首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonribosomal peptide synthetases (NRPSs) are large, multidomain enzymes that biosynthesize medically important natural products. We report the crystal structure of the free-standing NRPS condensation (C) domain VibH, which catalyzes amide bond formation in the synthesis of vibriobactin, a Vibrio cholerae siderophore. Despite low sequence identity, NRPS condensation enzymes are structurally related to chloramphenicol acetyltransferase (CAT) and dihydrolipoamide acyltransferases. However, although the latter enzymes are homotrimers, VibH is a monomeric pseudodimer. The VibH structure is representative of both NRPS condensation and epimerization domains, as well as the condensation-variant cyclization domains, which are all expected to be monomers. Surprisingly, despite favorable positioning in the active site, a universally conserved histidine important in CAT and in other C domains is not critical for general base catalysis in VibH.  相似文献   

2.
Hillson NJ  Walsh CT 《Biochemistry》2003,42(3):766-775
Nonribosomal peptide synthetases (NRPS), fatty acid synthases (FAS), and polyketide sythases (PKS) are multimodular enzymatic assembly lines utilized in natural product biosynthesis. Previous data on FAS and PKS subunits have indicated that they are homodimers and that some of their catalytic functions can work in trans. When NRPS assembly lines have been probed for comparable formation of stable oligomers, no evidence had been forthcoming that species other than monomer forms were active. In this work we focus on the six-domain (Cy1-Cy2-A-C1-PCP-C2) enzyme VibF from the vibriobactin synthetase assembly line, which contains three other proteins, VibB, VibE, and VibH, that--when purified and mixed with VibF and the substrates ATP, threonine, 2,3-dihydroxybenzoate (DHB), and norspermidine--produce the iron chelator vibriobactin. Using a deletion of the Cy1 domain and separate inactivating mutations in the Cy2, A, PCP, and C2 domains of VibF, we report regain of catalytic activity upon mutant protein mixing that argues for heterodimer formation, stable for hundreds to thousands of catalytic cycles, with acyl chain processing and transfer around blocked domains. Ultracentrifugation data likewise confirm a dimeric structure for VibF and establish that domains within NRPS dimeric modules can act on acyl chains in trans. The results described here are the first indication for an NRPS subunit that homodimerization can occur and that there is a continuum of functional oligomerization states between monomers and dimers in nonribosomal peptide synthetases.  相似文献   

3.
Keating TA  Marshall CG  Walsh CT 《Biochemistry》2000,39(50):15513-15521
The Vibrio cholerae siderophore vibriobactin is biosynthesized from three molecules of 2,3-dihydroxybenzoate (DHB), two molecules of L-threonine, and one of norspermidine. Of the four genes positively implicated in vibriobactin biosynthesis, we have here expressed, purified, and assayed the products of three: vibE, vibB, and vibH. All three are homologous to nonribosomal peptide synthetase (NRPS) domains: VibE is a 2,3-dihydroxybenzoate-adenosyl monophosphate ligase, VibB is a bifunctional isochorismate lyase-aryl carrier protein (ArCP), and VibH is a novel amide synthase that represents a free-standing condensation (C) domain. VibE and VibB are homologous to EntE and EntB from Escherichia coli enterobactin synthetase; VibE activates DHB as the acyl adenylate and then transfers it to the free thiol of the phosphopantetheine arm of VibB's ArCP domain. VibH then condenses this DHB thioester (the donor) with the small molecule norspermidine (the acceptor), forming N(1)-(2, 3-dihydroxybenzoyl)norspermidine (DHB-NSPD) with a k(cat) of 600 min(-1) and a K(m) for acyl-VibB of 0.88 microM and for norspermidine of 1.5 mM. Exclusive monoacylation of a primary amine of norspermidine was observed. VibH also tolerates DHB-acylated EntB and 1,7-diaminoheptane, octylamine, and hexylamine as substrates, albeit at lowered catalytic efficiencies. DHB-NSPD possesses one of three acylations required for mature vibriobactin, and its formation confirms VibH's role in vibriobactin biosynthesis. VibH is a unique NRPS condensation domain that acts upon an upstream carrier-protein-bound donor and a downstream amine, turning over a soluble amide product, in contrast to an archetypal NRPS-embedded C domain that condenses two carrier protein thioesters.  相似文献   

4.
Keating TA  Marshall CG  Walsh CT 《Biochemistry》2000,39(50):15522-15530
Vibriobactin [N(1)-(2,3-dihydroxybenzoyl)-N(5),N(9)-bis[2-(2, 3-dihydroxyphenyl)-5-methyloxazolinyl-4-carboxamido]norspermidine] , is an iron chelator from the cholera-causing bacterium Vibrio cholerae. The six-domain, 270 kDa nonribosomal peptide synthetase (NRPS) VibF, a component of vibriobactin synthetase, has been heterologously expressed in Escherichia coli and purified. VibF has an unusual NRPS domain organization: cyclization-cyclization-adenylation-condensation-peptidyl carrier protein-condensation (Cy(1)-Cy(2)-A-C(1)-PCP-C(2)). VibF activates and covalently loads its PCP with L-threonine, and together with vibriobactin synthetase proteins VibE (adenylation) and VibB (aryl carrier protein) condenses and heterocyclizes 2, 3-dihydroxybenzoyl-VibB with L-Thr to 2-dihydroxyphenyl-5-methyloxazolinyl-4-carboxy-VibF in the first demonstration of oxazoline formation by an NRPS cyclization domain. This enzyme-bound aryl oxazoline can be transferred by VibF to various amine acceptors but most efficiently to N(1)-(2, 3-dihydroxybenzoyl)norspermidine (k(cat) = 122 min(-1), K(m) = 1.7 microM), the product of 2,3-dihydroxybenzoyl-VibB, norspermidine, and VibH. This diacylated product undergoes a second aryl oxazoline acylation on its remaining secondary amine, also catalyzed by VibF, to yield vibriobactin. Vibriobactin biosynthesis in vitro has thus been accomplished from four proteins, VibE, VibB, VibF, and VibH, with the substrates 2,3-dihydroxybenzoic acid, L-Thr, norspermidine, and ATP. Vibriobactin synthetase is an unusual NRPS in that all intermediates are not covalently tethered as PCP thioesters and in that it represents an NRPS pathway with two branch points.  相似文献   

5.
Kelly WL  Hillson NJ  Walsh CT 《Biochemistry》2005,44(40):13385-13393
The epothilones are potent anticancer natural products produced by a polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS) hybrid involving proteins EpoA-F. The single NRPS module of the epothilone assembly line, EpoB, is a distinct subunit of approximately 160 kDa and consists of four successive domains: cyclization, adenylation, oxidation, and peptidyl carrier protein (Cy-A-Ox-PCP). The cyclization domain is responsible for introduction of the thiazoline heterocycle into the growing polyketide/nonribosomal peptide chain from the precursors malonyl-CoA and cysteine through the multiple steps of condensation, cyclization, and dehydration. This enzyme-bound thiazoline intermediate is subsequently oxidized to a thiazole by the EpoB Ox domain. The EpoB module was dissected to provide 57 kDa EpoB(Cy) and 102 kDa EpoB(A-Ox-PCP) as subunit fragments to evaluate Cy as a free-standing domain. EpoB was reconstituted by these fragments in trans to generate the methylthiazole product. Using this system, apparent kinetic constants for the upstream acyl donor EpoA(ACP) and EpoB(Cy) were determined, providing a measure of affinity for the naturally occurring interface of the amino terminus of EpoB and the EpoA carboxy terminus. Site-directed mutants in excised EpoB(Cy) were prepared and used to examine residues involved in condensation and heterocycle formation. This work demonstrates the ability to define a functional Cy domain by excision from its native NRPS module, and examine both its protein-protein interactions and mechanism of activity.  相似文献   

6.
Many biologically active natural peptides are synthesized by nonribosomal peptide synthetases (NRPS). Product release is accomplished by dedicated thioesterase (TE) domains, some of which catalyze an intramolecular cyclization to form macrolactone or macrolactam cyclic peptides. The excised 28 kDa SrfTE domain, a member of the alpha/beta hydrolase enzyme family, exhibits a distinctive bowl-shaped hydrophobic cavity that hosts the acylpeptide substrate and tolerates its folding to form a cyclic structure. A substrate analog confirms the substrate binding site and suggests a mechanism for substrate acylation/deacylation. Docking of the peptidyl carrier protein domain immediately preceding SrfTE positions the 4'-phosphopantheinyl prosthetic group that transfers the nascent acyl-peptide chain to SrfTE. The structure provides a basis for understanding the mechanism of acyl-PCP substrate recognition and for the cyclization reaction that results in release of the macrolactone cyclic heptapeptide.  相似文献   

7.
Anguibactin, the siderophore produced by Vibrio anguillarum 775 is synthesized from 2,3-dihydroxybenzoic acid (DHBA), cysteine and hydroxyhistamine via a nonribosomal peptide synthetase (NRPS) mechanism. Most of the genes encoding anguibactin biosynthetic proteins are harbored by the pJM1 plasmid. In this work we report the identification of a homologue of the plasmid-encoded angB on the chromosome of strain 775. The product of both genes harbor an isochorismate lyase (ICL) domain that converts isochorismic acid to 2,3-dihydro-2,3-dihydroxybenzoic acid, one of the steps of DHBA synthesis. We show in this work that both ICL domains are functional in the production of DHBA in V. anguillarum as well as in E. coli. Substitution by alanine of the aspartic acid residue in the active site of both ICL domains completely abolishes their isochorismate lyase activity in vivo. The two proteins also carry an aryl carrier protein (ArCP) domain. In contrast with the ICL domains only the plasmid encoded ArCP can participate in anguibactin production as determined by complementation analyses and site-directed mutagenesis in the active site of the plasmid encoded protein, S248A. The site-directed mutants, D37A in the ICL domain and S248A in the ArCP domain of the plasmid encoded AngB were also tested in vitro and clearly show the importance of each residue for the domain function and that each domain operates independently.  相似文献   

8.
Hillson NJ  Balibar CJ  Walsh CT 《Biochemistry》2004,43(35):11344-11351
Nonribosomal peptide synthetases (NRPS), fatty acid synthases (FAS), and polyketide synthases (PKS) are multimodular enzymatic assembly lines utilized in natural product biosynthesis. The oligomeric structure of these assembly line enzymes has been a topic of interest because higher order oligomeric quaternary structural arrangements allow for alternate paths of acyl intermediate elongation and present unique challenges for the chimeric engineering of hybrid assembly lines. Unlike other NRPS systems that in general appear to be monomeric, the six domain (Cy1-Cy2-A-C1-PCP-C2) VibF subunit of vibriobactin synthetase has previously been shown to be dimeric, the same oligomeric state as that observed for FAS and PKS assembly lines. It has been demonstrated that the C1 domain within VibF is catalytically inactive and is not required for vibriobactin production. Utilizing sedimentation equilibrium analytical ultracentrifugation experiments to determine the oligomeric states of several VibF subfragments, we report that the C1 domain is largely responsible for VibF dimerization. Comparative rates of vibriobactin production, coupled with dissociation constants for VibF subfragment pair heterocomplexes, suggest that the mere presence of C1 does not detectably enhance the catalytic rates of neighboring domains, but it may properly orient Cy1-Cy2-A relative to PCP-C2.  相似文献   

9.
The C-terminal thioesterase (TE) domains from nonribosomal peptide synthetases (NRPSs) catalyze the final step in the biosynthesis of diverse biologically active molecules. In many systems, the thioesterase domain is involved in macrocyclization of a linear precursor presented as an acyl-S-enzyme intermediate. The excised thioesterase domain from the tyrocidine NRPS has been shown to catalyze the cyclization of a peptide thioester substrate which mimics its natural acyl-S-enzyme substrate. In this work we explore the generality of cyclization catalyzed by isolated TE domains. Using synthetic peptide thioester substrates from 6 to 14 residues in length, we show that the excised TE domain from the tyrocidine NRPS can be used to generate an array of sizes of cyclic peptides with comparable kinetic efficiency. We also studied the excised TE domains from the NRPSs which biosynthesize the symmetric cyclic decapeptide gramicidin S and the cyclic lipoheptapeptide surfactin A. Both TE domains exhibit expected cyclization activity: the TE domain from the gramicidin S NRPS catalyzes head-to-tail cyclization of a decapeptide thioester to form gramicidin S, and the TE domain from the surfactin NRPS catalyzes stereospecific cyclization to form a macrolactone analogue of surfactin. With an eye toward generating libraries of cyclic molecules by TE catalysis, we report the solid-phase synthesis and TE-mediated cyclization of a small pool of linear peptide thioesters. These studies provide evidence for the general utility of TE catalysis as a means to synthesize a wide range of macrocyclic compounds.  相似文献   

10.
Patel HM  Tao J  Walsh CT 《Biochemistry》2003,42(35):10514-10527
The thiazoline-containing siderophores pyochelin, yersiniabactin, and Micacocidin A all have D-thiazoline rings, participating in high-affinity chelation of ferric iron. However, studies with pyochelin (Pch) synthetase and yersiniabactin (Ybt) synthetase reconstituted from pure protein components have shown that only L-cysteine is activated and tethered as a covalent aminoacyl-S-enzyme intermediate. Nor are any of the canonical epimerase domains of nonribosomal peptide synthetase (NRPS) assembly lines found in the Ybt or Pch synthetase modules. Here, we report that the PchE subunit of the Pch synthetase exchanges solvent deuterium into the C(2) center of the thiazoline moieties during siderophore chain elongation. Both PchE and HMWP2, from Ybt synthetase, subunits have a 310-360-residue insert in their amino acid activation domains that look like defective methyltransferase (MT) domains. We suggest these inserts are noncanonical epimerase domains, reversibly deprotonating and reprotonating acyl-S-enzyme intermediates at the C(2) locus. The PchE subunit does not epimerize the Cys-S-enzyme intermediate, but once amide bond formation from a benzoyl-S-PchE donor is catalyzed by the cyclization (Cy) domain of PchE, the N-benzoyl-Cys-S-PchE intermediate is present as a D,L-mixture. The subsequent phenylthiazolinyl-S-PchE intermediate, arising from cyclodehydration of the N-benzoyl-Cys-S-PchE intermediate, is likewise a D,L-mixture on hydrolytic release and enantiomer analysis. These results suggest a default role for MT domains of NRPS assembly lines in generating alpha-carbanionic species from thioester intermediates during siderophore chain elongation.  相似文献   

11.
NifU is a homodimeric modular protein comprising N- and C-terminal domains and a central domain with a redox-active [2Fe-2S](2+,+) cluster. It plays a crucial role as a scaffold protein for the assembly of the Fe-S clusters required for the maturation of nif-specific Fe-S proteins. In this work, the time course and products of in vitro NifS-mediated iron-sulfur cluster assembly on full-length NifU and truncated forms involving only the N-terminal domain or the central and C-terminal domains have been investigated using UV-vis absorption and M?ssbauer spectroscopies, coupled with analytical studies. The results demonstrate sequential assembly of labile [2Fe-2S](2+) and [4Fe-4S](2+) clusters in the U-type N-terminal scaffolding domain and the assembly of [4Fe-4S](2+) clusters in the Nfu-type C-terminal scaffolding domain. Both scaffolding domains of NifU are shown to be competent for in vitro maturation of nitrogenase component proteins, as evidenced by rapid transfer of [4Fe-4S](2+) clusters preassembled on either the N- or C-terminal domains to the apo nitrogenase Fe protein. Mutagenesis studies indicate that a conserved aspartate (Asp37) plays a critical role in mediating cluster transfer. The assembly and transfer of clusters on NifU are compared with results reported for U- and Nfu-type scaffold proteins, and the need for two functional Fe-S cluster scaffolding domains on NifU is discussed.  相似文献   

12.
13.
Bluetongue virus (BTV) is a double-stranded RNA virus of the Reoviridae family. The VP1 protein of BTV is the viral RNA-dependent RNA polymerase (RdRp), which is responsible for the replication of the viral genome. Currently there is no structural information available for VP1. By manual alignment of BTV, Reovirus and other viral RdRps we have generated a model for the structure of VP1, the RdRp of BTV. The structure can be divided into three domains: an N-terminal domain, a C-terminal domain, and a central polymerase domain. Mutation of the putative catalytic site in the central polymerase domain by site-directed mutagenesis abrogated in vitro replicase activity. Each of the domains was expressed individually and subsequently partially purified to obtain direct evidence for the location of polymerase activity and the nucleoside triphosphate binding site. The nucleoside triphosphate binding site was located by showing that CTP only bound to the full-length protein or to the polymerase domain and not to either of the other two domains. None of the domains had catalytic activity when tested individually or in tandem but when all three domains were mixed together the RdRp activity was reconstituted. This is the first report of the reconstitution of a functional viral RdRp in vitro from individual domains.  相似文献   

14.
We have identified an interaction between the equine infectious anemia virus (EIAV) late assembly domain and the cellular AP-2 clathrin-associated adapter protein complex. A YXXL motif within the EIAV Gag late assembly domain was previously characterized as a sequence critical for release of assembling virions. We now show that this YXXL sequence interacts in vitro with the AP-50 subunit of the AP-2 complex, while the functionally interchangeable late assembly domains carried by the Rous sarcoma virus p2b protein and human immunodeficiency virus type 1 p6 protein, which utilize PPPY and PTAPP L domains, respectively, do not bind AP-50 in vitro. In addition, EIAV late domain mutants containing mutations that have previously been shown to abrogate budding also exhibit marked decreases in AP-50 binding efficiencies. A role for AP-2 complex in viral assembly is supported by immunofluorescence analysis of EIAV-infected equine dermal cells demonstrating specific colocalization of the α adaptin subunit of AP-2 with the EIAV p9 protein at sites of virus budding on the plasma membrane. These data provide strong evidence that EIAV utilizes the cellular AP-2 complex to accomplish virion assembly and release.  相似文献   

15.
Nonribosomal peptide synthetases (NRPSs) are multimodular proteins capable of producing important peptide natural products. Using an assembly line process, the amino acid substrate and peptide intermediates are passed between the active sites of different catalytic domains of the NRPS while bound covalently to a peptidyl carrier protein (PCP) domain. Examination of the linker sequences that join the NRPS adenylation and PCP domains identified several conserved proline residues that are not found in standalone adenylation domains. We examined the roles of these proline residues and neighboring conserved sequences through mutagenesis and biochemical analysis of the reaction catalyzed by the adenylation domain and the fully reconstituted NRPS pathway. In particular, we identified a conserved LPxP motif at the start of the adenylation‐PCP linker. The LPxP motif interacts with a region on the adenylation domain to stabilize a critical catalytic lysine residue belonging to the A10 motif that immediately precedes the linker. Further, this interaction with the C‐terminal subdomain of the adenylation domain may coordinate movement of the PCP with the conformational change of the adenylation domain. Through this work, we extend the conserved A10 motif of the adenylation domain and identify residues that enable proper adenylation domain function. Proteins 2014; 82:2691–2702. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Outer membrane protein A (OmpA), a major structural protein of the outer membrane of Escherichia coli, consists of an N-terminal 8-stranded beta-barrel transmembrane domain and a C-terminal periplasmic domain. OmpA has served as an excellent model for studying the mechanism of insertion, folding, and assembly of constitutive integral membrane proteins in vivo and in vitro. The function of OmpA is currently not well understood. Particularly, the question whether or not OmpA forms an ion channel and/or nonspecific pore for uncharged larger solutes, as some other porins do, has been controversial. We have incorporated detergent-purified OmpA into planar lipid bilayers and studied its permeability to ions by single channel conductance measurements. In 1 M KCl, OmpA formed small (50-80 pS) and large (260-320 pS) channels. These two conductance states were interconvertible, presumably corresponding to two different conformations of OmpA in the membrane. The smaller channels are associated with the N-terminal transmembrane domain, whereas both domains are required to form the larger channels. The two channel activities provide a new functional assay for the refolding in vitro of the two respective domains of OmpA. Wild-type and five single tryptophan mutants of urea-denatured OmpA are shown to refold into functional channels in lipid bilayers.  相似文献   

17.
Sad1 is an essential splicing factor initially identified in a genetic screen in Saccharomyces cerevisiae for snRNP assembly defects. Based on sequence homology, Sad1, or USP39 in humans, is predicted to comprise two domains: a zinc finger ubiquitin binding domain (ZnF-UBP) and an inactive ubiquitin-specific protease (iUSP) domain, both of which are well conserved. The role of these domains in splicing and their interaction with ubiquitin are unknown. We first used splicing microarrays to analyze Sad1 function in vivo and found that Sad1 is critical for the splicing of nearly all yeast intron-containing genes. By using in vitro assays, we then showed that it is required for the assembly of the active spliceosome. To gain structural insights into Sad1 function, we determined the crystal structure of the full-length protein at 1.8 Å resolution. In the structure, the iUSP domain forms the characteristic ubiquitin binding pocket, though with an amino acid substitution in the active site that results in complete inactivation of the enzymatic activity of the domain. The ZnF-UBP domain of Sad1 shares high structural similarly to other ZnF-UBPs; however, Sad1''s ZnF-UBP does not possess the canonical ubiquitin binding motif. Given the precedents for ZnF-UBP domains to function as activators for their neighboring USP domains, we propose that Sad1''s ZnF-UBP acts in a ubiquitin-independent capacity to recruit and/or activate Sad1''s iUSP domain to interact with the spliceosome.  相似文献   

18.
Linne U  Marahiel MA 《Biochemistry》2000,39(34):10439-10447
Product assembly by nonribosomal peptide synthetases (NRPS) is initiated by starter modules that comprise an adenylation (A) and a peptidyl carrier protein (PCP) domain. Elongation modules of NRPS have in addition a condensation (C) domain that is located upstream of the A domain. They cannot initiate peptide bond formation. To understand the role of domain arrangements and the influence of the domains present upstream of the A domains of the elongation modules of TycB on the initiation and epimerization activities, we constructed a set of proteins derived from the tyrocidine synthetases of Bacillus brevis, which represent several N-terminal truncations of TycB and the first module of TycC. The latter was fused with the thioesterase domain (Te) to give TycC(1)-CAT-Te and to ensure product turnover. TycB(2)(-)(3)-AT.CATE and TycB(3)-ATE, lacking an N-terminal C domain, were capable of initiating peptide synthesis and epimerizing. In contrast, the corresponding constructs with a cognate N-terminal C domain, TycB(2)(-)(3)-T.CATE and TycB(3)-CATE, were strongly reduced in initiation and epimerization. Evidence is also provided that this reduction is due to substrate binding in an enantioselective binding pocket at the acceptor position of the C domains. By using TycB(2)(-)(3)-AT.CATE and TycB(3)-ATE, we were able to turn an elongation module into an initiation module, and to establish an in-trans system for the formation of new di- and tripeptides with recombinant NRPS modules. We also show that epimerization domains of elongation modules can in principle epimerize both aminoacyl-S-Ppant (TycB(3)-ATE) and peptidyl-S-Ppant (TycB(2)(-)(3)-AT.CATE) substrates, although the efficiency for epimerizing the noncognate aminoacyl-S-Ppant substrates appears to be lowered.  相似文献   

19.
The human immunodeficiency virus type 1 (HIV-1) capsid protein (CA) plays a crucial role in both assembly and maturation of the virion. Numerous recent studies have focused on either the soluble form of CA or the polymer end product of in vitro CA assembly. The CA polymer, in particular, has been used to study CA-CA interactions because it is a good model for the CA interactions within the virion core. However, analysis of the process of in vitro CA assembly can yield valuable insights into CA-CA interactions and the mechanism of core assembly. We describe here a method for the analysis of CA assembly kinetics wherein the progress of assembly is monitored by using turbidity. At pH 7.0 the addition of either of the isolated CA domains (i.e., the N or the C domain) to an assembly reaction caused a decrease in the assembly rate by competing for binding to the full-length CA protein. At pH 8.0 the addition of the isolated C domain had a similar inhibitory affect on CA assembly. However, at pH 8.0 the isolated N domain had no affect on the rate of CA assembly but, when mixed with the C domain, it alleviated the C-domain inhibition. These data provide biochemical evidence for a pH-sensitive homotypic N-domain interaction, as well as for an N- and C-domain interaction.  相似文献   

20.
The human immunodefiency virus (HIV) uses the human CD4 glycoprotein as a receptor for infection of susceptible cells. Cells expressing a series of mutated forms of the CD4 gene have shown a variability in their ability to support replication of three HIV type 1 (HIV-1) and three HIV-2 strains. Moreover, when different stages of virus production were examined by a variety of assays, a consistent delay was observed in all cell lines containing CD4 mutants compared with those with intact full-length CD4. Cells expressing the CD4.415 mutant (modified at the serine 415 corresponding to a phosphorylation site of the cytoplasmic domain) showed only a minimal effect on virus replication. Cells expressing CD4.403 and CD4.401 mutants (lacking the whole cytoplasmic domain) manifested a moderate delay in production of virus progeny. The most substantial effect on HIV replication was observed in cells expressing a chimeric hybrid containing sequences corresponding to the first 177 residues of the N-terminal CD4 fused to CD8 sequences encoding the hinge, transmembrane, and cytoplasmic domains of the human CD8. Furthermore, in a cell-to-cell contact assay, fusion was absent when the CD4 proximal membrane domain was replaced by the CD8 counterpart. In addition, a strong correlation between the down-modulation of the surface CD4 and HIV expression was observed. These observations suggest that in addition to the known binding region, other domains of CD4 could play an important role in regulating HIV entry of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号