首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Aquatic insects are the dominant taxon group in most freshwater ecosystems. As temperature is the main driver of their life cycle development, metabolic activity, and geographic distribution, these macroinvertebrates are particularly suitable for large scale and comparative studies of freshwater community responses to climate change. A dataset of bio-ecological traits of 1,942 Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa was used to analyze (1) the relationships among traits, (2) the potential vulnerability of EPT species to climate change, and (3) the geographical occurrence patterns of these potentially endangered species at the scale of European ecoregions. By means of a fuzzy correspondence analysis (FCA), two gradients emerged: (1) a longitudinal gradient, describing successive upstream–downstream features, and (2) a biogeographical gradient, separating endemic and micro-endemic species from widely distributed taxa. Moreover, aquatic insects of southern European ecoregions emerged as those most endangered in terms of potential vulnerability to climate change. Comparative multi-taxon studies provide important new insights into freshwater ecosystem functioning and responses to climate change, and could be the first step toward developing integrative monitoring or assessment tools (e.g., trait-based indicators at the species level) by means of non-arbitrary statistical methods.  相似文献   

2.
物种通过功能性状响应环境变化, 探究群落功能性状多样性的海拔格局是揭示生物多样性空间分布格局和形成机制的重要研究内容。气候变化和土地利用是影响溪流生物多样性变化及其群落构建的重要因素, 然而气候和土地利用沿海拔梯度如何影响水生昆虫功能性状垂直分布格局的系统研究仍旧比较缺乏。本文基于2016年和2018年在云南澜沧江中游1,000-3,000 m海拔共56个溪流样点的水生昆虫群落调查数据, 利用线性和二次回归模型探索并比较了生活史性状(化性、生活史快慢、成虫寿命)和生态学性状(营养习性、生活习性、温度偏好)的群落加权平均性状多样性指数沿海拔梯度的分布特征, 并通过随机森林模型解析流域尺度气候和土地利用变量对生活史和生态学性状多样性垂直分布格局的影响。结果表明: 生活史性状中, 少于1世代、无季节性、慢季节性、成虫寿命长等性状多样性沿海拔梯度呈显著的“U”型分布格局, 而快季节性和成虫寿命极短多样性呈显著的单峰型海拔格局, 成虫寿命短多样性呈显著递增的海拔格局。生态学性状中, 温度偏好多样性与海拔梯度无关, 附着者和爬行者的多样性沿海拔梯度分别呈显著的递增和“U”型格局, 滤食者、植食者和捕食者的多样性分别呈显著递增、递减和“U”型海拔格局。随机森林模型分析结果表明, 气候和土地利用对生活史性状多样性的解释量高于对生态学性状多样性的解释量, 年平均温度和农业面积百分比是共同的关键因素。综上, 水生昆虫群落功能性状多样性海拔格局存在差异, 主要受不同自然环境梯度和人类干扰因素驱动。研究结果可为制定澜沧江流域生物多样性保护对策提供理论基础。  相似文献   

3.
Wolbachia is a genus of intracellular bacteria typically found within the reproductive systems of insects that manipulates those systems of their hosts. While current estimates of Wolbachia incidence suggest that it infects approximately half of all arthropod species, these estimates are based almost entirely on terrestrial insects. No systematic survey of Wolbachia in aquatic insects has been performed. To estimate Wolbachia incidence among aquatic insect species, we combined field‐collected samples from the Missouri River (251 samples from 58 species) with a global database from previously published surveys. The final database contained 5,598 samples of 2,687 total species (228 aquatic and 2,459 terrestrial). We estimate that 52% (95% CrIs: 44%–60%) of aquatic insect species carry Wolbachia, compared to 60% (58%–63%) of terrestrial insects. Among aquatic insects, infected orders included Odonata, Coleoptera, Trichoptera, Ephemeroptera, Diptera, Hemiptera, and Plecoptera. Incidence was highest within aquatic Diptera and Hemiptera (69%), Odonata (50%), and Coleoptera (53%), and was lowest within Ephemeroptera (13%). These results indicate that Wolbachia is common among aquatic insects, but incidence varies widely across orders and is especially uncertain in those orders with low sample sizes such as Ephemeroptera, Plecoptera, and Trichoptera.  相似文献   

4.
Broad-scale geographical patterns in local stream insect genera richness   总被引:1,自引:0,他引:1  
Comprehensive global studies of stream invertebrate assemblages are rare and have produced contradictory results. To address this shortcoming, we compiled data from 495 published estimates of local genera richness for three orders of stream‐dwelling insects (Ephemeroptera, Plecoptera, Trichoptera) from throughout the world and used these data to describe global geographic patterns in stream insect genera richness and to address two questions: 1) does local stream insect richness vary more with regional historical factors or with local ecological factors?, and 2) to what extent have streams converged in the number of taxa they support?
Maximum genera richness varied sharply across the range of latitude examined from the south to north poles for all three orders of aquatic insects. Ephemeroptera richness showed 3 peaks (~30°S, 10°N, and 40°N) with highest richness near 5–10°N and 40°N latitude. Plecoptera richness was distinctly highest at ~40°N latitude with a similar peak at 40°S latitude. Trichoptera richness showed less latitudinal variation than the other taxa but was slightly higher near the equator and at 40°N and S latitude than at other latitudes. Genera richness generally declined with increasing elevation, except for Plecoptera. Maximum genera richness increased steadily with a measure of regional terrestrial net primary production and declined sharply with a measure of hydrologic disturbance for all orders. Richness varied widely among both biogeographical realms and biomes, although ca 2 times as much variation in richness was associated with biome as biogeographic realm. Richness for each order was highest in different biogeographic realms, but all orders had highest richness in broadleaf forest biomes. These latter results imply that spatial variation in local richness of stream insects is more strongly affected by contemporary ecological factors than by historical biogeography and that maintenance of intact forested landscapes may be critical to the conservation of stream invertebrate faunas.  相似文献   

5.
The diet and trophic groups of an assemblage of aquatic insects were studied in a tropical stream. Genera of the orders Ephemeroptera, Odonata, Plecoptera, Lepidoptera, and Hemiptera showed feeding specialization. Others, such as Trichoptera, Coleoptera, and Diptera, showed great diet variation with genera of different trophic groups. Seasonal variation of insect diet, evident only for some genera of the orders Trichoptera, Lepidoptera, Coleoptera, and Diptera, was due to the differences observed in community composition and to generalist habits of these genera. However, the seasonal comparison of trophic groups showed no significant statistical differences. The great importance of organic matter, a non-limited resource, in the diet of Ribeir?o do Atalho aquatic insects may be the explanation for the trophic stability in this community organization.  相似文献   

6.
Insect abundance and diversity are declining worldwide. Although recent research found freshwater insect populations to be increasing in some regions, there is a critical lack of data from tropical and subtropical regions. Here, we examine a 20-year monitoring dataset of freshwater insects from a subtropical floodplain comprising a diverse suite of rivers, shallow lakes, channels and backwaters. We found a pervasive decline in abundance of all major insect orders (Odonata, Ephemeroptera, Trichoptera, Megaloptera, Coleoptera, Hemiptera and Diptera) and families, regardless of their functional role or body size. Similarly, Chironomidae species richness decreased over the same time period. The main drivers of this pervasive insect decline were increased concurrent invasions of non-native insectivorous fish, water transparency and changes to water stoichiometry (i.e. N : P ratios) over time. All these drivers represent human impacts caused by reservoir construction. This work sheds light on the importance of long-term studies for a deeper understanding of human-induced impacts on aquatic insects. We highlight that extended anthropogenic impact monitoring and mitigation actions are pivotal in maintaining freshwater ecosystem integrity.  相似文献   

7.
Insects are among the world’s most ecologically and economically important invasive species. Here we assemble inventories of native and non-native species from 20 world regions and contrast relative numbers among these species assemblages. Multivariate ordination indicates that the distribution of species among insect orders is completely different between native and non-native assemblages. Some orders, such as the Psocoptera, Dictyoptera, Siphonaptera, Thysanoptera, and Hemiptera, are always over-represented in the non-native compared to native assemblages. Other orders, such as the Plecoptera, Trichoptera, Ephemeroptera, Odonata, Mecoptera and Microcoryphila, are consistently under-represented in non-native assemblages. These patterns most likely arise both as a result of variation among taxa in their association with invasion pathways responsible for transporting species among world regions, as well as variation in life-history traits that affect establishment potential. However, our results indicate that species compositions associated with invasiveness are fundamentally different from compositions related to insularity, indicating that colonization of islands selects for a different group of insect taxa than does selection for successful invaders. Native and non-native assemblage compositions were also related, to a lesser extent, to latitude of the region sampled. Together, these results illustrate the dominant role of invasion pathways in shaping the composition of non-native insect assemblages. They also emphasize the difference between natural background colonization of islands and anthropogenic colonization events, and imply that biological invasions are not a simple subset of a long-standing ecological process.  相似文献   

8.
Climate change influences species geographical distribution and diversity pattern. The Chinese fire‐bellied newt (Cynops orientalis) is an endemic species distributed in East‐central China, which has been classified as near‐threatened species recently due to habitat destruction and degradation and illegal trade in the domestic and international pet markets. So far, little is known about the spatial distribution of the species. Based on bioclimatic data of the current and future climate projections, we modeled the change in suitable habitat for C. orientalis by ten algorithms, evaluated the importance of environmental factors in shaping their distribution, and identified distribution shifts under climate change scenarios. In this study, 46 records of C. orientalis from East China and 8 bioclimatic variables were used. Among the ten modeling algorithms, four (GAM, GBM, Maxent, and RF) were selected according to their predictive abilities. The current habitat suitability showed that C. orientalis had a relatively wide but fragmented distribution, and it encompassed 41,862 km2. The models suggested that precipitation of warmest quarter (bio18) and mean temperature of wettest quarter (bio6) had the highest contribution to the model. This study revealed that C. orientalis is sensitive to climate change, which will lead to a large range shift. The projected spatial and temporal pattern of range shifts for C. orientalis should provide a useful reference for implementing long‐term conservation and management strategies for amphibians in East China.  相似文献   

9.
The selection of priority areas is an enormous challenge for biodiversity conservation. Some biogeographic methods have been used to identify the priority areas to conservation, and panbiogeography is one of them. This study aimed at the utilization of panbiogeographic tools, to identify the distribution patterns of aquatic insect genera, in wetland systems of an extensive area in the Neotropical region (approximately 280 000km2), and to compare the distribution of the biogeographic units identified by the aquatic insects, with the conservation units of Southern Brazil. We analyzed the distribution pattern of 82 genera distributed in four orders of aquatic insects (Diptera, Odonata, Ephemeroptera and Trichoptera) in Southern Brazil wetlands. Therefore, 32 biogeographic nodes corresponded to the priority areas for conservation of the aquatic insect diversity. Among this total, 13 were located in the Atlantic Rainforest, 16 in the Pampa and three amongst both biomes. The distribution of nodes showed that only 15% of the dispersion centers of insects were inserted in conservation units. The four priority areas pointed by node cluster criterion must be considered in further inclusions of areas for biodiversity conservation in Southern Brazil wetlands, since such areas present species from different ancestral biota. The inclusion of such areas into the conservation units would be a strong way to conserve the aquatic biodiversity in this region.  相似文献   

10.
Little work has been done on large-scale patterns of stream insect richness in China. We explored the influence of climatic and catchment-scale factors on stream insect (Ephemeroptera, Plecoptera, Trichoptera; EPT) richness across mid-latitude China. We assessed the predictive ability of climatic, catchment land cover and physical structure variables on genus richness of EPT, both individually and combined, in 80 mid-latitude Chinese streams, spanning a 3899-m altitudinal gradient. We performed analyses using boosted regression trees and explored the nature of their influence on richness patterns. The relative importance of climate, land cover, and physical factors on stream insect richness varied considerably between the three orders, and while important for Ephemeroptera and Plecoptera, latitude did not improve model fit for any of the groups. EPT richness was linked with areas comprising high forest cover, elevation and slope, large catchments and low temperatures. Ephemeroptera favoured areas with high forest cover, medium-to-large catchment sizes, high temperature seasonality, and low potential evapotranspiration. Plecoptera richness was linked with low temperature seasonality and annual mean, and high slope, elevation and warm-season rainfall. Finally, Trichoptera favoured high elevation areas, with high forest cover, and low mean annual temperature, seasonality and aridity. Our findings highlight the variable role that catchment land cover, physical properties and climatic influences have on stream insect richness. This is one of the first studies of its kind in Chinese streams, thus we set the scene for more in-depth assessments of stream insect richness across broader spatial scales in China, but stress the importance of improving data availability and consistency through time.  相似文献   

11.
空间分布型的研究是现代理论生态学的重要基础工作之一,它在实际应用上亦具重要意义。它不仅可揭示出种群的空间结构特征,而且还是确定抽样技术、资料代换和正确估计种群数量的基础。 目前,国内外有关昆虫空间分布型的研究多限于农林业害虫,对其它昆虫的空间分布研究甚少。虫草蝠蛾是我国名贵中药材冬虫夏草的寄主昆虫,主要分布在青海、西藏、四川、云南四省境内的高山草甸。近年来,冬虫夏草产量逐年下降,远远不适应市场的需求,更因自然资源日趋减少,大有枯竭之势。为挽救这一珍贵资源昆虫,急待尽  相似文献   

12.
13.
  • 1 Ephemeroptera and Plecoptera in two sites of the Upper Rhône River (France) were examined using multivariate analyses to determine: (i) relationships among seventeen species traits; (ii) habitat utilization of the fifty-five species present; (iii) the relationship between species traits and habitat utilization; (iv) trends of species traits and species richness in a framework of spatial and temporal habitat variability.
  • 2 The species traits having the highest correlation ratios correspond to reproduction or life cycle, behavioural, and morphological characteristics. According to their traits, species of Baetidae, Caenidae, and Leptophlebiidae (Ephemeroptera) are opposite species of Perlidae and Perlodidae (Plecoptera).
  • 3 The distribution of species in thirteen habitat types of the Upper Rhône River floodplain demonstrates a transverse gradient from the main channel to the oxbow lakes. Plecoptera are restricted to the different main channel habitats; in contrast, Ephemeroptera families have a broader distribution with Baetidae and Leptophlebiidae occurring in most floodplain habitats.
  • 4 Plecoptera exhibit a significant relationship between species traits and habitat utilization but no relationship is evident for Ephemeroptera. Baetidae use many habitat types and have diverse species traits; in contrast, Leptophlebiidae, Heptageniidae, and Caenidae use many habitat types but each family has a rather uniform set of traits.
  • 5 Trends in species traits were significantly related to both the spatial and temporal variability of habitats. Considering only temporal variability, the distribution of species trait modalities (= categories) corresponded well to predictions on trends in the river habitat templet for ‘minimum age at reproduction’ and ‘potential longevity’, and in general for ‘descendants per reproductive cycle’, ‘reproductive cycles per year’, ‘potential size’, and ‘body flexibility’ trends in six other traits did not match predictions.
  • 6 No trends in species richness were evident in spatial–temporal framework of habitat variability.
  相似文献   

14.
The reference condition approach, advocated by the Water Framework Directive, is the basis of most currently used multimetric indices using functional traits of fish species. The ecological status of streams is assessed by measuring the deviation of the observed trait values from the theoretical values of reference conditions in the absence of anthropogenic disturbances. While reference conditions serve as baselines for ecological assessment, they vary with natural environmental conditions. Therefore, global warming appears to be a major threat to the use of current indices for diagnosing future stream conditions, as climate change is projected to modify assemblage composition, suggesting that the functional structure of fish assemblages will also be affected. The main objectives of this study are to assess the potential effect of climate change on the trait composition of fish assemblages and the consequences for the establishment of reference conditions. The results highlight the relation between environmental, especially climatic, conditions and functional traits and project the effects of climate change on trait composition. Traits based on species intolerance are expected to be most negatively affected by the projected climatic shift. The consequences for the development of multimetric indices based on fish functional traits are discussed.  相似文献   

15.
Upstream range shifts of freshwater fishes have been documented in recent years due to ongoing climate change. River fragmentation by dams, presenting physical barriers, can limit the climatically induced spatial redistribution of fishes. Andean freshwater ecosystems in the Neotropical region are expected to be highly affected by these future disturbances. However, proper evaluations are still missing. Combining species distribution models and functional traits of Andean Amazon fishes, coupled with dam locations and climatic projections (2070s), we (a) evaluated the potential impacts of future climate on species ranges, (b) investigated the combined impact of river fragmentation and climate change and (c) tested the relationships between these impacts and species functional traits. Results show that climate change will induce range contraction for most of the Andean Amazon fish species, particularly those inhabiting highlands. Dams are not predicted to greatly limit future range shifts for most species (i.e., the Barrier effect). However, some of these barriers should prevent upstream shifts for a considerable number of species, reducing future potential diversity in some basins. River fragmentation is predicted to act jointly with climate change in promoting a considerable decrease in the probability of species to persist in the long‐term because of splitting species ranges in smaller fragments (i.e., the Isolation effect). Benthic and fast‐flowing water adapted species with hydrodynamic bodies are significantly associated with severe range contractions from climate change.  相似文献   

16.
Climate change will promote substantial effects on the distribution of invasive species. Here, I used an ensemble of bioclimatic envelope models (Gower Distance, Chebyshev Distance, and Mahalanobis Distance) to forecast climatically suitable areas of South America for 13 invasive African grass species under future climate conditions (year 2050). Under current climatic conditions, the areas with the potential for the highest invasive species richness are located mostly in the tropical climates of South America, except for the Amazon region. In the year 2050, the overall pattern of invasive species richness will not change considerably, and increases in northeastern Amazon and portions of the temperate regions of South America are predicted.  相似文献   

17.
  • 1 For five orders of Insecta (Plecoptera, Ephemeroptera, Odonata, Trichoptera, and Coleoptera) in two sites of the Upper Rhône River (France), the following are examined: (i) relationships among nineteen species traits; (ii) habitat utilization of species; (iii) the relationship between species traits and habitat utilization; and (iv) trends of species traits and species richness in a templet of spatial-temporal habitat variability.
  • 2 The species traits having the highest correlations correspond to reproduction, life cycle, nutritional, and morphological features. Species trait characteristics of Coleoptera are distinctly contrasted with those of Plecoptera and Ephemeroptera; Odonata and Trichoptera are intermediate to these orders.
  • 3 The distribution of species in fourteen habitat types of the Upper Rhône River floodplain demonstrates a transverse gradient from the main channel to the oxbow lakes and the temporary water habitats, and a vertical gradient from interstitial to superficial habitats.
  • 4 Despite a significant relationship between species traits and habitat utilization, superposition between species traits and habitat utilization is limited. At the order level, species form usually one (Ephemeroptera, Trichoptera, Odonata) or several (Coleoptera) groups of relatively homogeneous species traits; however, the species of each of these groups utilize rather different habitat types.
  • 5 Only for some life history traits, e.g. the minimum age of reproduction or the number of reproductive cycles per year, do the trends observed in the framework of spatial—temporal variability of habitat types agree with the predictions from the river habitat templet. This mismatch mainly results from the unique phylogenetic history of the Coleoptera compared with that of the other four orders.
  • 6 Species richness peaks at an intermediate level of temporal variability; however, it does not gradually increase with increasing spatial variability, nor increase from low to intermediate temporal variability.
  相似文献   

18.
19.
20.
In this study, an analysis of precipitation and temperature data has been performed over 67 series observed in a region of southern Italy (Calabria). At first, to detect possible trends in the time series, an analysis was performed with the Mann–Kendall non-parametric test applied at monthly and seasonal scale. An additional investigation, useful for checking the climate change effects on vegetation, has also been included analysing bioclimatic indicators. In particular, Emberger, Rivas-Martinez and De Martonne indices were calculated by using monthly temperature and precipitation data in the period 1916–2010. The spatial pattern of the indices has been evaluated and, in order to link the vegetation and the indices, different indices maps have been intersected with the land cover data, given by the Corine Land Cover map. Moreover, the temporal evolution of the indices and of the vegetation has been analysed. Results suggest that climate change may be responsible for the forest cover change, but, given also the good relationship between the various types of bioclimate and forest formations, human activities must be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号