首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species distribution models (SDMs) have been widely used in the scientific literature. The majority of SDMs use climate data or other abiotic variables to forecast the potential distribution of a species in geographic space. Biotic interactions can affect the predicted spatial distribution of a species in many ways across multiple spatial scales, and incorporating these predictors in an SDM is a current topic in the scientific literature. Constrictotermes cyphergaster is a widely distributed termite in the Neotropics. This termite species nests in plants and more frequently nests in some arboreal species. Thus, this species is an excellent model to evaluate the influence of biotic interactions in SDMs. We evaluate the influences of climate and the geographic distribution of host plants on the potential distribution of C. cyphergaster. Three correlative models (MaxEnt) were built to predict the geographic distribution of the termite: (1) climate data, (2) biotic data (i.e., the geographic distribution of host plants), and (3) climate and biotic data. The models that were generated indicate that the potential geographic distribution of C. cyphergaster is concentrated in the Cerrado and Caatinga regions. In addition, path analysis and multiple regression revealed the importance of the direct effects of biological interactions in the geographic distribution of the termite, while climate affected the distribution of the termite mainly through indirect effects by influencing the geographic distributions of host plants. The current study endorses the importance of including biological interactions in SDMs. We recommend using biotic predictors in SDM studies of insect species, mainly because insects have important environmental services and biotic interaction data can improve the macroecological studies of this group.  相似文献   

2.
Species distribution models (SDMs) were built with US Forest Inventory and Analysis (FIA) publicly available plot coordinates, which are altered for plot security purposes, and compared with SDMs built with true plot coordinates. Six species endemic to the western US, including four junipers (Juniperus deppeana var. deppeana, J. monosperma, J. occidentalis, J. osteosperma) and two piñons (Pinus edulis, P. monophylla), were analyzed. The presence–absence models based on current climatic variables were generated over a series of species-specific modeling extents using Random Forests and applied to forecast climatic conditions. The distributions of predictor variables sampled with public coordinates were compared to those sampled with true coordinates using t tests with a Bonferroni adjustment for multiple comparisons. Public- and true-based models were compared using metrics of classification accuracy. The modeled current and forecast distributions were compared in terms of their overall areal agreement and their geographic mean centroids. Comparison of the underlying distributions of predictor variables sampled with true versus public coordinates did not indicate a significant difference for any species at any extent. Both the public- and true-based models had comparable classification accuracies across extent for each species, with the exception of one species, J. occidentalis. True-based models produced geographic distributions with smaller areas under current and future scenarios. The greatest areal difference occurred in the species with the lowest modeled accuracies (J. occidentalis), and had a forecast distribution which diverged severely. The other species had forecast distributions with similar magnitudes of modeled distribution shifts.  相似文献   

3.
Species distribution models (SDMs), especially those basing on climatic parameters, have frequently been used to project future species ranges and to develop conservation strategies. As suggested by several authors, we considered both different dispersal abilities and different evolutionarily significant units (ESUs, as determined in an earlier genetic survey). For our study species, the flightless ground beetle Carabus irregularis, SDMs for two ESUs from the western and the Carpathian area of the distribution range showed immense, and deviating future range contractions reflecting divergent ecological requirements. As minimal dispersal SDMs resulted in a stronger decline of future ranges than the maximal dispersal models, low dispersal ability tended to strengthen the already high vulnerability of the cold-adapted mountain species to global warming. Areas shown in our maximal dispersal models as offering climatically suitable habitats for C. irregularis in the future should be considered as potential areas of action in future conservation planning (e.g. assisted migration or assisted colonisation). Thus, both dispersal scenarios and different (if applicable) ESUs should be considered when developing SDMs as useful tools for species conservation strategies adapted to species’ performance and differentiation patterns.  相似文献   

4.
Alternating glacial and interglacial periods led to range shifts (contractions and expansions), persistence in distinct glacial refugia and extinction events in various temperate organisms. Today, the integrative analysis of molecular markers and spatial distribution models conducted for multiple taxa allows the detection of phylogeographical patterns, thus reconstructing major biogeographical events in their shared evolutionary history. In this study, the effects of past climate change on the evolutionary history of two sympatric moth species (Gnopharmia colchidaria s.l. and G. kasrunensis) and their host plants (Prunus scoparia and P. fenzliana) were inferred for the largely neglected biodiversity hot spot Iran. We complementarily analyzed the population structure of both moth species (187 specimens, based on COI) in congruence with batched species distribution models (SDMs) for all four taxa and for the times of the Last Glacial Maximum (21 ky BP), 6 ky BP and today. Coincidence of SDMs and the distribution of haplotype lineages indicated a shared refugium for the southwestern Zagros Mountains and potential species-specific refugial areas in the southern Caucasus and the Kope-Dagh Mountains. Both moth species experienced past population expansion.  相似文献   

5.
Aim With climate change, reliable predictions of future species geographic distributions are becoming increasingly important for the design of appropriate conservation measures. Species distribution models (SDMs) are widely used to predict geographic range shifts in response to climate change. However, because species communities are likely to change with the climate, accounting for biotic interactions is imperative. A shortcoming of introducing biotic interactions in SDMs is the assumption that biotic interactions remain the same under changing climatic factors, which is disputable. We explore the performance of SDMs while including biotic interactions. Location Fennoscandia, Europe. Methods We investigate the appropriateness of the inclusion of biotic factors (predator pressure and prey availability) in assessing the future distribution of the arctic fox (Alopex lagopus) in Fennoscandia by means of SDM, using the algorithm MaxEnt. Results Our results show that the inclusion of biotic interactions enhanced the accuracy of SDMs to predict the current arctic fox distribution, and we argue that the accuracy of future predictions might also be enhanced. While the range of the arctic fox is predicted to have decreased by 43% in 2080 because of temperature‐related variables, projected increases in predator pressure and reduced prey availability are predicted to constrain the potential future geographic range of the arctic fox in Fennoscandia 13% more. Main conclusions The results indicate that, provided one has a good knowledge of past changes and a clear understanding of interactions in the community involved, the inclusion of biotic interactions in modelling future geographic ranges of species increases the predictive power of such models. This likely has far‐reaching impacts upon the design and implementation of possible conservation and management plans. Control of competing predators and supplementary feeding are suggested as necessary management actions to preserve the Fennoscandian arctic fox population in the face of climate change.  相似文献   

6.
Species distribution models (SDMs) that employ climatic variables are widely used to predict potential distribution of invasive species. However, climatic variables derived from climate datasets do not account for anthropogenic influences on microclimate. Irrigation is a major anthropogenic activity that influences microclimate conditions and alters the distribution of species in anthropogenic landuses. SDM-based studies appear to ignore the effects of irrigation on microclimatic conditions. This study incorporated irrigation as a correction to precipitation data, to improve the predictive capacity of SDM. As a case study, we examined a SDM of Wasmannia auropunctata, an invasive species that originates in South and Central America, which has invaded tropical and subtropical regions around the world. The potential distribution of W. auropunctata was predicted using Maxent. The model was built based on climatic variables and species records from non-irrigated sites in the native range and then projected on a global scale. Invasive species records were used to evaluate the performance of the model. Precipitation-related variables were modified to approximate actual water input in irrigated areas. Precipitation correction relied on an estimate of irrigation inputs. The model with irrigation correction performed better than the corresponding model without correction, on a global scale and when it was examined in five different geographical regions of the model. These results demonstrate the importance of irrigation correction for assessing the distribution of W. auropunctata in various geographical regions. Accounting for irrigation is expected to improve SDMs for a variety of species.  相似文献   

7.
Today, more than ever, robust projections of potential species range shifts are needed to anticipate and mitigate the impacts of climate change on biodiversity and ecosystem services. Such projections are so far provided almost exclusively by correlative species distribution models (correlative SDMs). However, concerns regarding the reliability of their predictive power are growing and several authors call for the development of process-based SDMs. Still, each of these methods presents strengths and weakness which have to be estimated if they are to be reliably used by decision makers. In this study we compare projections of three different SDMs (STASH, LPJ and PHENOFIT) that lie in the continuum between correlative models and process-based models for the current distribution of three major European tree species, Fagus sylvatica L., Quercus robur L. and Pinus sylvestris L. We compare the consistency of the model simulations using an innovative comparison map profile method, integrating local and multi-scale comparisons. The three models simulate relatively accurately the current distribution of the three species. The process-based model performs almost as well as the correlative model, although parameters of the former are not fitted to the observed species distributions. According to our simulations, species range limits are triggered, at the European scale, by establishment and survival through processes primarily related to phenology and resistance to abiotic stress rather than to growth efficiency. The accuracy of projections of the hybrid and process-based model could however be improved by integrating a more realistic representation of the species resistance to water stress for instance, advocating for pursuing efforts to understand and formulate explicitly the impact of climatic conditions and variations on these processes.  相似文献   

8.
The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east‐west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate.  相似文献   

9.
Species distribution patterns are widely studied through species distribution models (SDMs), focusing mostly on climatic variables. Joint species distribution models (JSDMs) allow inferring if other factors (biotic interactions, shared phylogenetic history or other unmeasured variables) can also have an influence on species distribution. We identified current distributional areas and optimal suitability areas of three species of the solitary snail‐shell bee Rhodanthidium (Hymenoptera: Megachilidae), and their host gastropod species in the Iberian Peninsula. We undertook SDMs using Maxent software, based on presence points and climatic variables. We also undertook JSDMs for the bees and the snails to infer if co‐occurrence could be a result of biotic interactions. We found that the three bee species: (1) use at least five different species of Mediterranean snails; (2) use empty shells not only for nesting but also for sheltering when there is adverse weather and during the night; (3) have their most suitable areas in the eastern and southern Iberian Peninsula, mostly on limestone areas; and (4) have their optimal range under Mediterranean climatic values for the studied variables. There is positive co‐occurrence of Rhodanthidium with the gastropod species, especially with the snail Sphincterochila candidissima. The contribution of the environmental component to the co‐occurrence is less than that of the residual component in those cases, suggesting that: (i) the use of biotic resources (between Rhodanthidium and the gastropod species); (ii) shared phylogenetic history (between R. septemdentatum and R. sticticum); or (iii) unmeasured variables are largely responsible for co‐occurrence.  相似文献   

10.

Background

Climate is often considered as a key ecological factor limiting the capability of expansion of most species and the extent of suitable habitats. In this contribution, we implement Species Distribution Models (SDMs) to study two parapatric amphibians, Lissotriton vulgaris meridionalis and L. italicus, investigating if and how climate has influenced their present and past (Last Glacial Maximum and Holocene) distributions. A database of 901 GPS presence records was generated for the two newts. SDMs were built through Boosted Regression Trees and Maxent, using the Worldclim bioclimatic variables as predictors.

Results

Precipitation-linked variables and the temperature annual range strongly influence the current occurrence patterns of the two Lissotriton species analyzed. The two newts show opposite responses to the most contributing variables, such as BIO7 (temperature annual range), BIO12 (annual precipitation), BIO17 (precipitation of the driest quarter) and BIO19 (precipitation of the coldest quarter). The hypothesis of climate influencing the distributions of these species is also supported by the fact that the co-occurrences within the sympatric area fall in localities characterized by intermediate values of these predictors. Projections to the Last Glacial Maximum and Holocene scenarios provided a coherent representation of climate influences on the past distributions of the target species. Computation of pairwise variables interactions and the discriminant analysis allowed a deeper interpretation of SDMs’ outputs. Further, we propose a multivariate environmental dissimilarity index (MEDI), derived through a transformation of the multivariate environmental similarity surface (MESS), to deal with extrapolation-linked uncertainties in model projections to past climate. Finally, the niche equivalency and niche similarity tests confirmed the link between SDMs outputs and actual differences in the ecological niches of the two species.

Conclusions

The different responses of the two species to climatic factors have significantly contributed to shape their current distribution, through contractions, expansions and shifts over time, allowing to maintain two wide allopatric areas with an area of sympatry in Central Italy. Moreover, our SDMs hindcasting shows many concordances with previous phylogeographic studies carried out on the same species, thus corroborating the scenarios of potential distribution during the Last Glacial Maximum and the Holocene emerging from the models obtained.
  相似文献   

11.
To protect native biodiversity and habitats from the negative impacts of biological invasions, comprehensive studies and measures to anticipate invasions are required, especially across countries in a transfrontier context. Species distribution models (SDMs) can be particularly useful to integrate different types of data and predict the distribution of invasive species across borders, both for current conditions and under scenarios of future environmental changes. We used SDMs to test whether predicting invasions and potential spatial conflicts with protected areas in a transfrontier context, under current and future climatic conditions, would provide additional insights on the patterns and drivers of invasion when compared to models obtained from predictions for individual regions/countries (different modelling strategies). The framework was tested with the invasive alien plant Acacia dealbata in North of Portugal/NW Spain Euro-region, where the species is predicted to increase its distribution under future climatic conditions. While SDMs fitted in a transfrontier context and using “the national strategy (with Portugal calibration data) presented similar patterns, the distribution of the invasive species was higher in the former. The transfrontier strategy expectedly allowed to capture a more complete and accurate representation of the species’ niche. Predictions obtained in a transfrontier context are therefore more suitable to support resource prioritisation for anticipation and monitoring impacts of biological invasions, while also providing additional support for international cooperation when tackling issues of global change. Our proposed framework provided useful information on the potential patterns of invasion by A. dealbata in a transfrontier context, with an emphasis on protected areas. This information is crucial for decision-makers focusing on the prevention of invasions by alien species inside protected areas in a transfrontier context, opening a new way for collaborative management of invasions.  相似文献   

12.
Invasive trees are a major problem in South Africa. Many species are well established whereas others are still in the early stages of invasion. The management of invasive species is most cost effective at the early stages of invasion; it is thus essential to target and contain naturalizing invaders before they spread across the landscape. Multi-scale species distribution models (SDMs) provide useful insights to managers; they combine species-occurrence observations with climatic variables to predict potential distributions of alien species. Applying SDMs in human-dominated ecosystems is complicated because many factors associated with human actions interact in complex ways with climatic and edaphic factors to determine the potential suitability of sites for species. The aim of this study was to determine the degree to which a worldwide invader, A. altissima (Simaroubaceae) has occupied its potential range in South Africa, to identify areas at risk of future invasion. To do this we built a set of SDMs at both global and country scales using climatic, land use and human-footprint data. Climatic data best explained the distribution of A. altissima at the global scale whereas variables reflecting human-mediated disturbances were most influential at the national scale. Our analyses show the importance of human-mediated disturbances at a global scale and human occupancy at a country scale in determining the range limits of A. altissima. Populations of this tree species are already present in most parts of South Africa that are environmentally suitable for the species, and management actions need to focus on preventing increases in density in these areas.  相似文献   

13.
Spatial and temporal constraints on dispersal explain the absence of species from areas with potentially suitable conditions. Previous studies have shown that post‐glacial recolonization has shaped the current ranges of many species, yet it is not completely clear to what extent interspecific differences in range size depend on different dispersal rates. The inferred boundaries of glacial refugia are difficult to validate, and may bias spatial distribution models (SDMs) that consider post‐glacial dispersal constraints. We predicted the current distribution of 12 Caucasian forest plants and animals, factoring in the effective geographical distance from inferred glacial refugia as an additional predictor. To infer glacial refugia, we tested the transferability of the current SDMs based on the distribution of climatic variables, and projected the most transferable ones onto two climate scenarios simulated for the Last Glacial Maximum (LGM). We then calculated least‐cost distances from the inferred refugia, using elevation as a friction surface, and recalculated the current SDMs incorporating the distances as an additional variable. We compared the predictive powers of the initial with the final SDMs. The palaeoclimatic simulation that best matched the distribution of species was assumed to represent the closest fit to the true palaeoclimate. SDMs incorporating refugial distance performed significantly better for all but one studied species, and the Model for Interdisciplinary Research on Climate (MIROC) climatic simulation provided a more convincing pattern of the LGM climate than the Community Climate System Model (CCSM) simulation. Our results suggest that the projection of suitable habitat models onto past climatic conditions may yield realistic boundaries of glacial refugia, and that the current distribution of forest species in the study region is strongly associated with locations of former refugia. We inferred six major forest refugia throughout western Asia: (1) Colchis; (2) western Anatolia; (3) western Taurus; (4) the upper reaches of the Tigris River; (5) the Levant; and (6) the southern Caspian basin. The boundaries of the modelled refugia were substantially broader than the refugia boundaries inferred solely from pollen records. Thus, our method could be used to: (1) improve models of current species distributions by considering the dispersal histories of the species; and (2) validate alternative reconstructions of palaeoclimate with current distribution data. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 231–248.  相似文献   

14.
Based on an integrative taxonomic approach, we examine the differentiation of Southeast Asian snail-eating turtles using information from 1863 bp of mitochondrial DNA, 12 microsatellite loci, morphology and a correlative species distribution model. Our analyses reveal three genetically distinct groups with limited mitochondrial introgression in one group. All three groups exhibit distinct nuclear gene pools and distinct morphology. Two of these groups correspond to the previously recognized species Malayemys macrocephala (Chao Phraya Basin) and M. subtrijuga (Lower Mekong Basin). The third and genetically most divergent group from the Khorat Basin represents a previously unrecognized species, which is described herein. Although Malayemys are extensively traded and used for religious release, only few studied turtles appear to be translocated by humans. Historic fluctuations in potential distributions were assessed using species distribution models (SDMs). The Last Glacial Maximum (LGM) projection of the predictive SDMs suggests two distinct glacial distribution ranges, implying that the divergence of M. macrocephala and M. subtrijuga occurred in allopatry and was triggered by Pleistocene climate fluctuations. Only the projection derived from the global circulation model MIROC reveals a distinct third glacial distribution range for the newly discovered Malayemys species.  相似文献   

15.
16.
The biota of the Baja California peninsula (BCP) assembled in response to a complex history of Neogene tectonics and Quaternary climates. We constructed species distribution models (SDMs) for 13 scorpion species from the BCP to compare current suitable habitat with that at the latest glacial maximum about 21 000 years ago. Using these SDMs, we modelled climatic suitability in relation to latitude along the BCP. Our SDMs suggested that most BCP scorpion distributions have remained remarkably conserved across the latest glacial to interglacial climatic transformation. Three areas of climatic suitability coincide remarkably well with genetic discontinuities in other co‐distributed taxa along the BCP, indicating that long‐term persistence of zones of abrupt climatic transition offer a viable alternative, or synergistic enhancement, to hypotheses of trans‐peninsular seaways as drivers of peninsular divergences. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 450–461.  相似文献   

17.
Habitat loss, landscape fragmentation, and agriculture intensification constitute the main threats to bees. As the organisms responsible for almost one third of the food produced worldwide, there are growing concerns on bees’ response to human-related disturbances. Among all bee groups, orchid bees (Apidae: Euglossini) compose an interesting group to test landscape-related hypotheses. In here, we tested the effect of landscape features (amount of anthropic areas and isolation) on the probability of occurrence and the abundances of both Eulaema nigrita Lepeletier and Eufriesea auriceps Friese in the Cerrado savanna. In general, we did not observe any effect of landscape features on the probability of occurrence and abundances of both species in our sampling sites. Given their potential high dispersal abilities, these bee species may be less sensitive to fragmented landscapes or even positively affected by the increase of anthropic habitats. Since we sampled many E. nigrita specimens in highly preserved Cerrado savanna areas, we believe that at least for this biome, this species may not be a good indicator of landscape disturbance.  相似文献   

18.
Species climate requirements are useful for predicting their geographic distribution. It is often assumed that the niche requirements for invasive plants are conserved during invasion, especially when the invaded regions share similar climate conditions. California and central Chile have a remarkable degree of convergence in their vegetation structure, and a similar Mediterranean climate. Such similarities make these geographic areas an interesting natural experiment for testing climatic niche dynamics and the equilibrium of invasive species in a new environment. We tested to see if the climatic niche of Eschscholzia californica is conserved in the invaded range (central Chile), and we assessed whether the invasion process has reached a biogeographical equilibrium, i.e., occupy all the suitable geographic locations that have suitable conditions under native niche requirements. We compared the climatic niche in the native and invaded ranges as well as the projected potential geographic distribution in the invaded range. In order to compare climatic niches, we conducted a Principal Component Analysis (PCA) and Species Distribution Models (SDMs), to estimate E. californica''s potential geographic distribution. We also used SDMs to predict altitudinal distribution limits in central Chile. Our results indicated that the climatic niche occupied by E. californica in the invaded range is firmly conserved, occupying a subset of the native climatic niche but leaving a substantial fraction of it unfilled. Comparisons of projected SDMs for central Chile indicate a similarity, yet the projection from native range predicted a larger geographic distribution in central Chile compared to the prediction of the model constructed for central Chile. The projected niche occupancy profile from California predicted a higher mean elevation than that projected from central Chile. We concluded that the invasion process of E. californica in central Chile is consistent with climatic niche conservatism but there is potential for further expansion in Chile.  相似文献   

19.
Although the impact of Pleistocene glacial cycles on the diversification of the tropical biota was once dismissed, increasing evidence suggests that Pleistocene climatic fluctuations greatly affected the distribution and population divergence of tropical organisms. Landscape genomic analyses coupled with paleoclimatic distribution models provide a powerful way to understand the consequences of past climate changes on the present‐day tropical biota. Using genome‐wide SNP data and mitochondrial DNA, combined with projections of the species distribution across the late Quaternary until the present, we evaluate the effect of paleoclimatic shifts on the genetic structure and population differentiation of Hypsiboas lundii, a treefrog endemic to the South American Cerrado savanna. Our results show a recent and strong genetic divergence in H. lundii across the Cerrado landscape, yielding four genetic clusters that do not seem congruent with any current physical barrier to gene flow. Isolation by distance (IBD) explains some of the population differentiation, but we also find strong support for past climate changes promoting range shifts and structuring populations even in the presence of IBD. Post‐Pleistocene population persistence in four main areas of historical stable climate in the Cerrado seems to have played a major role establishing the present genetic structure of this treefrog. This pattern is consistent with a model of reduced gene flow in areas with high climatic instability promoting isolation of populations, defined here as “isolation by instability,” highlighting the effects of Pleistocene climatic fluctuations structuring populations in tropical savannas.  相似文献   

20.
Species distribution models (SDMs), the most prominent tool in modern biogeography, rely on the assumptions that (i) species distribution is in equilibrium with the environment and (ii) that climatic niche has been conserved throughout recent geological time. These issues affect the spatial and temporal transferability of SDMs, limiting their reliability for applications such as when studying effects of past climate change on species distribution and extinctions. The integration of paleontological and neontological data for a multitemporal calibration and validation of SDMs has been suggested for improving SDMs flexibility. Here, we provide an empirical test for a multitemporal calibration, employing virtual species (i.e., with perfectly-known distributions) and comparing them directly with monotemporal SDMs (i.e., SDM calibrated in a single time layer). We used 1kyr-interval scenarios throughout the last 22 kyr BP for two ecologically different species in South America (a “hot and wet” species and a “cold and dry” species). Models with multitemporal calibration performed similarly to models with monotemporal calibration, regardless of species, sample sizes, and time frame. However, multitemporal calibration performed better when dealing with non-analogous climates among time layers. By improving the temporal SDMs transferability, multitemporal calibration opens new avenues for integrating fossil and recent occurrence data, which may substantially benefit biogeography and paleoecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号