首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
3.
4.
Micrococcus luteus, also known as M. luteus, is a bacterium that inhabits mucous membranes, human skin, and various environmental sources. It is commonly linked to infections, especially among individuals who have compromised immune systems. M. luteus is capable of synthesizing the enzyme superoxide dismutase (SOD) as a component of its protective response to reactive oxygen species (ROS). This enzyme serves as a promising target for drug development in various diseases. The current study utilized a subtractive genomics approach to identify potential therapeutic targets from M. luteus. Additionally, genome mining was employed to identify and characterize the biosynthetic gene clusters (BGCs) responsible for the production of secondary metabolites in Bacillus licheniformis (B. licheniformis), a bacterium known for its production of therapeutically relevant secondary metabolites. Subtractive genomics resulted in identification of important extracellular protein SOD as a drug target that plays a crucial role in shielding cells from damage caused by ROS. Genome mining resulted in identification of five potential ligands (secondary metabolites) from B. licheniformis such as, Bacillibactin (BAC), Paenibactin (PAE), Fengycin (FEN), Surfactin (SUR) and Lichenysin (LIC). Molecular docking was used to predict and analyze the binding interactions between these five ligands and target protein SOD. The resulting protein–ligand complexes were further analyzed for their motions and interactions of atoms and molecules over 250 ns using molecular dynamics (MD) simulation analysis. The analysis of MD simulations suggests, Bacillibactin as the probable candidate to arrest the activities of SOD. All the five compounds reported in this study were found to act by directly/indirectly interacting with ROS molecules, such as superoxide radicals (O2–) and hydrogen peroxide (H2O2), and transforming them into less reactive species. This antioxidant activity contributes to its protective effects against oxidative stress-induced damage in cells making them likely candidate for various applications, including in the development of antioxidant-based therapies, nutraceuticals, and functional foods.  相似文献   

5.
The use of protein sequence to inform enzymology in terms of structure, mechanism, and function has burgeoned over the past two decades. Referred to as genomic enzymology, the utilization of bioinformatic tools such as sequence similarity networks and phylogenetic analyses has allowed the identification of new substrates and metabolites, novel pathways, and unexpected reaction mechanisms. The holistic examination of superfamilies can yield insight into the origins and paths of evolution of enzymes and the range of their substrates and mechanisms. Herein, we highlight advances in the use of genomic enzymology to address problems which the in-depth analyses of a single enzyme alone could not enable.  相似文献   

6.
Metagenomic sequencing data provide a rich resource from which to expand our understanding of differential protein functions involved in human health. Here, we outline a pipeline that combines microbial whole genome sequencing with protein structure data to yield a structural metagenomics-informed atlas of microbial enzyme families of interest. Visualizing metagenomics data through a structural lens facilitates downstream studies including targeted inhibition and probe-based proteomics to define at the molecular level how different enzyme orthologs impact in vivo function. Application of this pipeline to gut microbial enzymes like glucuronidases, TMA lyases, and bile salt hydrolases is expected to pinpoint their involvement in health and disease and may aid in the development of therapeutics that target specific enzymes within the microbiome.  相似文献   

7.
Synthetic aromatic compounds consisting of various functional groups are known as dyes. These colored compounds are often discharged in effluents, and they are very dangerous to aquatic life. Basically, the dye industry started by using natural plant and insect sources, and then suddenly turned into artificial manufacturing. Natural equilibrium of our environment gets changed by the reduction in photosynthetic activity due to the dyes. In China 900,000 tons of all kinds of dyes are usually produced, which are used in many industries like food, textile, food, paper and leather. Untreated wastewater contaminates aquatic bodies by causing eutrophication, change in water color, oxygen depletion which affect aquatic organisms to a great extent. Dye wastewater is now the key environmental pollution form. In recent eras an extensive study line has been developed to explore the dye decolorization and biodegradation under both aerobic as well as anaerobic conditions. In this review, the chemistry, toxicity and microbial biodegradation/decolorization are presented. Some recent studies along with the new techniques and methodologies of remediating the dye pollution are also discussed to provide the bases of their handling. Overall, efficient and high biodegradation potential make microbes an impending foundation for green chemistry to eradicate toxic dyes from industrial wastewater.  相似文献   

8.
9.
Pictet–Spenglerases provide a key role in the biosynthesis of many biologically active alkaloids. There is increasing use of these biocatalysts as an alternative to traditional organic synthetic methods as they provide stereoselective and regioselective control under mild conditions. Products from these enzymes also contain privileged drug scaffolds (such as tetrahydroisoquinoline or β-carboline moieties), so there is interest in the characterization and use of these enzymes as versatile biocatalysts to synthesize analogs of the corresponding natural products for drug discovery. This review discusses all known Pictet–Spenglerase enzymes and their applications as biocatalysts.  相似文献   

10.
A major hurdle in the production of bioethanol with second-generation feedstocks is the high cost of the enzymes for saccharification of the lignocellulosic biomass into fermentable sugars. Simultaneous saccharification and fermentation with Saccharomyces cerevisiae yeast that secretes a range of lignocellulolytic enzymes might address this problem, ideally leading to consolidated bioprocessing. However, it has been unclear how many enzymes can be secreted simultaneously and what the consequences would be on the C6 and C5 sugar fermentation performance and robustness of the second-generation yeast strain. We have successfully expressed seven secreted lignocellulolytic enzymes, namely endoglucanase, β-glucosidase, cellobiohydrolase I and II, xylanase, β-xylosidase and acetylxylan esterase, in a single second-generation industrial S. cerevisiae strain, reaching 94.5 FPU/g CDW and enabling direct conversion of lignocellulosic substrates into ethanol without preceding enzyme treatment. Neither glucose nor the engineered xylose fermentation were significantly affected by the heterologous enzyme secretion. This strain can therefore serve as a promising industrial platform strain for development of yeast cell factories that can significantly reduce the enzyme cost for saccharification of lignocellulosic feedstocks.  相似文献   

11.
PARP enzymes create ADP-ribose modifications to regulate multiple facets of human biology, and some prominent PARP family members are best known for the nucleic acid interactions that regulate their activities and functions. Recent structural studies have highlighted PARP interactions with nucleic acids, in particular for PARP enzymes that detect and respond to DNA strand break damage. These studies build on our understanding of how DNA break detection is linked to the catalysis of ADP-ribose modifications, provide insights into distinct modes of DNA interaction, and shed light on the mechanisms of PARP inhibitor action. PARP enzymes have several connections to RNA biology, including the detection of the genomes of RNA viruses, and recent structural work has highlighted how PARP13/ZAP specifically targets viral genomes enriched in CG dinucleotides.  相似文献   

12.
Viral infection in cells triggers a cascade of molecular defense mechanisms to maintain host-cell homoeostasis. One of these mechanisms is ADP-ribosylation, a fundamental post-translational modification (PTM) characterized by the addition of ADP-ribose (ADPr) on substrates. Poly(ADP-ribose) polymerases (PARPs) are implicated in this process and they perform ADP-ribosylation on host and pathogen proteins. Some viral families contain structural motifs that can reverse this PTM. These motifs known as macro domains (MDs) are evolutionarily conserved protein domains found in all kingdoms of life. They are divided in different classes with the viral belonging to Macro-D-type class because of their properties to recognize and revert the ADP-ribosylation. Viral MDs are potential pharmaceutical targets, capable to counteract host immune response. Sequence and structural homology between viral and human MDs are an impediment for the development of new active compounds against their function. Remdesivir, is a drug administrated in viral infections inhibiting viral replication through RNA-dependent RNA polymerase (RdRp). Herein, GS-441524, the active metabolite of the remdesivir, is tested as a hydrolase inhibitor for several viral MDs and for its binding to human homologs found in PARPs. This study presents biochemical and biophysical studies, which indicate that GS-441524 selectively modifies SARS-CoV-2 MD de-MARylation activity, while it does not interact with hPARP14 MD2 and hPARP15 MD2. The structural investigation of MD?GS-441524 complexes, using solution NMR and X-ray crystallography, discloses the impact of certain amino acids in ADPr binding cavity suggesting that F360 and its adjacent residues tune the selective binding of the inhibitor to SARS-CoV-2 MD.  相似文献   

13.
Organisms have developed different mechanisms to respond to stresses. However, the roles of small ORF–encoded peptides (SEPs) in these regulatory systems remain elusive, which is partially because of the lack of comprehensive knowledge regarding these biomolecules. We chose the extremophile Deinococcus radiodurans R1 as a model species and conducted large-scale profiling of the SEPs related to the stress response. The integrated workflow consisting of multiple omics approaches for SEP identification was streamlined, and an SEPome of D. radiodurans containing 109 novel and high-confidence SEPs was drafted. Forty-four percent of these SEPs were predicted to function as antimicrobial peptides. Quantitative peptidomics analysis indicated that the expression of SEP068184 was upregulated upon oxidative treatment and gamma irradiation of the bacteria. SEP068184 was conserved in Deinococcus and exhibited negative regulation of oxidative stress resistance in a comparative phenotypic assay of its mutants. Further quantitative and interactive proteomics analyses suggested that SEP068184 might function through metabolic pathways and interact with cytoplasmic proteins. Collectively, our findings demonstrate that SEPs are involved in the regulation of oxidative resistance, and the SEPome dataset provides a rich resource for research on the molecular mechanisms of the response to extreme stress in organisms.  相似文献   

14.
BackgroundThis work studies the presence of the Ti, Al and V metal ions and Ti nanoparticles released from the debris produced by the implantoplasty, a surgical procedure used in the clinic, in rat organs.MethodsThe sample preparation for total Ti determination was carefully optimized using microsampling inserts to minimize the dilution during the acid attack of the lyophilized tissues by a microwave-assisted acid digestion method. An enzymatic digestion method was optimized and applied to the different tissue samples in order to extract the titanium nanoparticles for the single-particle ICP-MS analysis.ResultsA statistically significant increase was found for Ti concentrations from control to experimental groups for several of the studied tissues, being and particularly significant in the case of brain and spleen. Al and V concentrations were detected in all tissues but they were not different when comparing control and experimental animals, except for V in brain. The possible presence of Ti-containing nanoparticles mobilized from the implantoplasty debris was tested using enzymatic digestions and SP-ICP-MS. The presence of Ti-containing nanoparticles was observed in all the analyzed tissues, however, differences on the Ti mass per particle were found between the blanks and the digested tissue and between control and experimental animals in some organs.ConclusionThe developed methodologies, both for ionic and nanoparticulated metal contents in rat organs, have shown the possible increase in the levels of Ti both as ions and nanoparticles in rats subjected to implantoplasty.  相似文献   

15.
Rutaecarpine is reported as a potent inducer of CYP1A2 enzyme in rats. There are natural herbal supplements containing rutaecarpine that are designed to enhance the CYP1A2-dependent removal of caffeine from blood so that people can have coffee later in the day without causing sleep interference. This study aimed to determine the minimum amount of time needed from oral rutaecarpine administration until the observed effect of rutaecarpine on caffeine pharmacokinetics (PK) in 15 male Sprague-Dawley rats. PK parameters for caffeine and its metabolites in the control and rutaecarpine groups were calculated using WinNonlin®. Results showed that orally administered rutaecarpine at 100 mg/kg dose as early as 3 h before oral caffeine administration significantly decreased the oral systemic exposure and mean residence time of caffeine and its metabolites due to decreased caffeine bioavailability (by up to 75%) and increased clearance. The systemic exposure of caffeine and its metabolites were also decreased when caffeine was given intravenously, though this effect was less pronounced than when caffeine was given orally. Although plasma level of rutaecarpine was undetectable (less than 10 ng/mL), rutaecarpine still induced hepatic CYP1A2 activity. Results from 7-methoxyresorufin O-demethylation activity, which is specific to CYP1A2, showed that 3 h after one rutaecarpine oral dose, CYP1A2 activity in rat liver tissue was increased by 3- fold. This finding suggested that rutaecarpine effectively induced CYP1A2 activity in the liver.  相似文献   

16.
The unique morphology and functionality of central nervous system (CNS) neurons necessitate specialized mechanisms to maintain energy metabolism throughout long axons and extensive terminals. Oligodendrocytes (OLs) enwrap CNS axons with myelin sheaths in a multilamellar fashion. Apart from their well-established function in action potential propagation, OLs also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes consisting of proteins, lipids, and RNAs. OL-derived metabolic support is crucial for the maintenance of axonal integrity; its dysfunction has emerged as an important player in neurological disorders that are associated with axonal energy deficits and degeneration. In this review, we discuss recent advances in how these transcellular signaling pathways maintain axonal energy metabolism in health and neurological disorders.  相似文献   

17.
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses mediates host cell entry and is S-acylated on multiple phylogenetically conserved cysteine residues. Multiple protein acyltransferase enzymes have been reported to post-translationally modify spike proteins; however, strategies to exploit this modification are lacking. Using resin-assisted capture MS, we demonstrate that the spike protein is S-acylated in SARS-CoV-2-infected human and monkey epithelial cells. We further show that increased abundance of the acyltransferase ZDHHC5 associates with increased S-acylation of the spike protein, whereas ZDHHC5 knockout cells had a 40% reduction in the incorporation of an alkynyl-palmitate using click chemistry detection. We also found that the S-acylation of the spike protein is not limited to palmitate, as clickable versions of myristate and stearate were also labelled the protein. Yet, we observed that ZDHHC5 was only modified when incubated with alkyne-palmitate, suggesting it has specificity for this acyl-CoA, and that other ZDHHC enzymes may use additional fatty acids to modify the spike protein. Since multiple ZDHHC isoforms may modify the spike protein, we also examined the ability of the FASN inhibitor TVB-3166 to prevent S-acylation of the spike proteins of SARS-CoV-2 and human CoV-229E. We show that treating cells with TVB-3166 inhibited S-acylation of expressed spike proteins and attenuated the ability of SARS-CoV-2 and human CoV-229E to spread in vitro. Our findings further substantiate the necessity of CoV spike protein S-acylation and demonstrate that de novo fatty acid synthesis is critical for the proper S-acylation of the spike protein.  相似文献   

18.
Syntrophus aciditrophicus is a model syntrophic bacterium that degrades fatty and aromatic acids into acetate, CO2, formate, and H2 that are utilized by methanogens and other hydrogen-consuming microbes. S. aciditrophicus benzoate degradation proceeds by a multistep pathway with many intermediate reactive acyl-coenzyme A species (RACS) that can potentially Nε-acylate lysine residues. Herein, we describe the identification and characterization of acyl-lysine modifications that correspond to RACS in the benzoate degradation pathway. The amounts of modified peptides are sufficient to analyze the post-translational modifications without antibody enrichment, enabling a range of acylations located, presumably, on the most extensively acylated proteins throughout the proteome to be studied. Seven types of acyl modifications were identified, six of which correspond directly to RACS that are intermediates in the benzoate degradation pathway including 3-hydroxypimeloylation, a modification first identified in this system. Indeed, benzoate-degrading enzymes are heavily represented among the acylated proteins. A total of 125 sites were identified in 60 proteins. Functional deacylase enzymes are present in the proteome, indicating a potential regulatory system/mechanism by which S. aciditrophicus modulates acylation. Uniquely, Nε-acyl-lysine RACS are highly abundant in these syntrophic bacteria, raising the compelling possibility that post-translational modifications modulate benzoate degradation in this and potentially other, syntrophic bacteria. Our results outline candidates for further study of how acylations impact syntrophic consortia.  相似文献   

19.
20.
BackgroundPemetrexed plus platinum doublet chemotherapy regimen remains to be the standard first-line treatment for lung adenocarcinoma patients. However, few biomarkers can be used to identify potential beneficiaries with maximal efficacy and minimal toxicity. This study aimed to explore potential biomarker models predictive of efficacy and toxicity after pemetrexed plus platinum chemotherapy based on metabolomics profiling.MethodsA total of 144 patients who received at least two cycles of pemetrexed plus platinum chemotherapy were enroled in the study. Serum samples were collected before initial treatment to perform metabolomics profiling analysis. Logistic regression analysis was performed to establish prediction models.Results157 metabolites were found to be differentially expressed between the response group and the nonresponse group. A panel of Phosphatidylserine 20:4/20:1, Sphingomyelin d18:1/18:0, and Phosphatidic Acid 18:1/20:0 could predict pemetrexed and platinum chemotherapy response with an Area Under the Receiver Operating Characteristic curve (AUROC) of 0.7968. 76 metabolites were associated with hematological toxicity of pemetrexed plus platinum chemotherapy. A panel incorporating triglyceride 14:0/22:3/22:5, 3-(3-Hydroxyphenyl) Propionate Acid, and Carnitine C18:0 was the best predictive ability of hematological toxicity with an AUROC of 0.7954. 54 differential expressed metabolites were found to be associated with hepatotoxicity of pemetrexed plus platinum chemotherapy. A model incorporating stearidonic acid, Thromboxane B3, l-Homocitrulline, and phosphoinositide 20:3/18:0 showed the best predictive ability of hepatotoxicity with an AUROC of 0.8186.ConclusionsThis study established effective and convenient models that can predict the efficacy and toxicity of pemetrexed plus platinum chemotherapy in lung adenocarcinoma patients before treatment delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号