首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 321 毫秒
1.
From the spectrin gene to the assembly of the membrane skeleton   总被引:1,自引:0,他引:1  
The complete nucleotide sequence coding for the chicken brain alpha-spectrin was determined. It comprises the entire coding frame, 5'- and 3'-untranslated sequences terminating in a poly(A)-tail. The deduced amino acid sequence shows that the alpha-chain contains 22 segments, 20 of which correspond to the typical 106 residue repeat of the human erythrocyte spectrin. Some segments non-homologous to the repeat structure reside in the middle and COOH-terminal regions. Sequence comparisons with other proteins show that these segments evidently harbour some structural and functional features such as: homology to alpha-actinin and dystrophin, two typical EF-hand structures (calcium-binding) and a putative calmodulin-binding site in the COOH-terminus and a sequence homologous to various src-tyrosine kinases and to phospholipase C in the middle of the molecule. Comparison of our sequence with other partial alpha-spectrin sequences shows that alpha-spectrin is well conserved in different species and that the human erythrocyte alpha-spectrin is divergent.  相似文献   

2.
Using several consensus sequences for the 106 amino acid residue alpha-spectrin repeat segment as probes we searched animal sequence databases using the BLAST program in order to find proteins revealing limited, but significant similarity to spectrin. Among many spectrins and proteins from the spectrin-alpha-actinin-dystrophin family as well as sequences showing a rather high degree of similarity in very short stretches, we found seven homologous animal sequences of low overall similarity to spectrin but showing the presence of one or more spectrin-repeat motifs. The homology relationship of these sequences to alpha-spectrin was further analysed using the SEMIHOM program. Depending on the probe, these segments showed the presence of 6 to 26 identical amino acid residues and a variable number of semihomologous residues. Moreover, we found six protein sequences, which contained a sequence fragment sharing the SH3 (sarc homology region 3) domain homology of 42-59% similarity. Our data indicate the occurrence of motifs of significant homology to alpha-spectrin repeat segments among animal proteins, which are not classical members of the spectrin-alpha-actinin-dystrophin family. This might indicate that these segments together with the SH3 domain motif are conserved in proteins which possibly at the early stage of evolution were close cognates of spectrin-alpha-actinin-dystrophin progenitors but then evolved separately.  相似文献   

3.
Spectrin, the major constituent protein of the erythrocyte membrane skeleton, exhibits chaperone activity by preventing the irreversible aggregation of insulin at 25 degrees C and that of alcohol dehydrogenase at 50 degrees C. The dimeric spectrin and the two subunits, alpha-spectrin and beta-spectrin prevent such aggregation appreciably better, 70% in presence of dimeric spectrin at an insulin:spectrin ratio of 1:1, than that in presence of the tetramer of 25%. Our results also show that spectrin binds to denatured enzymes alpha-glucosidase and alkaline phosphatase during refolding and the reactivation yields are increased in the presence of the spectrin derivatives when compared with those refolded in their absence. The unique hydrophobic binding site on spectrin for the fluorescence probe, 6-propionyl-2-(dimethylamino)naphthalene (Prodan) has been established to localize at the self-associating domain with the binding stoichiometry of one Prodan/both dimeric and tetrameric spectrin. The other fluorescence probe, 1-anilinonaphthalene-8-sulfonic acid, does not show such specificity for spectrin, and the binding stoichiometry is between 3 and 5 1-anilinonaphthalene-8-sulfonic acid/dimeric and tetrameric spectrin, respectively. Regions in alpha- and beta-spectrins have been found to have sequence homology with known chaperone proteins. More than 50% similarities in alpha-spectrin near the N terminus with human Hsp90 and in beta-spectrin near the C terminus with human Hsp90 and Escherichia coli DnaJ have been found, indicating a potential chaperone-like sequence to be present near the self-associating domain that is formed by portions of alpha-spectrin near the N terminus and the beta-spectrin near the C terminus. There are other patches of sequences also in both the spectrin polypeptides, at the other termini as well as in the middle of the rod domain having significant homology with well known chaperone proteins.  相似文献   

4.
Hereditary elliptocytosis (HE) and hereditary pyropoikilocytosis (HPP) are inherited disorders of erythrocyte shape that are frequently associated with abnormalities in alpha-spectrin, one of the principal structural proteins of the erythrocyte membrane skeleton. Five polymorphisms of the alpha-spectrin gene, located in a 6-kb interval of genomic DNA, were identified and analyzed in normal and mutant alpha-spectrin alleles. Three of these polymorphisms are due to single nucleotide substitutions in the alpha-spectrin gene coding region that lead to changes in the amino acid sequence. In combination, these three polymorphisms are responsible for the different peptide phenotypes of the alphaII domain previously observed following limited tryptic digestion of spectrin protein. The most common haplotype, type 1, was found predominantly in Caucasians and was the only haplotype identified in Asians. Haplotypes 2, 3, and 4 were identified predominantly in individuals of African ancestry and were commonly found in patients with HE or HPP. Analysis of coinheritance of alphaII domain polymorphisms with alpha-spectrin gene mutations causing HE or HPP in African-American patients with HE and HPP suggests that, with one exception, a given HE/HPP mutation is present in an alpha-spectrin gene of only one haplotype, indicating a founder effect. The other two polymorphisms located in this region of the alpha-spectrin gene do not change the amino acid sequence of the encoded alpha-spectrin chain and are not in linkage disequilibrium with three of the four alphaII domain haplotypes. A model is proposed for the evolutionary origin of the different haplotypes.  相似文献   

5.
S Lundberg  V P Lehto  L Backman 《Biochemistry》1992,31(24):5665-5671
Calcium binding to brain and erythrocyte spectrins was studied at physiological ionic strength by a calcium overlay assay and aqueous two-phase partitioning. When the spectrins were immobilized on nylon membranes by slot blotting, the overlay assay showed that even though both spectrins bound 45Ca2+, the brain protein displayed much greater affinity for calcium ions than erythrocyte spectrin did. Since the observed binding was weaker than that displayed by calmodulin under similar conditions, the overlay assay results indicated that the binding must be weaker than 1 microM. The phase partition experiments showed that there are at least two sites for calcium on brain spectrin and that calcium binding to one of these sites is reduced significantly by magnesium ions. From the partition isotherm, the dissociation constants were estimated as 50 microM for the Mg(2+)-independent site and 150 microM for the Mg(2+)-dependent site. The phase partition results also showed that erythrocyte spectrin bound calcium ions at least 1 order of magnitude weaker. By examining calcium binding to slot-blotted synthetic peptides, we identified two binding sites in brain spectrin. One mapped to the second putative calcium binding site (EF-hand) in alpha-spectrin and the other to the 36 amino acid residue long insert in domain 11. In addition, a tryptic fragment derived from the C-terminal of erythrocyte alpha-spectrin, which contained the two postulated EF-hands, also bound calcium. These findings suggest that the calcium signal system may also involve direct binding of calcium to spectrin beside known calcium modulators such as calmodulin and calpain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We report the complete sequence of Drosophila alpha-spectrin and show that it is similar to vertebrate nonerythroid spectrins. As in vertebrates, the alpha subunit consists of two large domains of repetitive sequence (segments 1-9 and 11-19) separated by a short nonrepetitive sequence (segment 10). The 106-residue repetitive segments are defined by a consensus sequence of 54 residues. Chicken alpha-spectrin (Wasenius, V.-M., M. Saraste, P. Salven, M. Eramaa, L. Holm, V.-P. Lehto. 1989. J. Cell Biol. 108:79-93) shares 50 of these consensus positions. Through comparison of spectrin and alpha-actinin sequences, we describe a second lineage of spectrin segments (20 and 21) that differs from the 106-residue segments by an 8-residue insertion and by lack of many of the consensus residues. We present a model of spectrin evolution in which the repetitive lineage of spectrin segments and the nonrepetitive lineage of segments found in spectrin and alpha-actinin arose by separate multiplication events.  相似文献   

7.
Chicken lens spectrin is composed predominantly of equimolar amounts of two polypeptides with solubility properties similar, but not identical, to erythrocyte spectrin. The larger polypeptide, Mr 240,000 (lens alpha-spectrin), co-migrates with erythrocyte and brain alpha-spectrin on one- and two-dimensional SDS polyacrylamide gels and cross-reacts with antibodies specific for chicken erythrocyte alpha-spectrin; the smaller polypeptide, Mr 235,000 (lens gamma-spectrin), co-migrates with brain gamma-spectrin and does not cross-react with either the alpha-spectrin antibodies specific for chicken erythrocyte beta-spectrin. Minor amounts of polypeptides antigenically related to erythrocyte beta-spectrin with a greater electrophoretic mobility than lens gamma-spectrin are also detected in lens. The equimolar ratio of lens alpha- and gamma-spectrin is invariantly maintained during the extraction of lens plasma membranes under different conditions, or after immunoprecipitation of whole extracts of lens with erythrocyte alpha-spectrin antibodies. Two-dimensional peptide mapping reveals that whereas alpha-spectrins from chicken erythrocytes, brain, and lens are highly homologous, the gamma-spectrins, although related, have some cell-type-specific peptides and are substantially different from erythrocyte beta-spectrin. Thus, the expression of cell-type-specific gamma- and beta-spectrins may be the basis for the assembly of a spectrin-plasma membrane complex whose molecular composition is tailored to the functional requirements of the particular cell-type.  相似文献   

8.
9.
We examined the structure and the distribution of binding activities within bacterially produced fragments of Drosophila alpha spectrin. By electron microscopy, purified spectrin fragments resembled the corresponding regions of native spectrin. The contour lengths of recombinant spectrin molecules were proportional to the length of their coding sequences, which is consistent with current models of spectrin structure in which individual segments of the polypeptide contribute independently to the structure of the native molecule. We localized two sites at which calcium may regulate spectrin function. First, a site responsible for calmodulin binding to Drosophila alpha spectrin was identified near the junction of repetitive segments 14 and 15. Second, a domain of Drosophila alpha spectrin that includes two EF hand calcium-binding sequences bound 45Ca in blot overlay assays. EF hand sequences from a homologous domain of Drosophila alpha actinin did not bind calcium under the same conditions.  相似文献   

10.
Evolution of the fibronectin gene. Exon structure of cell attachment domain   总被引:6,自引:0,他引:6  
Genomic DNA coding for human fibronectin was identified from a human genomic library by screening with a cDNA clone that specifies the cell attachment domain in human fibronectin. Two clones which together provided more than 22 kilobase pairs of the fibronectin gene were isolated. The exons in this region correspond to approximately 40% of the coding region in the fibronectin gene. They code for the middle region of the polypeptide which consists of homologous repeating segments of about 90 amino acids called type III homologies. Nucleotide sequence of the portion of the gene corresponding to the cell attachment domain showed that the Arg-Gly-Asp-Ser cell attachment site is encoded within a 165-base pair exon. This exon, together with a 117-base pair exon codes for a homology unit. Analysis of the exon/intron organization in some of the neighboring homology units indicated a similar 2-exon structure. An exception to this pattern is that a single large exon codes for a type III homology unit that, due to alternative mRNA splicing, exists in some but not all fibronectin polypeptides. The introns separating the coding sequences for the type III homology units are located in conserved positions whereas the introns that interrupt the coding sequence within the units are in a variable position generating variations in the size of the homologous exons. This exon/intron organization suggests that the type III homology region of the fibronectin gene has evolved by a series of gene duplications of a primordial gene consisting of two exons. Specification of one of these homology units to the cell attachment domain has occurred within this exon/intron arrangement.  相似文献   

11.
12.
Full-length sequence of the cDNA for human erythroid beta-spectrin   总被引:22,自引:0,他引:22  
Spectrin is the major molecular consituent of the red cell membrane skeleton. We have isolated overlapping human erythroid beta-spectrin cDNA clones and determined 6773 base pairs of contiguous nucleotide sequence. This includes the entire coding sequence of beta-spectrin. The sequence translates into a 2137 amino acid, 246-kDa peptide. beta-Spectrin is found to consist of three distinct domains. Domain I, at the N terminus, is a 272-amino acid region lacking resemblance to the spectrin repetitive motif. Sequences in this region exhibit striking sequence homology, at both nucleotide and amino acid levels, to the N-terminal "actin-binding" domains of alpha-actinin and dystrophin. Between residues 51 and 270 there is 55% amino acid identity to human dystrophin, with only four single amino acid gaps in alignment. Domain II consists of 17 spectrin repeats. Several sequence variations are observed in typical repeat structure. Homology to alpha-actinin extends beyond domain I into the N-terminal portion of domain II. Domain III, 52 amino acid residues at the C terminus, does not adhere to the spectrin repeat motif. Combining knowledge of spectrin primary structure with previously reported functional studies, it is possible to make several inferences regarding structure/function relationships within the beta-spectrin molecule.  相似文献   

13.
The complete sequence of 595 amino acids of the alpha-I domain of human erythrocyte spectrin has been determined. Peptides derived from three different protease cleavages were purified using high performance liquid chromatography and subjected to automated amino acid sequence analysis. These data along with sequences of the cyanogen bromide and large tryptic peptides (Speicher, D.W., Davis, G., Yurchenco, P.D., and Marchesi, V.T. (1983) J. Biol. Chem. 258, 14931-14937) represent most or all of the sequence of spectrin alpha-I. The single remaining ambiguity is the precise termination of the COOH terminus of the alpha-I domain. The sequence data suggest that the 595 residues presented here represent the complete sequence of the alpha-I domain, but the apparent size of the COOH-terminal CNBr fragment suggests the existence of an additional 38 residues at the end of the domain. The sequence of the alpha-I domain contains a single type of internal homology composed of multiple 106-amino acid repeats consistent with the occurrence of multiple gene duplications during the course of spectrin evolution. The only portion of the alpha-I sequence which does not appear to contain this sequence repeat is the segment containing the NH2-terminal 17 residues. This unique segment may be part of the oligomer binding site. No disulfide bonds appear to be involved in the structure of alpha-I and cysteine is not highly conserved. Calculations of secondary structure suggest the presence of short helices which fold into triple helical segments approximately 50 A in length. There is little beta sheet structure. A model of spectrin structure incorporating the repeat unit and proposed secondary structure is presented. A computer search of alpha-I sequence with the National Biomedical Research Foundation database of 2145 protein sequences did not detect any significant relationships. Spectrin is apparently the first member of a new class of proteins to be structurally characterized.  相似文献   

14.
Nucleotide sequence analysis of the cloned salmon preproinsulin cDNA   总被引:4,自引:0,他引:4  
A cDNA library was constructed using polyadenylated RNA from salmon (Oncorhynchus keta) Brockmann bodies, plasmid vector pBR322, and in vitro recombinant DNA techniques. Insulin-related clones were identified with a cDNA probe generated from the same RNA and enriched for insulin sequences. Two recombinants were shown to contain the nucleotide sequence of the entire coding region and parts of the 5' and 3' untranslated regions. The salmon preproinsulin mRNA is about 760 nucleotides long, 315 of which code for the protein, while about 190 and 200 nucleotides belong to the 5' and 3' flanking regions, respectively. Comparison of the nucleotide sequences of salmon insulin mRNA with those from other species reveals that sequence conservation is limited to the regions coding for the B and A peptides and two segments of the signal peptide. The C-peptide region exhibits no significant sequence homology with the C-peptides of other vertebrates. The 5' and 3' untranslated regions of the salmon preproinsulin mRNA are homologous only with the anglerfish mRNA, whereas there is no evident homology with those of birds and mammals. In addition to establishing the sequence of the preproinsulin mRNA, cloned salmon insulin cDNA provides a specific probe for the analysis and isolation of genomic DNA fragments containing insulin genes.  相似文献   

15.
Four mammalian beta-spectrin genes are currently recognized, all encode proteins of approximately 240-280,000 M(r) and display 17 triple helical homologous approximately 106-residue repeat units. In Drosophila and Caenorhabditis elegans, a variant beta spectrin with unusual properties has been recognized. Termed beta heavy (beta(H)), this spectrin contains 30 spectrin repeats, has a molecular weight in excess of 400,000, and associates with the apical domain of polarized epithelia. We have cloned and characterized from a human retina cDNA library a mammalian ortholog of Drosophila beta(H) spectrin, and in accord with standard spectrin naming conventions we term this new mammalian spectrin beta 5 (betaV). The gene for human betaV spectrin (HUBSPECV) is on chromosome 15q21. The 11, 722-nucleotide cDNA of betaV spectrin is generated from 68 exons and is predicted to encode a protein with a molecular weight of 416,960. Like its fly counterpart, the derived amino acid sequence of this unusual mammalian spectrin displays 30 spectrin repeats, a modestly conserved actin-binding domain, a conserved membrane association domain 1, a conserved self-association domain, and a pleckstrin homology domain near its COOH terminus. Its putative ankyrin-binding domain is poorly conserved and may be inactive. These structural features suggest that betaV spectrin is likely to form heterodimers and oligomers with alpha spectrin and to interact directly with cellular membranes. Unlike its Drosophila ortholog, betaV spectrin does not contain an SH3 domain but displays in repeat 5 a 45-residue insertion that displays 42% identity to amino acids 85-115 of the E4 protein of type 75 human papilloma virus. Human betaV spectrin is expressed at low levels in many tissues. By indirect immunofluorescence, it is detected prominently in the outer segments of photoreceptor rods and cones and in the basolateral membrane and cytosol of gastric epithelial cells. Unlike its Drosophila ortholog, a distinct apical distribution of betaV spectrin is inapparent in the epithelial cell populations examined, although it is confined to the outer segments of photoreceptor cells. The complete cDNA sequence of human betaV spectrin is available from GenBank(TM) as accession number.  相似文献   

16.
An X  Guo X  Sum H  Morrow J  Gratzer W  Mohandas N 《Biochemistry》2004,43(2):310-315
The erythrocyte membrane is a composite structure consisting of a lipid bilayer tethered to the spectrin-based membrane skeleton. Two complexes of spectrin with other proteins are known to participate in the attachment. Spectrin has also been shown to interact with phosphatidylserine (PS), a component of the lipid bilayer, which is confined to its inner leaflet. That there may be multiple sites of interaction with PS in the spectrin sequence has been inferred, but they have not hitherto been identified. Here we have explored the interaction of PS-containing liposomes with native alpha- and beta-spectrin chains and with recombinant spectrin fragments encompassing the entire sequences of both chains. We show that both alpha-spectrin and beta-spectrin bind PS and that sites of high affinity are located within 8 of the 38 triple-helical structural repeats which make up the bulk of both chains; these are alpha8, alpha9-10, beta2, beta3, beta4, beta12, beta13, and beta14, and PS affinity was also found in the nonhomologous N-terminal domain of the beta-chain. No other fragments of either chain showed appreciable binding. Binding of spectrin and its constituent chains to mixed liposomes of PS and phosphatidylcholine (PC) depended on the proportion of PS. Binding of spectrin dimers to PS liposomes was inhibited by single repeats containing PS binding sites. It is noteworthy that the PS binding sites in beta-spectrin are grouped in close proximity to the sites of attachment both of ankyrin and of 4.1R, the proteins engaged in attachment of spectrin to the membrane. We conjecture that direct interaction of spectrin with PS in the membrane may modulate its interactions with the proteins and that (considering also the known affinity of 4.1R for PS) the formation of PS-rich lipid domains, which have been observed in the red cell membrane, may be a result.  相似文献   

17.
Interdomain interactions of spectrin are critical for maintenance of the erythrocyte cytoskeleton. In particular, “head-to-head” dimerization occurs when the intrinsically disordered C-terminal tail of β-spectrin binds the N-terminal tail of α-spectrin, folding to form the “spectrin tetramer domain”. This non-covalent three-helix bundle domain is homologous in structure and sequence to previously studied spectrin domains. We find that this tetramer domain is surprisingly kinetically stable. Using a protein engineering Φ-value analysis to probe the mechanism of formation of this tetramer domain, we infer that the domain folds by the docking of the intrinsically disordered β-spectrin tail onto the more structured α-spectrin tail.  相似文献   

18.
C Lemaire  R Heilig    J L Mandel 《The EMBO journal》1988,7(13):4157-4162
Dystrophin is a very large muscle protein (approximately 400 kd) the deficiency of which is responsible for Duchenne muscular dystrophy. Its function is unknown at present. In order to know whether different domains of the protein are differentially conserved during evolution, we have cloned and sequenced the chicken dystrophin cDNA. The protein coding sequence has almost the same size as in man. The N-terminal region that resembles the actin binding domain of alpha actinin, as well as the large spectrin like domain show 80% and 75% conservation respectively between chicken and man. In contrast, the C-terminal region shows 95% identity over 627 aa suggesting that it is an important region of interaction with other proteins. Comparison of the amino acid sequence of this C-terminal region to other protein sequences shows only marginally significant similarities. Finally we have found a striking conservation of three segments of the 3' untranslated sequence (85% homology over a total of 920 nt) between chicken and man. These also appear to be conserved in other mammals. This high conservation is not linked to open reading frames.  相似文献   

19.
J Nathans  D S Hogness 《Cell》1983,34(3):807-814
We have isolated cDNA clones generated from the mRNA encoding the opsin apoprotein of bovine rhodopsin and used these cDNAs to isolate genomic DNA clones containing the complete opsin gene. Nucleotide sequence analysis of the cloned DNAs has yielded a complete amino acid sequence for bovine rhodopsin and provided an intron-exon map of its gene. The mRNA homologous sequences in the 6.4 kb gene consist of a 96 bp 5' untranslated region, a 1044 bp coding region, and a surprisingly long approximately 1400 bp 3' untranslated region, and are divided into five exons by four introns that interrupt the coding region. Secondary structure analysis predicts that the bovine rhodopsin chain, like that of bacteriorhodopsin, contains seven transmembrane segments. Interestingly, three of the four introns are immediately distal to the codons for three of these segments, and one of these introns marks the boundary between the C-terminal domain and a transmembrane domain.  相似文献   

20.
The complete cDNA and polypeptide sequences of human erythroid alpha-spectrin.   总被引:11,自引:0,他引:11  
Overlapping human erythroid alpha-spectrin cDNA clones were isolated from lambda gt11 libraries constructed from cDNAs of human fetal liver and erythroid bone marrow. The composite 8001-base pair (bp) cDNA nucleotide sequence contains 187-bp 5'- and 528-bp 3'-untranslated regions and has a single long open reading frame of 7287 bp that encodes a polypeptide of 2429 residues. As previously described (Speicher, D. W., and Marchesi, V. T. (1984) Nature 311, 177-180), spectrin is composed largely of homologous 106-amino acid repeat units. From the amino acid sequence deduced from the cDNA, alpha-spectrin can be divided into 22 segments. Segments 1-9 and 12-19 are homologous and can therefore be considered repeats; the average number of identical residues in pairwise comparisons of these repeats is 22 out of 106, or 21%. Of these 17 repeats, 11 are exactly 106 amino acids in length, whereas five others differ from this length by a single residue. Segments 11, 20, and 21, although less homologous, appear to be related to the more highly conserved repeat units. The very N-terminal 22 residues, segment 10, which is atypical both in length and sequence, and the C-terminal 150 residues in segment 22 appear to be unrelated to the conserved repeat units. The sequence of the erythroid alpha-spectrin polypeptide chain is compared to that of human alpha-fodrin and chicken alpha-actinin to which it is related. alpha-Spectrin is more distantly related to dystrophin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号