首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The X- and Q-band EPR spectra of Pseudomonas aeruginosa (63Cu)azurin and Alcaligenes denitrificans azurin have been measured at pH = 5.2 and 9.2, in the presence and absence of 40% glycerol. The EPR spectra of both proteins could properly be simulated by taking into account a spread in the tetrahedral angle of the copper site. The change in the EPR spectrum of Pseudomonas aeruginosa (63Cu)azurin that is observed upon an increase of the pH from 5.2 to 9.2 is consistent with a small decrease of the average tetrahedral angle from 61 degrees to 60 degrees. This geometrical change is consistent with the interpretation of earlier NMR and EXAFS observations. No pH effect is observed for Alcaligenes denitrificans azurin, in agreement with predictions based on crystallographic evidence. Glycerol has only a marginal effect on the appearance of the EPR spectra, and does not alleviate the "g-strain."  相似文献   

2.
The multicopper proteins, nitrous-oxide reductase (N2OR) and cytochrome c oxidase (COX), were investigated by EPR spectroscopy at microwave frequencies 2.4-35 GHz. Our results support a Cu-Cu interaction in COX and N2OR. At least 10 lines in the 2.7-GHz, 12 lines in the 4.6-GHz and 14 lines in the 9.2 GHz spectra were resolved for N2OR. Eight copper lines at 2.7 GHz, about nine lines at 4.6 GHz and about six lines at 9.2 GHz were resolved for COX. Simulations of the EPR spectra were consistent with most of the resonances of the multiline spectra, including regions in the center of the spectra where overlap of the three seven-line patterns is proposed. These simulations indicated that Cu-Cu interaction, in a mixed-valence [Cu(1.5) ... Cu(1.5)], S = 1/2 site is consistent with, if not proof of, the unusual spectral features observed for N2OR and COX.  相似文献   

3.
Using low frequency 2 to 4 GHz EPR at 10 K, we have resolved previously unseen hyperfine structure associated with the EPR-detectable copper signal of cytochrome c oxidase. The observed hyperfine structure appears consistent with hyperfine coupling to copper; although to account for all of the observed structure, an additional magnetic interaction is required as well. This work points out the utility of the 2 to 4 GHz EPR technique for resolving electronic hyperfine structural information from copper and possibly other paramagnetic sites in biomolecules when random variation in electronic g values is a cause of EPR line-broadening.  相似文献   

4.
Cassette mutagenesis was used to exchange the suggested copper ligand Met121 in azurin to all other amino acids, and a stop codon. The mutant proteins were characterized by optical absorption spectroscopy and EPR. At low pH, all mutants exhibit the characteristics of a blue type 1 copper protein, indicating that methionine is not needed to create a blue copper site. At high pH, the Glu121 and the Lys121 mutants constitute a new form of protein-bound copper that is outside the range of type 1 copper.  相似文献   

5.
The crystal structure of cobalt-substituted azurin from Pseudomonas aeruginosa has been determined to final crystallographic R value of 0.175 at 1.9 Å resolution. There are four molecules in the asymmetric unit in the structure, and these four molecules are packed as a dimer of dimers. The dimer packing is very similar to that of the wild-type Pseudomonas aeruginosa azurin dimer. Replacement of the native copper by the cobalt ion has only small effects on the metal binding site presumably because of the existence of an extensive network of hydrogen bonds in its immediate neighborhood. Some differences are obvious, however. In wild-type azurin the copper atom occupies a distorted trigonal bipyramidal site, while cobalt similar to zinc and nickel occupy a distorted tetrahedral site, in which the distance to the Met121,Sδ atom is increased to 3.3–3.5 Å and the distance to the carbonyl oxygen of Gly45 has decreased to 2.1–2.4 Å. The X-band EPR spectrum of the high-spin Co(II) in azurin is well resolved (apparent g values gx′ = 5.23; gy′ = 3.83; gz′ = 1.995, and hyperfine splittings Ax′ = 31; Ay′ = 20–30; Az′ = 53 G) and indicates that the ligand field is close to axial. Proteins 27:385–394, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
J F Hall  L D Kanbi  R W Strange  S S Hasnain 《Biochemistry》1999,38(39):12675-12680
Type 1 Cu centers in cupredoxins, nitrite reductases, and multi-copper oxidases utilize the same trigonal core ligation to His-Cys-His, with a weak axial ligand generally provided by a Met sulfur. In azurin, an additional axial ligand, a carbonyl oxygen from a Gly, is present. The importance of these axial ligands and in particular the Met has been debated extensively in terms of their role in fine-tuning the redox potential, spectroscopic properties, and rack-induced or entatic state properties of the copper sites. Extensive site-directed mutagenesis of the Met ligand has been carried out in azurin, but the presence of an additional carbonyl oxygen axial ligand has made it difficult to interpret the effects of these substitutions. Here, the axial methionine ligand (Met148) in rusticyanin is replaced with Leu, Gln, Lys, and Glu to examine the effect on the redox potential, acid stability, and copper site geometry. The midpoint redox potential varies from 363 (Met148Lys) to 798 mV (Met148Leu). The acid stability of the oxidized proteins is reduced except for the Met148Gln mutant. The Gln mutant remains blue at all pH values between 2.8 and 8, and has a redox potential of 563 mV at pH 3.2. The optical and rhombic EPR properties of this mutant closely resemble those of stellacyanin, which has the lowest redox potential among single-type 1 copper proteins (185 mV). The Met148Lys mutant exhibits type 2 Cu EPR and optical spectra in this pH range. The Met148Glu mutant exhibits a type 2 Cu EPR spectrum above pH 3 and a mixture of type 1 and type 2 Cu spectra at lower pH. The Met148Leu mutant exhibits the highest redox potential ( approximately 800 mV at pH 3.2) which is similar to the values in fungal laccase and in the type 1 Cu site of ceruloplasmin where this axial ligand is also a Leu.  相似文献   

7.
Pseudomonas aeruginosa azurin binds copper so tightly that it remains bound even upon polypeptide unfolding. Copper can be substituted with zinc without change in protein structure, and also in this complex the metal remains bound upon protein unfolding. Previous work has shown that native-state copper ligands Cys112 and His117 are two of at least three metal ligands in the unfolded state. In this study we use isothermal titration calorimetry and spectroscopic methods to test if the native-state ligand Met121 remains a metal ligand upon unfolding. From studies on a point-mutated version of azurin (Met121Ala) and a set of model peptides spanning the copper-binding C-terminal part (including Cys112, His117 and Met121), we conclude that Met121 is a metal ligand in unfolded copper-azurin but not in the case of unfolded zinc-azurin. Combination of unfolding and metal-titration data allow for determination of copper (Cu(II) and Cu(I)) and zinc affinities for folded and unfolded azurin polypeptides, respectively.  相似文献   

8.
Azurin is a single-domain beta-barrel protein with a redox-active copper cofactor. Upon Pseudomonas aeruginosa azurin unfolding, the cofactor remains bound to the polypeptide, coordinating three ligands: cysteine-112, one histidine imidazole, and a third, unknown ligand. In order to identify which histidine (histidine-117 and histidine-46 both coordinate copper in native azurin) is involved in copper coordination in denatured azurin, two single-site (histidine to glycine) mutants, His117Gly and His46Gly azurin, are investigated here. Equilibrium denaturation experiments of His46Gly azurin loaded with copper demonstrate that copper remains bound to this mutant in high urea concentrations where the protein's secondary structure is lost. In contrast, for copper-loaded His117Gly azurin, copper does not stay coordinated upon polypeptide unfolding. The copper absorption at 370 nm in denatured His46Gly azurin agrees with that for copper in complex with a peptide corresponding to residues 111-123 in azurin, suggesting similar metal coordination. We conclude that histidine-117 (and not histidine-46) is the histidine copper ligand in denatured azurin. This is also in accord with the proximity of histidine-117 to cysteine-112 in the primary sequence.  相似文献   

9.
The simultaneous excitation of a paramagnetic sample with optical (laser) and microwave radiation can cause an amplitude or phase modulation of the transmitted light at the microwave frequency. The detection of this modulation indicates the presence of coupled optical and electron paramagnetic resonance (EPR) transitions in the sample. Here we report the first application of this technique to a biomolecule: the blue copper centre of Pseudomonas aeruginosa azurin. Using optical excitation at 686 nm, in the thiol to copper(II) charge transfer band, we measure a coherent Raman-detected EPR spectrum of a frozen aqueous solution. Its lineshape is characteristic of the magnetic circular dichroism along each principal g-value axis. This information allows electronic and structural models of transition metal ion centres in proteins to be tested.  相似文献   

10.
The production and spectroscopic properties of an L-selenomethionine-containing homolog of Pseudomonas aeruginosa azurin are described. The amino acid substitution was carried out by developing an L-methionine-dependent bacterial strain from a fully functional ATCC culture. Uptake studies monitored using L-[75Se]methionine indicated that L-selenomethionine was incorporated into the protein synthetic pathway of Pseudomonas bacteria in a manner analogous to L-methionine. Several batches of bacteria were grown, and one sample of isolated and purified selenoazurin (azurin in which methionine was substituted by selenomethionine) was found (by neutron activation analysis) to contain 5.2 +/- 0.8 seleniums/copper. Correspondingly, a residual 0.35 methionines, relative to 6.0 in the native protein, were found by amino acid analysis in this azurin sample. The redox potential and extinction coefficient of this selenoazurin were found to be 333 +/- 1 mV (pH 7.0, I = 0.22) and 5855 +/- 160 M-1 cm-1 at 626 +/- 1 nm, respectively. Visible electronic, CD, and EPR spectra are reported and Gaussian curve fitting to the former spectrum allowed assignment of the selenomethionine Se----Cu(II) transition to a band found at 18034 cm-1, based upon an observed 450 cm-1 shift to the red from the analogous band position in the native protein. The data are consistent with a relatively more covalent copper site stabilizing the reduced, Cu(I), form in the selenoprotein. A role for the methionine as a modulator of the blue copper site redox potential by metal----ligand back bonding from Cu(I) is discussed in terms of a ligand sphere which limits the valence change at copper to much less than 1 during a redox cycle.  相似文献   

11.
The binuclear Cu(A) site engineered into Pseudomonas aeruginosa azurin has provided a Cu(A)-azurin with a well-defined crystal structure and a CuSSCu core having two equatorial histidine ligands, His120 and His46. The mutations His120Asn and His120Gly were made at the equatorial His120 ligand to understand the histidine-related modulation to Cu(A), notably to the valence delocalization over the CuSSCu core. For these His120 mutants Q-band electron nuclear double resonance (ENDOR) and multifrequency electron paramagnetic resonance (EPR) (X, C, and S-band), all carried out under comparable cryogenic conditions, have provided markedly different electronic measures of the mutation-induced change. Q-band ENDOR of cysteine C(beta) protons, of weakly dipolar-coupled protons, and of the remaining His46 nitrogen ligand provided hyperfine couplings that were like those of other binuclear mixed-valence Cu(A) systems and were essentially unperturbed by the mutation at His120. The ENDOR findings imply that the Cu(A) core electronic structure remains unchanged by the His120 mutation. On the other hand, multifrequency EPR indicated that the H120N and H120G mutations had changed the EPR hyperfine signature from a 7-line to a 4-line pattern, consistent with trapped-valence, Type 1 mononuclear copper. The multifrequency EPR data imply that the electron spin had become localized on one copper by the His120 mutation. To reconcile the EPR and ENDOR findings for the His120 mutants requires that either: if valence localization to one copper has occurred, the spin density on the cysteine sulfurs and the remaining histidine (His46) must remain as it was for a delocalized binuclear Cu(A) center, or if valence delocalization persists, the hyperfine coupling for one copper must markedly diminish while the overall spin distribution on the CuSSCu core is preserved.  相似文献   

12.
The axial copper ligand methionine has been replaced by a glutamine in the cupredoxin amicyanin from Paracoccus versutus. Dynamic and structural characteristics of the mutant have been studied in detail using UV/Vis, EPR, NMR, cyclic voltammetry, and isomorphous metal replacement. M99Q amicyanin is a blue copper protein with significant spectral and structural similarities to the other cupredoxins umecyanin, stellacyanin, and M121Q azurin. In addition, the functional properties of M99Q amicyanin, as reflected in the electron self-exchange rate constant and midpoint potential (165 mV), have been assessed and compared to values for M121Q azurin. For the latter protein, the published midpoint potential was corrected to the much lower value of 147 mV at pH 7, I = 0.1 M. These values are very similar to the midpoint potential of stellacyanin, which naturally possesses an axial glutamine ligand and has the lowest reduction potential for a naturally occurring cupredoxin. A remarkable feature of M99Q amicyanin, in the reduced state, is the relatively high pK(a) value of 7.1 for its His96 ligand.  相似文献   

13.
The reactivity with nitric oxide was investigated for a number of type-1, type-2 and type-3 copper proteins azurin from Pseudomonas aeruginosa (type-1 copper); bovine superoxide dismutase, diamine oxidase from pig kidney and galactose oxidase from Dactylium dendroides (type-2 copper); haemocyanin from Helix pomatia (type-3 copper); the blue oxidases ceruloplasmin from pig serum, and ascorbate oxidase from Cucurbita pepo medullosa. Type-1 copper formed complexes with NO in the oxidised state, which complexes were only fully formed at low temperatures and could be photodissociated at 77K. Complex formation led to the disappearance of the EPR signal of type-1 copper and of the optical absorbance band in the 600 nm region. In azurin, photodissociation caused the reappearance of the original 625 nm absorbance band, but in the blue oxidases, a new band with lower intensity was found at 595 nm instead of the original absorbance band at 610 nm. In all cases, the EPR signal of type-1 copper did not return. These results are best explained by the formation of a photolabile type-1 Cu1+-NO+ complex. They also indicate that in the complex formed, the type-1 copper structure is probably not disrupted, and that after illumination, the nitric oxide molecule is still in the near vicinity of the copper atom. Type-2 copper did not react at all with nitric oxide, and type-3 copper formed complexes with nitric oxide in both the oxidised and the reduced state, but photodissociation of these complexes could not be demonstrated.  相似文献   

14.
The copper binding site of amicyanin from Paracoccus denitrificans has been examined by resonance Raman spectroscopy. The pattern of vibrational modes is clearly similar to those of the blue copper proteins azurin and plastocyanin. Intense resonance-enhanced peaks are observed at 377, 392, and 430 cm-1 as well as weaker overtones and combination bands in the high frequency region. Most of the peaks below 500 cm-1 shift 0.5-1.5 cm-1 to lower energy when the protein is exposed to D2O. Based on the pattern of conserved amino acids, the axial type EPR spectrum, and the resonance Raman spectrum, it is proposed that the copper binding site in amicyanin contains a Cu(II) ion in a distorted trigonal planar geometry with one cysteine and two histidine ligands and an axial methionine ligand at a considerably longer distance. Furthermore, the presence of multiple intense Raman peaks in the 400 cm-1 region which are sensitive to deuterium substitution leads to the conclusion that the Cu-S stretch is coupled with internal ligand vibrational modes and that the sulfur of the cysteine ligand is likely to be hydrogen-bonded to the polypeptide backbone.  相似文献   

15.
Copper coordination in blue proteins   总被引:5,自引:0,他引:5  
The spectroscopic and electrochemical properties of blue copper proteins are strikingly different from those of inorganic copper complexes in aqueous solution. Over three decades ago this unusual behavior was ascribed to constrained coordination in the folded protein; consistent with this view, crystal structure determinations of blue proteins have demonstrated that the ligand positions are essentially unchanged on reduction as well as in the apoprotein. Blue copper reduction potentials are tuned to match the particular function of a given protein by exclusion of water from the metal site and strict control of the positions of axial ligands in the folded structure. Extensive experimental work has established that the reorganization energy of a prototypal protein, Pseudomonas aeruginosa azurin, is approximately 0.7 eV, a value that is much lower than those of inorganic copper complexes in aqueous solution. The lowered reorganization energy in the protein, which is attributable to constrained coordination, is critically important for function, since the driving forces for electron transfer often are low (approximately 0.1 eV) between blue copper centers and distant (>10 A) donors and acceptors.  相似文献   

16.
The interaction of water molecules with copper in wild-type azurin and different site-directed mutants of the coordinated residues is studied by nuclear magnetic relaxation dispersion. Different degrees of solvent accessibility are found. The low relaxivity of wild-type azurin agrees with a solvent-protected copper site in solution, the closest water being found at a distance of more than 5?Å from the copper. This low relaxivity contrasts with the relatively large relaxivity of the His46Gly and His117Gly azurin mutants, which shows clear evidence of copper-coordinated water. The data on the latter mutants are best analyzed in terms of one and two water molecules coordinated to the copper in His46Gly and His117Gly, respectively. The Met121His azurin mutant shows an intermediate behavior. The data are analyzed in terms of an increased solvent accessibility with respect to the wild-type azurin, resulting in semi-coordination of water at low pH. These different modes of coordination lead to different geometries, ranging from the trigonal type 1 site of wild-type azurin to the tetragonal type 2 copper sites of the His117Gly and His46Gly azurin mutants through a so-called type 1.5 site of the Met121His mutant. A correlation is found between the relaxation time (τs) of the unpaired electron of copper(II) and the geometry of the metal site: as the tetragonal character decreases the relaxation becomes significantly faster. τs values of ≤1?ns are found for the tetrahedrally distorted type 1 and type 1.5 sites and of 5–15?ns for the tetragonal type 2 sites.  相似文献   

17.
The CalEPR Center at UC-Davis (http://brittepr.ucdavis.edu) is equipped with five research grade electron paramagnetic resonance (EPR) instruments operating at various excitation frequencies between 8 and 130GHz. Of particular note for this RSC meeting are two pulsed EPR spectrometers working at the intermediate microwave frequencies of 31 and 35GHz. Previous lower frequency electron spin-echo envelope modulation (ESEEM) studies indicated that histidine nitrogen is electronically coupled to the Mn cluster in the S2 state of photosystem II (PSII). However, the amplitude and resolution of the spectra were relatively poor at these low frequencies, precluding any in-depth analysis of the electronic structure properties of this closely associated nitrogen nucleus. With the intermediate frequency instruments, we are much closer to the 'exact cancellation' limit, which optimizes ESEEM spectra for hyperfine-coupled nuclei such as 14N and 15N. Herein, we report the results from ESEEM studies of both 14N- and 15N-labelled PSII at these two frequencies. Spectral simulations were constrained by both isotope datasets at both frequencies, with a focus on high-resolution spectral examination of the histidine ligation to the Mn cluster in the S2 state.  相似文献   

18.
The nuclear modulation effect in pulsed EPR spectroscopy was used to study the type 2 copper binding site in the mercury derivative of laccase (MDL) in which the type 1 copper is substituted by Hg(II). By comparing the three-pulse electron spin-echo modulations and Fourier transform spectra of MDL and several model compounds, we conclude that the imidazole groups of two histidyl amino acid residues are equatorially coordinated to Cu(II) in the type 2 site. Computer simulations of these data suggest that the remote nonbonding nitrogens of the two imidazoles possess nuclear quadrupole parameters e2qQ = 1.47 MHz and eta = 0.83. A(iso) values of these two nitrogens are not identical, being 1.5 and 2.0 MHz. We have also used samples of the enzyme exchanged with D2O to examine the coordination of the water to the type 2 copper site. The deuterium modulation that is resolved by taking the ratio of the time domain ESEEM data from native and D2O-exchanged enzyme indicates that there is an equatorial water ligand, and further data show that this water is displaced by azide.  相似文献   

19.
Optical, fluorescence and EPR spectra of azurin from Pseudomonas aeruginosa are described. Some properties of this protein are found to be similar to those of copper-containing proteins from plants (plastocyanin and plantacyanin). The interaction of ferricyanide with azurin bleached in alkaline media results in the formation of free radicals and an alteration in the shape of the EPR signal of azurin.  相似文献   

20.
The successful modeling of metalloproteins is an important step in understanding their structure and function. Toward this goal, models of the noncoupled copper centers found in the enzymes peptidyl α-hydroxylating monooxygenase (PHM), dopamine β-monooxygenase (DBM), and nitrite reductase (NiR) were designed into the small soluble protein azurin. The models are significant because they maintain the existing type 1 (T1) copper, electron transfer site of azurin while including the second designed type 2 (T2) copper center that mimics the T2 catalytic sites in the target enzymes. UV–vis absorption and EPR spectroscopy data of the model sites are consistent with T2 centers and establish copper binding at the sites, thus modeling those found in PHM/DBM and NiR. Importantly the models’ approximate 11–13 Å separation between the T1 and T2 copper sites is comparable with the separations in the native systems. This, along with the power to tune the T1 site redox potential in azurin, allows for the future evaluation of relevant activity assays in these models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号