首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The specific activity of (Na+ + Mg2+)-dependent ATPase is three times greater in the microsomes of sea-water eels than in freshwater eels; the specific activity is one quarter of that of (Na+ + K+ + Mg2+)-dependent ATPase in both cases.(Na+ + Mg2+)-dependent ATPase is optimally active in a medium containing 8 mM NaCl, 4 mM MgCI2, 4 mM ATP, pH 8.8 and at 30 °C; the enzyme is inhibited by ouabain, by NaCl concentrations > 100 mM and by treatment with urea.It is concluded that the (Na+ + Mg2+)-dependent ATPase activity of gills arises from the presence of a (Na+ + K+ + Mg2+)-dependent ATPase.  相似文献   

2.
—In the presence of synaptosomes prepared from rat brain, only ATP, dATP and ADP but not dADP were active as substrates of phosphatase (ATP phosphohydrolase; EC 3.6.1 4) in the presence of 150mm-Na+ and 20mm-K+. An active adenylate kinase (ATP:AMP phosphotransferase; EC 2.7.4.3.) was demonstrated in the synaptosomal fractions by means of paper chromatography, paper electrophoresis and enzymic reactions, so that the high activity with ADP as substrate could represent an activity of an ATPase. Apparently dADP was not a substrate for the kinase; no dATP was formed when dADP was incubated with the synaptosomal fraction in the presence of Na+, K+ and Mg2+. Small amounts of P1 were liberated with dADP, IDP, GDP or CDP, but not UDP, as substrates, but none was produced in the presence of mononucleotides. The adenine-deoxyribose bond, but not the adenine-ribose bond, was hydrolysed upon the addition of 5% (w/v) TCA to the reaction mixture. The KM for the hydrolysis of ATP but not ITP, in the presence of Mg2+, or of Na+, K+ and Mg2+, was lower for the synaptosomal ATPase than for the microsomal ATPase, and the values for Vmax for synaptosomal ATPase were higher. The activation increment was generally higher for the synaptosomal ATPase and no distinct differences in the properties of the enzyme from either particulate fractions were observed. Mg2+ could be partially replaced by Mn2+ in the synaptosomal ATPase system, but there was little Na+-K+-activation observed in the presence of the latter. The effects of ouabain and of homogenization under various conditions suggested localization of the K+-sensitive site of the ATPase on the surface of the synaptosomal membrane. Activity of the Na+-K+-Mg2+ ATPase increased after freezing and thawing of the sonicated, sucrose or tris-treated preparations but decreased considerably in the synaptosomes treated with 001 m-deoxycholate. Activity of the Mg2+ ATPase in the latter preparation showed little change.  相似文献   

3.
The effect of the hydrolysis product Pi and the artificial substrate p-nitrophenyl phosphate (p-nitrophenyl-P) on ouabain binding to (Na+ + K+)-activated ATPase was investigated.The hypothesis that (Mg2+ + p-nitrophenyl-P)-supported ouabain binding might be due to Pi release and thus (Mg2+ + Pi)-supported could not be confirmed.The enzyme · ouabain complexes obtained with different substrates were characterized according to their dissociation rates after removal of the ligands facilitating binding. The character of the enzyme · ouabain complex is determined primarily by the monovalent ion present during ouabain binding, but, qualitatively at least, it is immaterial whether binding was obtained with p-nitrophenyl phosphate or Pi.The presence or absence of Na+ during binding has a special influence upon the character of the enzyme · ouabain complex. Without Na+ and in the presence of Tris ions the complex obtained with (Mg2+ + Pi) and that obtained with (Mg2+ + p-nitrophenyl-P) behaved in a nearly identical manner, both exhibiting a slow decay. High Na+ concentration diminished the level of Pi-supported ouabain binding, having almost no effect on p-nitrophenyl phosphate-supported binding. Both enzyme · ouabain complexes, however, now resembled the form obtained with (Na+ + ATP), as judged from their dissociation rates and the K+ sensitivity of their decay. The complexes obtained at a high Na+ concentration underwent a very fast decay which could be slowed considerably after adding a low concentration of K+ to the resuspension medium. The most stable enzyme · ouabain complex was obtained in the presence of Tris ions only, irrespective of whether p-nitrophenyl phosphate or Pi facilitated complex formation. The presence of K+ gave rise to a complex whose dissociation rate was intermediate between those of the complexes obtained in the presence of Tris and a high Na+ concentration.It is proposed that the different ouabain dissociation rates reflect different reactive state of the enzyme. The resemblance between the observations obtained in phosphorylation and ouabain binding experiments is pointed out.  相似文献   

4.
Modifications of some membranal enzymatic activities in rabbit brain edema induced by cold injury were studied. The edema was characterized by the tissue H2O content and the K+/Na+ ratio. Comparison of the respiratory rate of isolated mitochondria in the state 3 and 4 and the ADP/O ratio suggested an alteration in the ATP synthesis mechanism. The oligomycin sensitive ATPase activity was severely reduced in mitochondria isolated from edematous cells. The alteration of the ouabain sensitive Na+-K+-ATPase was first qualitative in the sense where the response of the ATPase to the K+/Na+ ratio was modified. A loss of the total activity was then observed. Intravenous injection of CDP choline induced a regression of the edema, a restoration of the sensitivity of the mitochondrial ATPase towards oligomycin and a restoration of the sensitivity of the Na+-K+-ATPase to the K+/Na+ ratio. These results suggest that the reversible damages of the cells induced by cold injury were due to a disorder at the protein-lipid interaction level.  相似文献   

5.
The Wachstein and Meisel incubation medium was used to detect ATPase activity in epimastigote, spheromastigote (amastigote), and bloodstream trypomastigote forms of Trypanosoma cruzi. Reaction product, indicative of enzyme activity, was associated with the plasma membrane covering the cell body and the flagellum of the parasite. No reaction product was found in the portion of the plasma membrane lining the flagellar pocket. The plasma membrane-associated ATPase activity was not inhibited by ouabain or oligomycin, was detected in incubation medium without K+, was inhibited by prolonged glutaraldehyde fixation, and its activity was diminished when Mg2+ was omitted from the incubation medium. The Ernst medium was used to detect Na+-K+-ATPase activity in T. cruzi. No reaction product indicative of the presence of this enzyme was detected. Reaction product indicative of 5'-nucleotidase was not detected in T. cruzi. Acid phosphatase activity was detected in lysosomes. These results indicate that a Mg2+-activated ATPase is present in the plasma membrane of T. cruzi and that it can be used as an enzyme marker, provided that the mitochondrial and flagellar ATPases are inhibited, to assess the purity of plasma membrane fractions isolated from this parasite.  相似文献   

6.
The presence of a Na+K+-activated, Mg2+-dependent ATPase (E.C. 3.6.1.3) has been demonstrated in microsomal preparations from the Malpighian tubules of Locusta. The effects of sodium and potassium ions, and different concentrations of ouabain, have been studied in relation to the activity of this enzyme and the ability of in vitro Malpighian tubule preparations to secrete fluid. From these studies it seems highly likely that a Na+K+ activated ATPase ‘pump’ is involved in fluid transport across the walls of the tubules.  相似文献   

7.
Liver plasma membranes enriched in bile canaliculi were isolated from rat liver by a modification of the technique of Song et al. (J. Cell Biol. (1969) 41, 124–132) in order to study the possible role of ATPase in bile secretion. Optimum conditions for assaying (Na+ + K+)-activated ATPase in this membrane fraction were defined using male rats averaging 220 g in weight. (Na+ + K+)-activated ATPase activity was documented by demonstrating specific cation requirements for Na+ and K+, while the divalent cation, Ca2+, and the cardiac glycosides, ouabain and scillaren, were inhibitory. (Na+ + K+)-activated ATPase activity averaged 10.07 ± 2.80 μmol Pi/mg protei per h compared to 50.03 ± 11.41 for Mg2+-activated ATPase and 58.66 ± 10.07 for 5′-nucleotidase. Concentrations of ouabain and scillaren which previously inhibited canalicular bile secretion in the isolated perfused rat liver produced complete inhibition of (Na+ + K+)-activated ATPase without any effect on Mg2+-activated ATPase. Both (Na+ + K+)-activated ATPase and Mg2+-activated ATPase demonstrated temperature dependence but differed in temperature optima. Temperature induced changes in specific activity of (Na+ + K+)-activated ATPase directly paralleled previously demonstrated temperature optima for bile secretion. These studies indicate that (Na+ + K+)-activated ATPase is present in fractions of rat liver plasma membranes that are highly enriched in bile canaliculi and provide a model for further study of the effects of various physiological and chemical modifiers of bile secretion and cholestasis.  相似文献   

8.
The inhibitory effect of ouabain on (Na+ + K+)-activated ATPase (Mg2+-dependent, (Na+ + K+)-activated ATP phosphohydrolase, EC 3.6.1.3) obtained from rat brain microsomal fraction was re-examined using a modified method to estimate the inhibited reaction velocity. This method involves a preincubation of a ouabain-enzyme mixture in the presence of Na+, Mg2+ and ATP to bring the ouabain-enzyme reaction to near equilibrium. The (Na+ + K+)-activated ATPase reaction was subsequently started by the addition of a KCl solution.  相似文献   

9.
10.
Properties of a plasmalemma phosphatase of the maize scutellum, tentatively identified as an ATPase in a previous paper, were investigated. Fresh and frozen-thawed scutellum slices, that had been treated with 10 mM HCl to destroy acid phosphatases, were used as a source of enzyme. With the exceptions of the Na+, K+ and dinitrophenol experiments, the two kinds of slices gave similar results. ATP and CTP were the best substrates for the enzyme followed by TTP, UTP, CDP, ADP and GTP. UDP, nucleoside monophosphates, sugar phosphates, inorganic pyrophosphate and p-nitrophenyl phosphate were relatively ineffective as substrates. The Km's for ATP and ADP were 0.65 and 5 mM, respectively, but the two substrates gave the same Vmax (49.8 μmol Pi/hr/g slices). Previously, it was shown that the products of ATP hydrolysis are ADP, AMP and Pi. Using these previous results and from the time courses of ATP disappearance from the bathing solution and the appearance of Pi and ADP, it was concluded that ATP and ADP were hydrolysed by the same enzyme. The ATPase was not inhibited by oligomycin. N-N′-Dicyclohexylcarbodiimide (DCCD) was a poor inhibitor, and a water soluble analog of DCCD, 1-ethyl-3 (3 dimethyl-aminopropyl)-carbodiimide, gave only 33% inhibition. The relative effectiveness of divalent cations for stimulating ATPase activity was Mn2+ > Mg2+ ? Ca2+ > Co2+ · Na+ and K+ gave a small additional stimulation in the presence of Mg2+. However, Na+ and K+ gave a much greater stimulation when no divalent cation was added, and this occurred only when fresh slices were used. Dinitrophenol also increased ATPase activity only when fresh slices were used. Since it is likely that both the uptake of Na+ and K+ and the action of dinitrophenol would lower the electrochemical gradient of protons across the plasmalemma, the different results obtained with fresh slices indicate that the ATPase in these slices was under the constraint of a proton gradient.  相似文献   

11.
Studies were conducted to characterize ATPase activity associated with purified chloroplast inner envelope preparations from spinach (Spinacea oleracea L.) plants. Comparison of free Mg2+ and Mg·ATP complex effects on ATPase activity revealed that any Mg2+ stimulation of activity was likely a function of the use of the Mg·ATP complex as a substrate by the enzyme; free Mg2+ may be inhibitory. In contrast, a marked (one- to twofold) stimulation of ATPase activity was noted in the presence of K+. This stimulation had a pH optimum of approximately pH 8.0, the same pH optimum found for enzyme activity in the absence of K+. K+ stimulation of enzyme activity did not follow simple Michaelis-Menton kinetics. Rather, K+ effects were consistent with a negative cooperativity-type binding of the cation to the enzyme, with the Km increasing at increasing substrate. Of the total ATPase activity associated with the chloroplast inner envelope, the K+-stimulated component was most sensitive to the inhibitors oligomycin and vanadate. It was concluded that K+ effects on this chloroplast envelope ATPase were similar to this cation's effects on other transport ATPases (such as the plasmalemma H+-ATPase). Such ATPases are thought to be indirectly involved in active K+ uptake, which can be facilitated by ATPase-dependent generation of an electrical driving force. Thus, K+ effects on the chloroplast enzyme in vitro were found to be consistent with the hypothesized role of this envelope ATPase in facilitating active cation transport in vivo.  相似文献   

12.
A membrane fraction enriched with a magnesium-dependent, monovalent cation-stimulated ATPase was isolated from red beet (Beta vulgaris L.) storage roots by a combination of differential centrifugation, extraction with KI, and sucrose density gradient centrifugation. This fraction was distinct from endoplasmic reticulum, Golgi, mitochondrial, and possibly tonoplast membranes as determined from an analysis of marker enzymes. The ATPase activity associated with this fraction was further characterized and found to have a pH optimum of 6.5 in the presence of both Mg2+ and K+. The activity was substrate specific for ATP and had a temperature optimum near 40°C. Kinetics with Mg:ATP followed a simple Michaelis-Menten relationship. However the kinetics of K+-stimulation were complex and suggestive of negative cooperativity. When monovalent cations were present at 2.5 millimolarity, ATPase was stimulated in the sequence K+ > Rb+ > Na+ > Li+ but when the concentration was raised to 50 millimolarity, the sequence changed to K+ ≥ Na+ ≥ Rb+ > Li. The activity was not synergistically stimulated by combinations of Na+ and K+. The enzyme was insensitive to NaN3, oligomycin, ouabain, and sodium molybdate but sensitive to N,N′-dicyclohexylcarbodiimide, diethylstilbestrol, and sodium vanadate. Based on the similarity between the properties of this ATPase activity and those from other well characterized plant tissues, it has been concluded that this membrane fraction is enriched with plasma membrane vesicles.  相似文献   

13.
Fluorescein isothiocyanate (FITC) reactivity with the (Na+ + K+)-ATPase was studied at pH 6.5 and 9.0. Reaction with FITC is nearly complete in 30 min and is irreversible at both pH values. Differential inhibition of enzyme activity is observed at the two pH values as follows: at pH 6.5 the maximal inhibition reached is only 35–45% of the ATPase or p-nitrophenylphosphatase activities, whereas at pH 9.0 ATPase activity can be completely inhibited while maximal phosphatase inhibition is ca. 50%. At all concentrations of FITC tested, more FITC is incorporated into the enzyme at pH 9.0 than at 6.5. At both pH values NaCl increases the inhibition due to FITC while KCl protects against the inhibition. ATP protects the enzyme at both pH values with a K0.5 in the range of 8–20 μm. Enzyme that is partially inactivated at either pH shows no significant change in the K0.5 values for Na+ or K+ or in the Km app for ATP or p-nitrophenylphosphate for the remaining activity. The binding of 48VO4 is not changed by reaction with FITC at either pH, while [3H]ouabain binding is inhibited after reaction at pH 9.0 only in the presence of Mg+2 + Na+ + ATP. [3H]Ouabain binding in the presence of Mg+2 + inorganic phosphate is not inhibited by FITC reaction. Enzyme reacted at both pH values exhibits the expected fluorescein fluorescence (λex = 490, λem = 520) but only with enzyme reacted at pH 9.0 is fluorescence quenching by K+ or reversal by Na+ observed. These results suggest that different classes of amino groups react with FITC at the two pH values tested, and that these groups have distinct roles in the different activities of the enzyme.  相似文献   

14.
C J Duncan 《Life sciences》1975,16(6):955-965
A Mg2+Na+K+ATPase was found in a ghost preparation from rabbit erythrocytes, a finding in conflict with previous reports, but in agreement with the known kinetics of cation movements in these cells. However the Mg2+Na+K+ATPase was not inhibited by 10−4M ouabain, nor by 10−4M Ca2+. The physiological status of this enzyme is discussed. The basic Mg2+-ATPase activity in this preparation is also stimulated by HCO3; it is suggested that the HCO3-stimulated ATPases reported in a variety of other preparations are not necessarily due to mitochondrial contamination but could well originate from the plasma membrane.  相似文献   

15.
The effects of the solvents deuterated water (2H2O) and dimethyl sulfoxide (Me2SO) on [3H]ouabain binding to (Na+,K+)-ATPase under different ligand conditions were examined. These solvents inhibited the type I ouabain binding to the enzyme (i.e., in the presence of Mg2++ATP+Na+). In contrast, both solvents stimulated type II (i.e., Mg2++Pi-, or Mn2+-dependent) binding of the drug. The solvent effects were not due to pH changes in the reaction. However, pH did influence ouabain binding in a differential manner, depending on the ligands present. For example, changes in pH from 7.05 to 7.86 caused a drop in the rate of binding by about 15% in the presence of Mg2++Na++ATP, 75% in the Mg2++Pi system, and in the presence of Mn2+ an increase by 24% under similar conditions. Inhibitory or stimulatory effects of solvents were modified as various ligands, and their order of addition, were altered. Thus, 2H2O inhibition of type I ouabain binding was dependent on Na+ concentration in the reaction and was reduced as Na+ was elevated. Contact of the enzyme with Me2SO, prior to ligands for type I binding, resulted in a greater inhibition of ouabain binding than that when enzyme was exposed to Na++ATP first and then to Me2SO. Likewise, the stimulation of type II binding was greater when appropriate ligands acted on enzyme prior to addition of the solvent. Since Me2SO and 2H2O inhibit type I ouabain binding, it is proposed that this reaction is favored under conditions which promote loss of H2O, and E1 enzyme conformation; the stimulation of type II ouabain binding in the presence of the solvents suggests that this type of binding is favored under conditions which promote the presence of H2O at the active enzyme center and E2 enzyme conformation. This postulation of a role of H2O in modulating enzyme conformations and ouabain interaction with them is in concordance with previous observations.  相似文献   

16.
Heart sarcolemma has been shown to contain an ATPase hydrolizing system which is activated by millimolar concentrations of divalent cations such as Ca2+ or Mg2+. Although Ca2+-dependent ATPase is released upon treating sarcolemma with trypsin, a considerable amount of the divalent cation dependent ATPase activity was retained in the membrane. This divalent cation dependent ATPase was solubilized by sonication of the trypsin-treated dog heart sarcolemma with 1% Triton X-100. The solubilized enzyme was subjected to column chromatography on a Sepharose-6B column, followed by ion-exchange chromatography on a DEAE cellulose column. The enzyme preparation was found to be rather labile and thus the purity of the sample could not be accurately assessed. The solubilized ATPase preparations did not show any cross-reactivity with dog heart myosin antiserum or with Na+ + K+ ATPase antiserum. The enzyme was found to be insensitive to inhibitors such as ouabain, verapamil, oligomycin and vanadate. The enzyme preparation did not exhibit any Ca2+-stimulated Mg2+ dependent ATPase activity. Furthermore, the low affinity of the enzyme for Ca2– (Ka = 0.3 mM) rules out the possibility of its involvement in the Ca2+ pump mechanism located in the plasma membrane of the cardiac cell.  相似文献   

17.
The Mg2+ dependent and Na+K+-activated ATPase activities of microsomal preparations from the rectum of Locusta migratoria were both stimulated, to varying extents, by crude extracts of the corpora cardiaca of this species. Mg2+ ATPase activity increased by approximately 549% whereas the hormonal stimulation of Na+K+-activated ATPase depended upon the concentration of sodium and potassium ions. At 100 mM Na+ and 20 mM K+, conditions which approximate to optimum for this enzyme system, Na+K+-activated ATPase activity increased by about 14%. At sub-optimum concentrations of these ions, i.e. 50 and 5 mM Na+ and K+ respectively, the increase in Na+K+-activated ATPase activity was about 205%. Ouabain at a concentration of 10?3 M completely abolished this stimulated activity and was consistently effective in partially reducing the stimulation of Mg2+ ATPase activity by corpora cardiaca extracts.  相似文献   

18.
The tumour promotor tetradecanoyl phorbol acetate (TPA) inhibited the Mg2+-, Ca2+- and (Na+-K+)ATPases of rat-liver plasma membranes. A nonpromoting phorbolester derivative was without effect. Colchicine and/or vinblastine inhibited the (Na+-K+)ATPase, glucagon-stimulated adenylate cyclase, and cyclic adenosine-3, 5-monophosphate (c-AMP) phosphodiesterase, but were without significant effect on the Mg2+- or Ca2+-ATPase. Cytochalasin B inhibited the (Na+-K+)ATPase. The results furnish the first direct evidence that these drugs may interact with plasma membranes. The mechanism of the enzyme inhibitions is briefly discussed.  相似文献   

19.
Monovalent ion stimulated adenosine triphosphatase from oat roots   总被引:19,自引:16,他引:3       下载免费PDF全文
Fisher J  Hodges TK 《Plant physiology》1969,44(3):385-393,395
Monovalent ion stimulated ATPase activity from oat (Avena sativa) roots has been found to be associated with various membrane fractions (cell wall, mitochondrial and microsomal) of oat roots. The ATPase requires Mg2+ (or Mn+2) but is further stimulated by K+ and other monovalent ions. The monovalent ions are ineffective in the absence of the divalent activating cation. The ATPase has been described with respect to monovalent ion specificity, temperature, pH, substrate specificity, and Mg2+ and K+ concentrations. It was further shown that oligomycin inhibits a part of the total ATPase activity and on the basis of the oligomycin sensitivity it appears that at least 2 membrane associated ATPases are being measured. The mitochondrial fraction is most sensitive to oligomycin and the microsomal fraction is least sensitive to oligomycin. The oligomycin insensitive ATPase appears to be stimulated more by K+ than the oligomycin sensitive ATPase.  相似文献   

20.
Ouabain binding was studied in isolated adult dog heart myocytes. The binding was correlated with the inhibition of K+-activated para-nitrophenylphosphatase (K+-PNPPase) activity and the beating response. It was shown that: (i) the specific binding was dependent upon Mg2+ and was inhibited by K+; (ii) the maximal binding capacity (Bmax) was 7.4 × 105 ouabain molecules per cell, or 410 pmol ouabain/K+-PNPPase unit (μmol/min); (iii) in the presence of Mg2+ (5 mm), there were two components in the Scatchard plot, i.e., a high-affinity component with a Kd value of 5.6 × 10?8m and a low-affinity component with a Kd value of 6.7 × 10?7m; (iv) the Hill coefficient (n′) for ouabain binding was 0.72 with a S0.5 value of 7.1 × 10?7m; these values were compatible with the values obtained from studies of K+-PNPPase inhibition by ouabain (n′ = 0.55, S0.5 = 3.6 × 10?7 m) and remained unchanged in the presence of physiological concentrations of Na+ plus K+; (v) in the presence of Mg2+ and K+, the high-affinity component tended to conform to the low-affinity component with an apparent decrease in Bmax; (vi) in the presence of Mg2+ and para-nitrophenylphosphate, the low-affinity component was changed to the high-affinity component with no change in Bmax; (vii) the dissociation rate of the labeled ouabain in the highly dilute medium was not altered in the presence of excess amounts of unlabeled ligand; this eliminated the possibility that the apparent negative cooperativity was due to a site-to-site interaction between receptors; (viii) ouabain increased the number of beating cells and the frequency of beating. Based on these findings, it is concluded that: (i) isolated myocytes possess functional receptors for ouabain; (ii) the binding of ouabain is associated with its inhibition of K+-PNPPase activity; (iii) ouabain receptors in isolated myocytes are of one class with at least two interconvertible conformational states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号