首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The priming agent β-aminobutyric acid (BABA) is known to enhance Arabidopsis resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 by potentiating salicylic acid (SA) defence signalling, notably PR1 expression. The molecular mechanisms underlying this phenomenon remain unknown. A genome-wide microarray analysis of BABA priming during Pst DC3000 infection revealed direct and primed up-regulation of genes that are responsive to SA, the SA analogue benzothiadiazole and pathogens. In addition, BABA was found to inhibit the Arabidopsis response to the bacterial effector coronatine (COR). COR is known to promote bacterial virulence by inducing the jasmonic acid (JA) response to antagonize SA signalling activation. BABA specifically repressed the JA response induced by COR without affecting other plant JA responses. This repression was largely SA-independent, suggesting that it is not caused by negative cross-talk between SA and JA signalling cascades. Treatment with relatively high concentrations of purified COR counteracted BABA inhibition. Under these conditions, BABA failed to protect Arabidopsis against Pst DC3000. BABA did not induce priming and resistance in plants inoculated with a COR-deficient strain of Pst DC3000 or in the COR-insensitive mutant coi1-16. In addition, BABA blocked the COR-dependent re-opening of stomata during Pst DC3000 infection. Our data suggest that BABA primes for enhanced resistance to Pst DC3000 by interfering with the bacterial suppression of Arabidopsis SA-dependent defences. This study also suggests the existence of a signalling node that distinguishes COR from other JA responses.  相似文献   

2.
3.
Abiotic stress is one of the major factors limiting plant growth and yield globally. Though substantial progress has been made in breeding and genetic manipulation of plants to enhance abiotic stress tolerance, the task remains as a challenge even today. Investigations on the priming activity of various chemicals in plants for enhancing abiotic stress tolerance have been undertaken over the past few years. Priming with γ-amino butyric acid (GABA) and β-amino butyric acid (BABA) gains greater attention, because priming with these non-protein amino acids equips the plants to resist abiotic stresses effectively without suffering costly energy investments in operating defence mechanisms. It is well documented that the protective effect of non-protein amino acids like BABA and GABA on plants is due to a potentiation of natural defence mechanisms against abiotic stresses but at the same time not activating the complete defence arsenal before the stress exposure. The exact mode of action of priming with GABA/BABA in plants is still a puzzle, though their importance as signaling molecules during stress is undoubtful. The better understanding of molecular, physiological, and ecological aspects of GABA/BABA priming might lead to the emergence of this technique as a successful strategy for enhancing the abiotic stress(es) tolerance potential of plants in the field, without compromising much on productivity.  相似文献   

4.
5.
Seed priming for abiotic stress tolerance: an overview   总被引:2,自引:0,他引:2  
Plants are exposed to any number of potentially adverse environmental conditions such as water deficit, high salinity, extreme temperature, submergence, etc. These abiotic stresses adversely affect the plant growth and productivity. Nowadays various strategies are employed to generate plants that can withstand these stresses. In recent years, seed priming has been developed as an indispensable method to produce tolerant plants against various stresses. Seed priming is the induction of a particular physiological state in plants by the treatment of natural and synthetic compounds to the seeds before germination. In plant defense, priming is defined as a physiological process by which a plant prepares to respond to imminent abiotic stress more quickly or aggressively. Moreover, plants raised from primed seeds showed sturdy and quick cellular defense response against abiotic stresses. Priming for enhanced resistance to abiotic stress obviously is operating via various pathways involved in different metabolic processes. The seedlings emerging from primed seeds showed early and uniform germination. Moreover, the overall growth of plants is enhanced due to the seed-priming treatments. The main objective of this review is to provide an overview of various crops in which seed priming is practiced and about various seed-priming methods and its effects.  相似文献   

6.
Foliar spray with BABA led to a significant reduction of lesion development in Brassica carinata caused by Alternaria brassicae. To get better insight into molecular mechanisms underlying priming of defence responses by BABA, expression pattern of BcWRKY genes and marker genes for the SA and JA pathway namely PR‐1 and PDF 1.2 was examined. Q‐RT‐PCR analysis revealed priming of BcWRKY70, BcWRKY11 and BcWRKY53 gene expression in BABA‐pretreated Brassica plants challenged with pathogen. However, the expression of BcWRKY72 and BcWRKY18 remained unchanged. Furthermore, BcWRKY7 gene was found to be upregulated in water‐treated plants in response to pathogen indicating its role in susceptibility. In addition, BABA application potentiated expression of defence genes PR‐1, PDF1.2 and PAL in response to the pathogen. In conclusion, BABA‐primed expression of BcWRKY70, BcWRKY11 and BcWRKY53 genes is strongly correlated with enhanced expression of PR‐1, PDF1.2 and PAL hence suggesting their role in BABA‐induced resistance.  相似文献   

7.
The non-protein amino acid β-aminobutyric acid (BABA) is known to be a priming agent for a more efficient activation of cellular defence responses and a potent inducer of resistance against biotic and abiotic stresses in plants. Nevertheless, most of the studies on priming have been carried out in Arabidopsis. In potato, the effect of BABA was demonstrated only on biotic stress tolerance. We investigated the effect of BABA on the drought tolerance of potato and found that soil drenched with BABA at a final concentration of 0.3 mM improves the drought tolerance of potato. Water loss from the leaves of the primed plants is attenuated and the yield is increased compared to the unprimed drought-stressed plants. The metabolite composition of the tubers of the BABA-treated plants is less affected by drought than the tuber composition of the non-treated plants. Nitric oxide and ROS (reactive oxygen species) production is increased in the BABA-treated roots but not in the leaves. In the leaves of the BABA-treated plants, the expression of the drought-inducible gene StDS2 is delayed, but the expression of ETR1, encoding an ethylene receptor, is maintained for a longer period under the drought conditions than in the leaves of the non-treated, drought-stressed control plants. This result suggests that the ethylene-inducible gene expression remains suppressed in primed plants leading to a longer leaf life and increased tuber yield compared to the non-treated, drought-stressed plants. The priming effect of BABA in potato, however, is transient and reverts to an unprimed state within a few weeks.  相似文献   

8.
In their struggle for life, plants can employ sophisticated strategies to defend themselves against potentially harmful pathogens and insects. One mechanism by which plants can increase their level of resistance is by intensifying the responsiveness of their immune system upon recognition of selected signals from their environment. This so-called priming of defence can provide long-lasting resistance, which is based on a faster and/or stronger defence reaction upon pathogen or pest attack. Priming can target various layers of induced defence that are active during different stages of the plant–attacker interaction. Recent discoveries have extended our knowledge about the mechanistic basis of defence priming and suggest that a primed defence state can be inherited epi-genetically from defence-expressing plants. In this review, we provide an overview of the latest insights about defence priming, ranging from early responses controlled by adjustments in hormone-dependent signalling pathways and availability of signal transduction proteins, to longer lasting mechanisms that involve possible regulation chromatin modification or DNA methylation.  相似文献   

9.
Boosted responsiveness of plant cells to stress at the onset of pathogen‐ or chemically induced resistance is called priming. The chemical β‐aminobutyric acid (BABA) enhances Arabidopsis thaliana resistance to hemibiotrophic bacteria through the priming of the salicylic acid (SA) defence response. Whether BABA increases Arabidopsis resistance to the necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) is not clear. In this work, we show that treatment with BABA protects Arabidopsis against the soft‐rot pathogen Pcc. BABA did not prime the expression of the jasmonate/ethylene‐responsive gene PLANT DEFENSIN 1.2 (PDF1.2), the up‐regulation of which is usually associated with resistance to necrotrophic pathogens. Expression of the SA marker gene PATHOGENESIS RELATED 1 (PR1) on Pcc infection was primed by BABA treatment, but SA‐defective mutants demonstrated a wild‐type level of BABA‐induced resistance against Pcc. BABA primed the expression of the pattern‐triggered immunity (PTI)‐responsive genes FLG22‐INDUCED RECEPTOR‐LIKE KINASE 1 (FRK1), ARABIDOPSIS NON‐RACE SPECIFIC DISEASE RESISTANCE GENE (NDR1)/HAIRPIN‐INDUCED GENE (HIN1)‐LIKE 10 (NHL10) and CYTOCHROME P450, FAMILY 81 (CYP81F2) after inoculation with Pcc or after treatment with purified bacterial microbe‐associated molecular patterns, such as flg22 or elf26. PTI‐mediated callose deposition was also potentiated in BABA‐treated Arabidopsis, and BABA boosted Arabidopsis stomatal immunity to Pcc. BABA treatment primed the PTI response in the SA‐defective mutants SA induction deficient 2‐1 (sid2‐1) and phytoalexin deficient 4‐1 (pad4‐1). In addition, BABA priming was associated with open chromatin configurations in the promoter region of PTI marker genes. Our data indicate that BABA primes the PTI response upon necrotrophic bacterial infection and suggest a role for the PTI response in BABA‐induced resistance.  相似文献   

10.
11.
In the present study, we evaluated the role of the defense-related gene OCP3 in callose deposition as a response to two necrotrophic fungal pathogens, Botrytis cinerea and Plectosphaerella cucumerina. ocp3 plants exhibited accelerated and intensified callose deposition in response to fungal infection associated with enhanced disease resistance to the two pathogens. A series of double mutant analyses showed potentiation of callose deposition and the heightened disease resistance phenotype in ocp3 plants required the plant hormone abscisic acid (ABA) and the PMR4 gene encoding a callose synthase. This finding was congruent with an observation that ocp3 plants exhibited increased ABA accumulation, and ABA was rapidly synthesized following fungal infection in wild-type plants. Furthermore, we determined that potentiation of callose deposition in ocp3 plants, including enhanced disease resistance, also required jasmonic acid (JA) recognition though a COI1 receptor, however JA was not required for basal callose deposition following fungal infection. In addition, potentiation of callose deposition in ocp3 plants appeared to follow a different mechanism than that proposed for callose β-amino-butyric acid (BABA)-induced resistance and priming, because ocp3 plants responded to BABA-induced priming for callose deposition and induced resistance of a magnitude similar to that observed in wild-type plants. Our results point to a model in which OCP3 represents a specific control point for callose deposition regulated by JA yet ultimately requiring ABA. These results provide new insights into the mechanism of callose deposition regulation in response to pathogen attack; however the complexities of the processes remain poorly understood.  相似文献   

12.
Priming by airborne signals boosts direct and indirect resistance in maize   总被引:1,自引:0,他引:1  
Plants counteract attack by herbivorous insects using a variety of inducible defence mechanisms. The production of toxic proteins and metabolites that instantly affect the herbivore's development are examples of direct induced defence. In addition, plants may release mixtures of volatile organic compounds (VOCs) that indirectly protect the plant by attracting natural enemies of the herbivore. Recent studies suggest that these VOCs can also prime nearby plants for enhanced induction of defence upon future insect attack. However, evidence that this defence priming causes reduced vulnerability to insects is sparse. Here we present molecular, chemical and behavioural evidence that VOC-induced priming leads to improved direct and indirect resistance in maize. A differential hybridization screen for inducible genes upon attack by Spodoptera littoralis caterpillars identified 10 defence-related genes that are responsive to wounding, jasmonic acid (JA), or caterpillar regurgitant. Exposure to VOCs from caterpillar-infested plants did not activate these genes directly, but primed a subset of them for earlier and/or stronger induction upon subsequent defence elicitation. This priming for defence-related gene expression correlated with reduced caterpillar feeding and development. Furthermore, exposure to caterpillar-induced VOCs primed for enhanced emissions of aromatic and terpenoid compounds. At the peak of this VOC emission, primed plants were significantly more attractive to parasitic Cotesia marginiventris waSPS. This study shows that VOC-induced priming targets a specific subset of JA-inducible genes, and links these responses at the molecular level to enhanced levels of direct and indirect resistance against insect attack.  相似文献   

13.
Samples of three seed lots of each of three cultivars of carrot, celery and onion were primed in polyethylene glycol solution for two weeks at 15 °C. Seedling emergence was recorded in the field for carrot and onion and in the glasshouse for celery. Compared to the untreated control, priming increased the percentage seedling emergence in certain poorly-emerging seed lots of carrot and celery, but had no effect on onion. Mean emergence times were reduced by priming in all seed lots, by 3–5, 5–8 and 3–9 days in carrot, celery and onion respectively. The largest effects occurred in the slowest-emerging seed lots. There were significant interactions between priming and seed lots within cultivars in carrot and celery and between priming and cultivars in celery and onion. Priming generally reduced the spread of emergence times, but the effects were not statistically significant in carrot. Drying back the primed seeds had no effect on percentage emergence in onion, but reduced it (compared to primed seed which had not been dried-back) in certain carrot and celery seed lots. Primed and dried-back seeds emerged later than primed seeds, by up to 1·5, 2·6 and 2·6 days in carrot, celery and onion respectively. The spread of emergence times was generally larger for primed and dried-back seeds than for primed seeds, but the differences were not always statistically significant. Plant fresh weights were recorded 9, 7 and 12 wk after sowing for carrot, celery and onion, respectively. In each species, mean plant weight was inversely related to seedling emergence time; thus plants grown from primed seed were always heavier than the controls, by up to 33%, 182% and 47% in carrot, celery and onion respectively.  相似文献   

14.
15.
beta-Aminobutyric acid (BABA) was used to induce resistance in grapevine (Vitis vinifera) against downy mildew (Plasmopara viticola). This led to a strong reduction of mycelial growth and sporulation in the susceptible cv. Chasselas. Comparing different inducers, the best protection was achieved with BABA followed by jasmonic acid (JA), whereas benzo (1,2,3)-thiadiazole-7-carbothionic acid-S-methyl ester (a salicylic acid [SA] analog) and abscisic acid (ABA) treatment did not increase the resistance significantly. Marker genes for the SA and JA pathways showed potentiated expression patterns in BABA-treated plants following infection. The callose synthesis inhibitor 2-deoxy-D-glucose partially suppressed BABA- and JA-induced resistance against P viticola in Chasselas. Application of the phenylalanine ammonia lyase inhibitor 2-aminoindan-2-phosphonic acid and the lipoxygenase (LOX) inhibitor 5, 8, 11, 14-eicosatetraynoic acid (ETYA) also led to a reduction of BABA-induced resistance (BABA-IR), suggesting that callose deposition as well as defense mechanisms depending on phenylpropanoids and the JA pathways all contribute to BABA-IR. The similar phenotype of BABA- and JA-induced resistance, the potentiated expression pattern of JA-regulated genes (LOX-9 and PR-4) following BABA treatment, and the suppression of BABA-IR with ETYA suggest an involvement of the JA pathway in BABA-IR of grapevine leading to a primed deposition of callose and lignin around the infection sites.  相似文献   

16.
β‐Aminobutyric acid (BABA) pretreatment of Brassica plants protected them against the necrotrophic pathogen Alternaria brassicae. The achieved resistance level was much higher than that seen after salicylic acid (SA) and jasmonic acid (JA) pretreatments. BABA pretreatment to the leaves, 1 day before inoculation, led to an inhibition of the oxidative burst and a decrease in SA levels, but did not influence lipoxygenase activity nor cause callose deposition at the site of inoculation. Expression of two marker genes of the SA and JA pathways, namely PR1 and PDF1.2, was enhanced in response to BABA pretreatment. Our results indicate that BABA‐induced resistance is mediated through an enhanced expression of pathogenesis‐related protein genes, independent of SA and JA accumulation.  相似文献   

17.
Molecular aspects of defence priming   总被引:1,自引:0,他引:1  
Plants can be primed for more rapid and robust activation of defence to biotic or abiotic stress. Priming follows perception of molecular patterns of microbes or plants, recognition of pathogen-derived effectors or colonisation by beneficial microbes. However the process can also be induced by treatment with some natural or synthetic compounds and wounding. The primed mobilization of defence is often associated with development of immunity and stress tolerance. Although the phenomenon has been known for decades, the molecular basis of priming is poorly understood. Here, I summarize recent progress made in unravelling molecular aspects of defence priming that is the accumulation of dormant mitogen-activated protein kinases, chromatin modifications and alterations of primary metabolism.  相似文献   

18.
Soil drench treatments with hexanoic acid can effectively protect Arabidopsis plants against Botrytis cinerea through a mechanism based on a stronger and faster accumulation of JA-dependent defenses.Plants impaired in ethylene, salicylic acid, abscisic acid or glutathion pathways showed intact protection by hexanoic acid upon B. cinerea infection. Accordingly, no significant changes in the SA marker gene PR-1 in either the SA or ABA hormone balance were observed in the infected and treated plants. In contrast, the JA signaling pathway showed dramatic changes after hexanoic acid treatment, mainly when the pathogen was present. The impaired JA mutants, jin1-2 and jar1, were unable to display hexanoic acid priming against the necrotroph. In addition, hexanoic acid-treated plants infected with B. cinerea showed priming in the expression of the PDF1.2, PR-4 and VSP1 genes implicated in the JA pathways. Moreover, JA and OPDA levels were primed at early stages by hexanoic acid. Treatments also stimulated increased callose accumulation in response to the pathogen. Although callose accumulation has proved an effective IR mechanism against B. cinerea, it is apparently not essential to express hexanoic acid-induced resistance (HxAc-IR) because the mutant pmr4.1 (callose synthesis defective mutant) is protected by treatment.We recently described how hexanoic acid treatments can protect tomato plants against B. cinerea by stimulating ABA-dependent callose deposition and by priming OPDA and JA-Ile production. We clearly demonstrate here that Hx-IR is a dependent plant species, since this acid protects Arabidopsis plants against the same necrotroph by priming JA-dependent defenses without enhancing callose accumulation.  相似文献   

19.
20.
We have examined the role of the callose synthase PMR4 in basal resistance and β-aminobutyric acid-induced resistance (BABA-IR) of Arabidopsis thaliana against the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic pathogen Alternaria brassicicola . Compared to wild-type plants, the pmr4-1 mutant displayed enhanced basal resistance against P. syringae , which correlated with constitutive expression of the PR-1 gene. Treating the pmr4-1 mutant with BABA boosted the already elevated levels of PR-1 gene expression, and further increased the level of resistance. Hence, BABA-IR against P. syringae does not require PMR4-derived callose. Conversely, pmr4-1 plants showed enhanced susceptibility to A. brassicicola , and failed to show BABA-IR. Wild-type plants showing BABA-IR against A. brassicicola produced increased levels of JA. The pmr4-1 mutant produced less JA upon A. brassicicola infection than the wild-type. Blocking SA accumulation in pmr4-1 restored basal resistance, but not BABA-IR against A. brassicicola . This suggests that the mutant's enhanced susceptibility to A. brassicicola is caused by SA-mediated suppression of JA, whereas the lack of BABA-IR is caused by its inability to produce callose. A. brassicicola infection suppressed ABA accumulation. Pre-treatment with BABA antagonized this ABA accumulation, and concurrently potentiated expression of the ABA-responsive ABI1 gene. Hence, BABA prevents pathogen-induced suppression of ABA accumulation, and sensitizes the tissue to ABA, causing augmented deposition of PMR4-derived callose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号