines of resistant congenic mice and for susceptible SJL/J mice. Therefore, the difference of Th1/Th2 balance between the B10.S and SJL/J mice is not due to the Ifng locus and does not account for the difference of susceptibility of these mice to persistent infection.  相似文献   

6.
Antibody prevents virus reactivation within the central nervous system.   总被引:7,自引:0,他引:7  
The neurotropic JHM strain of mouse hepatitis virus (JHMV) produces an acute CNS infection characterized by encephalomyelitis and demyelination. The immune response cannot completely eliminate virus, resulting in persistence associated with chronic ongoing CNS demyelination. The contribution of humoral immunity to viral clearance and persistent infection was investigated in mice homozygous for disruption of the Ig mu gene (IgM-/-). Acute disease developed with equal kinetics and severity in IgM-/- and syngeneic C57BL/6 (wt) mice. However, clinical disease progressed in IgM-/- mice, while wt mice recovered. Viral clearance during acute infection was similar in both groups, supporting a primary role of cell-mediated immunity in viral clearance. In contrast to wt mice, in which infectious virus was reduced to below detection following acute infection, increasing infectious virus was recovered from the CNS of the IgM-/- mice following initial clearance. No evidence was obtained for selection of variant viruses nor was there an apparent loss of cell-mediated immunity in the absence of Ab. Passive transfer of anti-JHMV Ab following initial clearance prevented reactivation of infectious virus within the CNS of IgM-/- mice. These data demonstrate the clearance of infectious virus during acute disease by cell-mediated immunity. However, immunologic control is not maintained in the absence of anti-viral Ab, resulting in recrudescence of infectious virus. These data suggest that humoral immunity plays no role in controlling virus during acute infection, but plays an important role in establishing and maintaining CNS viral persistence.  相似文献   

7.
Intracerebral inoculation of resistant mice (C57BL/10SNJ) with Theiler's murine encephalomyelitis virus (TMEV) results in acute encephalitis followed by subsequent clearance of virus from the central nervous system (CNS). In contrast, infection of susceptible mice (SJL/J) results in virus persistence and chronic immune-mediated demyelination. Both resistance and susceptibility to TMEV-induced disease appear to be immune mediated, since immunosuppression results in enhanced encephalitis in resistant mice but diminished demyelination in susceptible mice. The purpose of these experiments was to determine whether anti-TMEV cytotoxic T lymphocytes (CTLs) are generated during acute and chronic TMEV infection. Nonspecific lectin-dependent cellular cytotoxicity was used initially to detect the cytolytic potential of lymphocytes infiltrating the CNS irrespective of antigen specificity. Using TMEV-infected targets, H-2-restricted TMEV-specific CTLs of the CD8+ phenotype were demonstrated in lymphocytes from the CNS of susceptible and resistant mice, arguing against the hypothesis that the ability to generate CD8+ CTLs mediates resistance. In chronically infected SJL/J mice, TMEV-specific CTL activity was detected in the CNS as late as 226 days postinfection. These experiments demonstrate that virus-specific CTLs are present in the CNS during both acute and chronic TMEV infection. Anti-TMEV CTLs in the CNS of chronically infected SJL/J mice may play a role in demyelination through their ability to lyse TMEV-infected glial cells.  相似文献   

8.
Acute and chronic demyelination are hallmarks of CNS infection by the neurotropic JHM strain of mouse hepatitis virus. Although infectious virus is cleared by CD8+ T cells, both viral RNA and activated CD8+ T cells remain in the CNS during persistence potentially contributing to pathology. To dissociate immune from virus-mediated determinants initiating and maintaining demyelinating disease, mice were infected with two attenuated viral variants differing in a hypervariable region of the spike protein. Despite similar viral replication and tropism, one infection was marked by extensive demyelination and paralysis, whereas the other resulted in no clinical symptoms and minimal neuropathology. Mononuclear cells from either infected brain exhibited virus specific ex vivo cytolytic activity, which was rapidly lost during viral clearance. As revealed by class I tetramer technology the paralytic variant was superior in inducing specific CD8+ T cells during the acute disease. However, after infectious virus was cleared, twice as many virus-specific IFN-gamma-secreting CD8+ T cells were recovered from the brains of asymptomatic mice compared with mice undergoing demyelination, suggesting that IFN-gamma ameliorates rather than perpetuates JHM strain of mouse hepatitis virus-induced demyelination. The present data thus indicate that in immunocompetent mice, effector CD8+ T cells control infection without mediating either clinical disease or demyelination. In contrast, demyelination correlated with early and sustained infection of the spinal cord. Rapid viral spread, attributed to determinants within the spike protein and possibly perpetuated by suboptimal CD8+ T cell effector function, thus ultimately leads to the process of immune-mediated demyelination.  相似文献   

9.
The low-neurovirulence Theiler's murine encephalomyelitis viruses (TMEV), such as BeAn virus, cause a persistent infection of the central nervous system (CNS) in susceptible mouse strains that results in inflammatory demyelination. The ability of TMEV to persist in the mouse CNS has traditionally been demonstrated by recovering infectious virus from the spinal cord. Results of infectivity assays led to the notion that TMEV persists at low levels. In the present study, we analyzed the copy number of TMEV genomes, plus- to minus-strand ratios, and full-length species in the spinal cords of infected mice and infected tissue culture cells by using Northern hybridization. Considering the low levels of infectious virus in the spinal cord, a surprisingly large number of viral genomes (mean of 3.0 x 10(9)) was detected in persistently infected mice. In the transition from the acute (approximately postinfection [p.i.] day 7) to the persistent (beginning on p.i. day 28) phase of infection, viral RNA copy numbers steadily increased, indicating that TMEV persistence involves active viral RNA replication. Further, BeAn viral genomes were full-length in size; i.e., no subgenomic species were detected and the ratio of BeAn virus plus- to minus-strand RNA indicated that viral RNA replication is unperturbed in the mouse spinal cord. Analysis of cultured macrophages and oligodendrocytes suggests that either of these cell types can potentially synthesize high numbers of viral RNA copies if infected in the spinal cord and therefore account for the heavy viral load. A scheme is presented for the direct isolation of both cell types directly from infected spinal cords for further viral analyses.  相似文献   

10.
A Azoulay  M Brahic    J F Bureau 《Journal of virology》1994,68(6):4049-4052
The DA strain of Theiler's virus causes a persistent infection of the white matter of the spinal cord with chronic inflammation and primary demyelination. Inbred strains of mice differ greatly in their susceptibility to this disease. It has been shown that both viral persistence and demyelination are controlled mainly by a gene located in the H-2D region. This raised the possibility that the H-2D gene itself controls viral persistence, which in turn determines demyelination. In the present work we introduced the H-2Db gene of resistant C57BL/6 mice into the genome of susceptible H-2q FVB mice and showed that the FVB mice become resistant to persistence of the infection and did not develop inflammatory lesions.  相似文献   

11.
GDVII subgroup strains of Theiler's murine encephalomyelitis virus (TMEV) are highly virulent and produce acute polioencephalomyelitis in mice. Neither viral persistence nor demyelination is demonstrated in the few surviving mice. In contrast, DA subgroup strains are less virulent and establish a persistent central nervous system infection which results in demyelinating disease. We previously reported a subgroup-specific infection in a macrophage-like cell line, J774-1 cells; i.e., GDVII strain does not replicate in J774-1 cells, whereas the DA strain actively replicates in these cells. In addition, this subgroup-specific virus growth is shown to be related to the presence of L* protein, a 17 kDa protein translated out-of-frame of the viral polyprotein from an AUG located 13 nucleotides downstream from the polyprotein's AUG. The present paper demonstrated that this subgroup-specific infection is observed in murine monocyte/macrophage lineage cell lines, but not in other murine cell lines including neural cells. An RNase protection assay also suggested that L* protein-related virus growth is regulated at the step of viral RNA replication. As macrophages are reported to be the major cell harboring virus during the chronic demyelinating stage, the activity of L* protein with respect to virus growth in macrophages may be a key factor in clarifying the mechanism(s) of TMEV persistence, which is probably a trigger to spinal cord demyelination.  相似文献   

12.
Theiler’s murine encephalomyelitis virus (TMEV) induces immune-mediated demyelination after intracerebral inoculation of the virus into susceptible mouse strains. We isolated from a TMEV BeAn 8386 viral stock, a low-pathogenic variant which requires greater than a 10,000-fold increase in viral inoculation for the manifestation of detectable clinical signs. Intracerebral inoculation of this variant virus induced a strong, long-lasting, protective immunity from the demyelinating disease caused by pathogenic TMEV. The levels of antibodies to the whole virus as well as to the major linear epitopes were similar in mice infected with either the variant or wild-type virus. However, persistence of the variant virus in the central nervous system (CNS) of mice was significantly lower than that of the pathogenic virus. In addition, the T-cell response to the predominant VP1 (VP1233–250) epitope in mice infected with the variant virus was significantly weaker than that in mice infected with the parent virus, while similar T-cell responses were induced against another predominant epitope (VP274–86). Further analyses indicated that a change of lysine to arginine at position 244 of VP1, which is the only amino acid difference in the P1 region, is responsible for such differential T-cell recognition. Thus, the difference in the T-cell reactivity to this VP1 region as well as the low level of viral persistence in the CNS may account for the low pathogenicity of this spontaneous variant virus.  相似文献   

13.
14.
Theiler's virus persists in the white matter of the spinal cord of genetically susceptible mice and causes primary demyelination. The virus persists in macrophages/microglial cells, but also in oligodendrocytes, the myelin-forming cells. Susceptibility/resistance to this chronic infection has been mapped to several loci including one tentatively located in the telomeric region of chromosome 18, close to the myelin basic protein locus (Mbp locus). To determine if the MBP gene influences viral persistence, we inoculated C3H mice bearing the shiverer mutation, a 20-kb deletion in the gene. Whereas control C3H mice were of intermediate susceptibility, C3H mice heterozygous for the mutation were very susceptible, and those homozygous for the mutation were completely resistant. This resistance was not immune mediated. Furthermore, C3H/101H mice homozygous for a point mutation in the gene coding for the proteolipid protein of myelin, the rumpshaker mutation, were resistant. These results strongly support the view that oligodendrocytes are a necessary viral target for the establishment of a persistent infection by Theiler's virus.  相似文献   

15.
The DA strain of Theiler's virus, a murine picornavirus, causes a persistent infection of glial cells of the white matter of the spinal cord, associated with chronic inflammation and primary demyelination. The GDVII strain causes an acute fatal grey matter encephalomyelitis. We characterized the target cells of GDVII and DA viruses 4 days following intracerebral inoculation, and we compared the levels of viral RNA within these cells. GDVII virus infected approximately 10 times more cells than DA virus. Whereas GDVII virus infected neurons exclusively, DA virus infected also astrocytes and possible macrophage-microglial cells. The levels of viral RNA in neurons infected with GDVII and DA viruses were of the same order. These results show that DA virus infects glial cells already at the beginning of the disease and that the more efficient spread of GDVII virus is probably not due to a higher level of RNA replication per cell.  相似文献   

16.
Intracerebral inoculation of Theiler's murine encephalomyelitis virus into susceptible strains of mice produces chronic demyelinating disease in the central nervous system characterized by persistent viral infection. Immunogenetic data suggest that genes from both major histocompatibility complex (MHC) and non-MHC loci are important in determining susceptibility or resistance to demyelination. The role of the MHC in determining resistance or susceptibility to disease can be interpreted either as the presence of antigen-presenting molecules that confer resistance to viral infection or as the ability of MHC products to contribute to pathogenesis by acting as viral receptors or by mediating immune attack against virally infected cells. These alternatives can be distinguished by determining whether the contribution of the MHC to resistance is inherited as a recessive or dominant trait. Congenic mice with different MHC haplotypes on identical B10 backgrounds were crossed and quantitatively analyzed for demyelination, infectious virus, and local virus antigen production. F1 hybrid progeny derived from resistant B10 (H-2b), B10.D2 (H-2d), or B10.K (H-2k) and susceptible B10.R111 (H-2r), B10.M (H-2f), or B10.BR (H-2k) parental mice exhibited no or minimal demyelination, indicating that on a B10 background, resistance is inherited as a dominant trait. Although infectious virus, as measured by viral plaque assay, was cleared inefficiently from the central nervous systems of resistant F1 hybrid progeny mice, we found a direct correlation between local viral antigen production and demyelination. These data are consistent with our hypothesis that the immunological basis for resistance is determined by efficient presentation of the viral antigen to the immune system, resulting in local virus clearance and absence of subsequent demyelination.  相似文献   

17.
The strains of Theiler’s murine encephalomyelitis virus, a picornavirus, are divided into two groups according to their neurovirulence after intracerebral inoculation. The highly virulent GDVII strain causes an acute, fatal encephalomyelitis, whereas the DA strain causes a mild encephalomyelitis followed by a chronic inflammatory demyelinating disease associated with viral persistence. Studies with recombinant viruses showed that the capsid plays the major role in determining these phenotypes. However, the molecular basis for the effect of the capsid on neurovirulence is still unknown. In this paper, we describe a large difference in the patterns of infection of primary neuron cultures by the GDVII and DA strains. Close to 90% of the neurons were infected 12 h after inoculation with the GDVII strain, and the cytopathic effect was complete 24 h postinoculation. In contrast, with the DA strain, viral antigens were not detected in neurons until 24 h postinoculation. Infected neurons accounted for only 2% of the total number of neurons, even 6 days after inoculation. No cytopathic effect was visible, and the cultures could be kept for the same length of time as the noninfected controls. Because the neurovirulence of the GDVII strain has been mapped to the capsid, we examined the role of the capsid in this difference of phenotype. We showed, using recombinant viruses, that the capsid was indeed responsible for the pattern of infection observed in vitro, most likely through its role in viral entry. Thus, the levels of neurovirulence of the GDVII and DA strains correlate with their abilities to infect cultured neurons, and this ability is controlled by the capsid.  相似文献   

18.
Neuroadapted Sindbis virus (NSV) infection of mice causes hindlimb paralysis and 100% mortality in the C57BL/6 mouse strain, while adults of the BALB/cBy mouse strain are resistant to fatal encephalomyelitis. Levels of viral RNA are higher in the brains of infected C57BL/6 mice than in BALB/cBy mice (D. C. Thach et al., J. Virol. 74:6156-6161, 2000). These phenotypic differences between the two strains allowed us to map genetic loci involved in mouse susceptibility to NSV and to find relationships between mortality, paralysis, and viral RNA levels. Analysis of percent mortality in H2-congenic and F(1) mice suggested that the H2 locus, sex linkage, and imprinting were not involved in determining susceptibility and that resistance was partially dominant over susceptibility. Segregation analysis using CXB recombinant inbred (RI) mice indicated that the percent mortality was multigenic. Interval mapping detected a suggestive quantitative trait locus (QTL) on chromosome 2 near marker D2Mit447. Analysis of paralysis in the RI mice detected the same suggestive QTL. Viral RNA level in F(1) mice was intermediate. Interval mapping using viral RNA levels in RI mice detected a significant QTL near marker D2Mit447 that explained 69% of the genetic variance. This QTL was confirmed in F2 mice and was designated as Nsv1. Viral RNA level, percent paralyzed, and percent mortality were linearly correlated (r = 0.8 to 0.9). These results indicate that mortality, paralysis, and viral RNA levels are related complex traits and that Nsv1 controls early viral load and determines the likelihood of paralysis and death.  相似文献   

19.
During the first 45 days after intracerebral infection with Theiler's murine encephalomyelitis virus (TMEV), the levels of mRNAs encoding chemokines MCP-1/CCL2, RANTES/CCL5, and IP-10/CXCL10 in the central nervous system (CNS) are closely related to the sites of virus gene expression and tissue inflammation. In the present study, these chemokines were monitored during the latter 135 days of a 6-month course of TMEV-induced disease in susceptible (PLJ) or resistant (C57BL/6) mice that possessed or lacked either CD4+ or CD8+ T cells. These data were additionally correlated to mouse genotype, virus persistence in the CNS, antiviral antibody titers, mortality, and the severity of neurological disease. Surprisingly, the major determinant of chemokine expression was virus persistence: the factors of susceptible or resistant genotype, severity of neuropathology, and presence or absence of regulatory T cells exerted minimal effects. Our observations indicated that chemokine expression in the CNS in this chronic viral disorder was intrinsic to the CNS innate immune response to infection and was not governed by elements of the adaptive immune system.  相似文献   

20.
L Zhou  X Lin  T J Green  H L Lipton    M Luo 《Journal of virology》1997,71(12):9701-9712
Theiler's murine encephalomyelitis viruses (TMEVs) belong to the Picornaviridae family and are divided into two groups, typified by strain GDVII virus and members of the TO (Theiler's original) group. The highly virulent GDVII group causes acute encephalitis in mice, while the TO group is less virulent and causes a chronic demyelinating disease which is associated with viral persistence in mice. This persistent central nervous system infection with demyelination resembles multiple sclerosis (MS) in humans and has thus become an important model for studying MS. It has been shown that some of the determinants associated with viral persistence are located on the capsid proteins of the TO group. Structural comparisons of two persistent strains (BeAn and DA) and a highly virulent strain (GDVII) showed that the most significant structural variations between these two groups of viruses are located on the sites that may influence virus binding to cellular receptors. Most animal viruses attach to specific cellular receptors that, in part, determine host range and tissue tropism. In this study, atomic models of TMEV chimeras were built with the known structures of GDVII, BeAn, and DA viruses. Comparisons among the known GDVII, BeAn, and DA structures as well as the predicted models for the TMEV chimeras suggested that a gap on the capsid surface next to the putative receptor binding site, composed of residues from VP1 and VP2, may be important in determining viral persistence by influencing virus attachment to cellular receptors, such as sialyloligosaccharides. Our results showed that sialyllactose, the first three sugar molecules of common oligosaccharides on the surface of mammalian cells, inhibits virus binding to the host cell and infection with the persistent BeAn virus but not the nonpersistent GDVII and chimera 39 viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号