首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cisplatin (CDDP) is a widely useful chemotherapeutic agent for the treatment of tumors including lung, ovary and testis. Acute renal injury, however, is the main side effect observed after CDDP treatment. This side effect is related to the apoptotic death in proximal tubular cells in the kidney and p53 protein has a central role in this process. On the other hand, α-mangostin (α-M), a xanthone derived from the pericarp of mangosteen, exerts a renoprotective effect against cisplatin-induced renal damage in rats. The aim of this study was to evaluate whether α-M protects proximal tubule renal epithelial cells (LLC-PK1) from CDDP-induced apoptotic death. Cells were co-incubated with 5 μM α-M and 100 μM CDDP for 24 h. It was found that α-M attenuated the following alterations: the apoptotic cell death, the increase in reactive oxygen species (ROS), the glutathione depletion and the increase in p53 expression induced by CDDP. In conclusion, the preventive effect of α-M on CDDP-induced apoptotic death is associated to the inhibition of p53 expression and ROS generation.  相似文献   

2.
Angiotensin-converting enzyme 2 (ACE2) has been shown to prevent atherosclerotic lesions and renal inflammation. However, little was elucidated upon the effects and mechanisms of ACE2 in atherosclerotic kidney fibrosis progression. Here, we examined regulatory roles of ACE2 in renal fibrosis in the apolipoprotein E (ApoE) knockout (KO) mice. The ApoEKO mice were randomized to daily deliver either angiotensin (Ang) II (1.5 mg/kg) and/or human recombinant ACE2 (rhACE2; 2 mg/kg) for 2 weeks. Downregulation of ACE2 and upregulation of phosphorylated Akt, mTOR and ERK1/2 levels were observed in ApoEKO kidneys. Ang II infusion led to increased tubulointerstitial fibrosis in the ApoEKO mice with greater activation of the mTOR/ERK1/2 signaling. The Ang II-mediated renal fibrosis and structural injury were strikingly rescued by rhACE2 supplementation, associated with reduced mRNA expression of TGF-β1 and collagen I and elevated renal Ang-(1–7) levels. In cultured mouse kidney fibroblasts, exposure with Ang II (100 nmol L−1) resulted in obvious elevations in superoxide generation, phosphorylated levels of mTOR and ERK1/2 as well as mRNA levels of TGF-β1, collagen I and fibronectin 1, which were dramatically prevented by rhACE2 (1 mg mL−1) or mTOR inhibitor rapamycin (10 μmol L−1). These protective effects of rhACE2 were eradicated by the Ang-(1–7)/Mas receptor antagonist A779 (1 μmol L−1). Our results demonstrate the importance of ACE2 in amelioration of kidney fibrosis and renal injury in the ApoE-mutant mice via modulation of the mTOR/ERK signaling and renal Ang-(1–7)/Ang II balance, thus indicating potential therapeutic strategies by enhancing ACE2 action for preventing atherosclerosis and fibrosis-associated kidney disorders.  相似文献   

3.
Administration of fibroblastic cells derived from a number of tissues (collectively called “mesenchymal stem cells”) has been suggested to be beneficial for renal repair and mortality reduction in renal ischemia–reperfusion injury (IRI), but the underlying mechanism is not fully understood. In the present study, our objective was to investigate the involvement of macrophages in the therapeutic effect of human umbilical cord-derived stromal cells (hUCSCs) on renal IRI. Twenty-four hours after reperfusion, hUCSCs were injected intravenously and resulted in significant improvements in renal function, with a lower tubular injury score together with more proliferative and fewer apoptotic tubular cells in kidney tissue. Moreover, hUCSCs reduced the infiltration of macrophages into renal interstitium especially at 5 days post-reperfusion, while the proportion of anti-inflammatory M2 macrophages was markedly increased. HUCSCs also alleviated the local inflammatory response in kidneys. The absence of macrophages during the early phase of reperfusion enhanced the therapeutic effect of hUCSCs, whereas macrophage depletion during the late repair phase eliminated the renoprotective role of hUCSCs. In vitro, macrophages cocultured with hUCSCs were switched to the alternatively activated M2 phenotype. Our data indicate that hUCSCs are capable of promoting the M2 polarization of macrophages at injury sites, suggesting a new mechanism for hUCSC-mediated protection in renal IRI.  相似文献   

4.
This study investigated age-associated changes to protein synthesis and degradation pathways in the quadriceps muscles of male C57BL/6J mice at 5 ages, between 4 and 24 months (m). Sarcopenia was evident by 18 m and was accompanied by hyper-phosphorylation of S6K1, indicating increased mTORC1 signaling. Proteasomal and autophagosomal degradation pathways were also impacted by aging. In the 1% NP40 insoluble protein fraction, the abundance of MuRF1 increased at 24 m, while p62 increased at 15 m, and remained elevated at older ages. In addition, we investigated how protein synthesis and degradation pathways are modulated by fasting in young (4 m) and old (24 m) muscles, and showed that old mice respond to fasting less robustly compared with young. Overnight fasting for 16 h caused de-phosphorylation of AKT and molecules downstream of mTORC1 (S6K1, rpS6 and 4E-BP1) in young, but not old muscles. A longer time of fasting (24 h) was required to reduce phosphorylation of these molecules in old mice. Induction of MuRF1 and Fbxo32 mRNA was also more robust in young compared with old muscles following fasting for 16 h. In addition, a 16 h fast reduced ULK1 phosphorylation at the mTORC1 specific site Ser757 only in young muscles. The striking accumulation of insoluble p62 protein in muscles of all old male mice (fed or fasted), suggests age-related dysregulation of autophagy and protein aggregation. These data provide an insight into the mechanisms of metabolic responses that affect protein homeostasis in old skeletal muscles, with applications to design of clinical interventions that target sarcopenia.  相似文献   

5.
Background aimsIschemia-reperfusion (IR) injury is a common cause of acute renal failure. Bone marrow (BM)-derived mesenchymal stromal cells (MSC) delivered after renal IR are renoprotective, but knowledge of the protective mechanism is still in development. This investigation analyzed the protective molecular mechanisms of MSC, in particular relating to modulated oxidative stress.MethodsIn vivo and in vitro models of renal IR were analyzed with and without MSC. In vivo, adult male Sprague–Dawley rats were subjected to 40-min unilateral renal IR. Rat BM-derived MSC were administered at 24 h post-IR (IR + MSC). Other groups had IR but no MSC, or MSC but no ischemia (all groups n = 4). Apoptosis, inflammation, oxidative stress and reparative signal transduction molecules or growth factors were studied 4 days post-IR. In vitro, protection by MSC against oxidative stress (0.4 mm hydrogen peroxide) was investigated using rat renal tubular epithelial cells (NRK52E) with or without MSC in co-culture (tissue culture trans-well inserts), followed by similar analyses to the in vivo investigation.ResultsIn vivo, kidneys of IR + MSC animals had significantly increased cell proliferation/regeneration (cells positive for proliferating cell nuclear antigen, expression of epidermal growth factor), increased heme-oxygenase-1 (improved cell survival, anti-oxidant) and decreased 8-OHdG (decreased oxidative stress). In vitro, MSC delivered with oxidative stress significantly decreased apoptosis and Bax (pro-apoptotic protein), and increased mitosis and phospho-ERK1/2, thereby minimizing the damaging outcome and maximizing the regenerative effect after oxidative stress.ConclusionsThe benefits of MSC, in IR, were primarily pro-regenerative, sometimes anti-apoptotic, and novel anti-oxidant mechanisms were identified.  相似文献   

6.
AimsThe study aims to investigate the effect to treat acute kidney injury (AKI) with bone marrow derived mesenchymal stem cells (BMSCs) combined with vitamin E and to develop a new treatment mode for AKI preclinical study.Main methodsBMSCs were separated from rat bone marrow. Gentamicin was used as a damage factor in the culture of renal tubular epithelial cells (RTECs) in vitro. After co-cultured with BMSCs and vitamin E, cell proliferation of each group was detected with CCK-8. In vivo, BMSCs (3.3 × 106 cells/kg) combined with vitamin E (80 mg/kg) were administered in AKI rats induced by gentamicin intravenously. The pathological changes, biochemical parameters and apoptosis genes after treatment were investigated furthermore.Key findingsIn co-cultured system, proliferating ability of RTECs was improved by BMSCs or vitamin E, especially for the combined group (P < 0.05). The treated rats in combined group presented the lowest serum creatinine and the highest urea nitrogen compared to non-treated rats. The improvement in renal pathological changes was followed by less necrosis, degeneration and expansion of renal tubule. Under transmission electron microscope, unclear cell structure and reduction of endoplasmic reticulum in the cytoplasm of RTECs were ameliorated with the treatment. Most apoptosis genes were up-regulated in model group while down-regulated with the therapy. Further analysis showed that the two treatments may act independently with each other.SignificanceOur data demonstrated that both BMSC and vitamin E hold therapeutic action to AKI induced by gentamicin. Especially, the combined treatment is better than BMSC or vitamin E alone.  相似文献   

7.
Angiotensin-(1–7) (Ang-(1–7)) is expressed within the kidney and exhibits renoprotective actions that antagonize the inflammatory, fibrotic and pro-oxidant effects of the Ang II-AT1 receptor axis. We previously identified a peptidase activity from sheep brain, proximal tubules and human HK-2 proximal tubule cells that metabolized Ang-(1–7); thus, the present study isolated and identified the Ang-(1–7) peptidase. Utilizing ion exchange and hydrophobic interaction chromatography, a single 80 kDa protein band on SDS-PAGE was purified from HK-2 cells. The 80 kDa band was excised, the tryptic digest peptides analyzed by LC–MS and a protein was identified as the enzyme dipeptidyl peptidase 3 (DPP 3, EC: 3.4.14.4). A human DPP 3 antibody identified a single 80 kDa band in the purified enzyme preparation identical to recombinant human DPP 3. Both the purified Ang-(1–7) peptidase and DPP 3 exhibited an identical hydrolysis profile of Ang-(1–7) and both activities were abolished by the metallopeptidase inhibitor JMV-390. DPP 3 sequentially hydrolyzed Ang-(1–7) to Ang-(3–7) and rapidly converted Ang-(3–7) to Ang-(5–7). Kinetic analysis revealed that Ang-(3–7) was hydrolyzed at a greater rate than Ang-(1–7) [17.9 vs. 5.5 nmol/min/μg protein], and the Km for Ang-(3–7) was lower than Ang-(1–7) [3 vs. 12 μM]. Finally, chronic treatment of the HK-2 cells with 20 nM JMV-390 reduced intracellular DPP 3 activity and tended to augment the cellular levels of Ang-(1–7). We conclude that DPP 3 may influence the cellular expression of Ang-(1–7) and potentially reflect a therapeutic target to augment the actions of the peptide.  相似文献   

8.
The mechanisms of toxicity during exposure of the airways to chlorinated biomolecules generated during the course of inflammation and to chlorine (Cl2) gas are poorly understood. We hypothesized that lung epithelial cell mitochondria are damaged by Cl2 exposure and activation of autophagy mitigates this injury. To address this, NCI-H441 (human lung adenocarcinoma epithelial) cells were exposed to Cl2 (100 ppm/15 min) and bioenergetics were assessed. One hour after Cl2, cellular bioenergetic function and mitochondrial membrane potential were decreased. These changes were associated with increased MitoSOX signal, and treatment with the mitochondrial redox modulator MitoQ attenuated these bioenergetic defects. At 6 h postexposure, there was significant increase in autophagy, which was associated with an improvement of mitochondrial function. Pretreatment of H441 cells with trehalose (an autophagy activator) improved bioenergetic function, whereas 3-methyladenine (an autophagy inhibitor) resulted in increased bioenergetic dysfunction 1 h after Cl2 exposure. These data indicate that Cl2 induces bioenergetic dysfunction, and autophagy plays a protective role in vitro. Addition of trehalose (2 vol%) to the drinking water of C57BL/6 mice for 6 weeks, but not 1 week, before Cl2 (400 ppm/30 min) decreased white blood cells in the bronchoalveolar lavage fluid at 6 h after Cl2 by 70%. Acute administration of trehalose delivered through inhalation 24 and 1 h before the exposure decreased alveolar permeability but not cell infiltration. These data indicate that Cl2 induces bioenergetic dysfunction associated with lung inflammation and suggests that autophagy plays a protective role.  相似文献   

9.
Previous cancer chemoprevention studies have demonstrated that the non-steroidal anti-inflammatory drugs (NSAIDs) can be effective in suppressing the development of various human malignancies. Recently we identified the possible anti-tumor promoting potentials of 14 new NSAIDs in the Epstein–Barr virus early antigen activation assay induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). In this study we report the inhibition of 7,12-dimethylbenz (a) anthracene (DMBA) induced two-stage mouse skin carcinogenesis by etodolac (ETD), one of the most potent NSAIDs identified in our in vitro cancer chemopreventive screening of this group of drugs. Topical administration of ETD at a very low dose of 85 nmol showed a significant decrease in both tumor incidence and burden. This effect is also accompanied by a delay in the tumor latency period. Since ETD showed potent chemopreventive activity in both in vitro and in vivo studies, it warrants prompt consideration for trial in humans as a potential cancer chemopreventive agent. We also investigated oxyphenbutazone (OPB) another commonly used NSAID for its cancer chemopreventive effect on peroxynitrite (PN) induced-TPA promoted skin tumors in the mouse. Following tumor initiation with 390 nmol of PN, the skin tumor promotion with 1.7 nmol of TPA was significantly inhibited by oral administration of 0.0025% OPB. The results demonstrate that OPB is a potent cancer chemopreventive agent in the highly sensitive in vivo mouse test model we used.  相似文献   

10.
Inflammation has been implicated in the pathophysiology of kidney disorders. Previous studies have documented the contributions of various inflammatory cascades in the development of kidney and other organ dysfunctions. The Toll-like receptor 4 (TLR4) inflammatory pathway is a major contributor of inflammation in the kidney. Interestingly, lipopolysaccharide (LPS), a specific ligand for TLR4, has been shown to induce acute kidney injury (AKI) in animal models. We have previously studied the beneficial effects of nonpharmacological agents, particularly blueberries (BB), in attenuating inflammation and oxidative stress. We hypothesize that BB protect against the LPS-induced AKI by inhibiting TLR4 activation and kidney injury markers. Twelve-week-old male Sprague-Dawley rats received a BB solution or saline intragastric gavage for 2 days. One group of BB and saline-gavaged animals was injected with LPS (10 mg/kg bw). Another group of rats was injected with VIPER (0.1 mg/kg iv), a TLR4-specific inhibitory peptide, 2 h before LPS administration. Compared to LPS-administered rats, the BB-pretreated animals exhibited improved glomerular filtration rate, elevated renal blood flow, and a reduced renal vascular resistance. In addition, a reduction in the rate of production of free radicals, namely total reactive oxygen species (ROS) and superoxide, was observed in the BB-supplemented LPS group. Gene and protein expressions for TLR4, proinflammatory cytokine, and acute kidney injury markers were also attenuated in animals that were pretreated with BB as measured by real time RT-PCR and Western blotting, respectively. These results in the BB-pretreated group were consistent with those in the VIPER-treated rats, and indicate that BB protects against AKI by inhibiting TLR4 and its subsequent effect on inflammatory and oxidative stress pathways.  相似文献   

11.
Impaired renal function has been suggested to significantly impact plasma midregional proADM (MR-proADM) level. The aim of this study was to assess whether improvement of renal function after living kidney transplantation has an impact on plasma MR-proADM-like immunoreactive substance (IS) level. Eleven patients with end-stage renal disease (ESRD) who were scheduled to undergo the first living kidney allograft transplantation were enrolled. Plasma MR-proADM-IS levels were measured before and 3, 7, 10, 14, 21, 30, 60 and 90 days after kidney transplantation. Plasma MR-proADM-IS level decreased significantly from day 3 after kidney transplantation compared to before kidney transplantation. A significant negative correlation was observed between creatinine clearance and plasma MR-proADM-IS level from before to 90 days after kidney transplantation (rs = −0.70, p < 0.0001). These results suggest that recovery of kidney function after kidney transplantation may lead to decrease in plasma MR-proADM level in patients with ESRD, and that plasma MR-proADM level may depend largely on renal function.  相似文献   

12.
《Médecine Nucléaire》2020,44(3):203-212
IntroductionThe kidney is considered as a critical dose-limiting organ with 177Lu-Dotatate. Renal dosimetry could play a role in optimizing treatment. We present a feedback on the implementation of renal dosimetry in our medical center.Material and methodThe renal dosimetry of the 1st administration of 177Lu-Dotatate (approximately 7.4 GBq) has been performed for seven patients. The reference dosimetry strategy included 4 post-therapeutic SPECT/CT at 6 h, 24 h, 72 h and 168 h and anatomical renal volume delineation (VOI). Alternative dosimetric strategies consisted of 72 h or 168 h time point eviction (time sampling A or B) and delimitation of 1 or 3 spherical VOIs (3 mL each) per kidney (“1 sVOI” or “3 sVOI” methods). The quantitative scintigraphic processing was performed by 4 operators using Dosimetry Toolkit®. The renal dose was calculated with OLINDA/EXM® 2.0.ResultsThe calculated mean absorbed renal dose was 3.68 ± 0.68 Gy with the reference method, with no significant impact of interoperator variability (P = 0.41). It was in satisfactory agreement with time sampling A or B. The “1 sVOI” and “3 sVOI” methods overestimated the renal dose (5.01 ± 0.94 Gy and 4.91 ± 0.79 Gy respectively), with a significant impact on interoperator variability (P < 0.05), despite a reduction in processing time.ConclusionThe main logistic constraint of 177Lu-Dotatate renal dosimetry in our center is the time-consumption due to SPECT/CT acquisitions. A possible approach supported by our preliminary results is a reduction in the number of scintigraphic acquisitions.  相似文献   

13.
Despite improved therapeutic methods, CNS toxicity resulting from cancer treatment remains a major cause of post-treatment morbidity. More than half of adult patients with cranial irradiation for brain cancer develop neurobehavioral/cognitive deficits that severely impact quality of life. We examined the neuroprotective effects of the neurosteroid progesterone (PROG) against ionizing radiation (IR)-induced neurobehavioral/cognitive deficits in mice. Male C57/BL mice were exposed to one of two fractionated dose regimens of IR (3 Gy × 3 or 3 Gy × 5). PROG (16 mg/kg; 0.16 mg/g) was given as a pre-, concurrent or post-IR treatment for 14 days. Mice were tested for short- and long-term effects of IR and PROG on neurobehavioral/cognitive function on days 10 and 30 after IR treatment. We evaluated both hippocampus-dependent and -independent memory functions. Locomotor activity, elevated plus maze, novel object recognition and Morris water maze tests revealed behavioral deficits following IR. PROG treatment produced improvement in behavioral performance at both time points in the mice given IR. Western blot analysis of hippocampal and cortical tissue showed that IR at both doses induced astrocytic activation (glial fibrillary acidic protein), reactive macrophages/microglia (CD68) and apoptosis (cleaved caspase-3) and PROG treatment inhibited these markers of brain injury. There was no significant difference in the degree of deficit in any test between the two dose regimens of IR at either time point. These findings could be important in the context of patients with brain tumors who may undergo radiotherapy and eventually develop cognitive deficits.  相似文献   

14.
BackgroundThe natriuretic effect of uroguanylin (UGN) involves reduction of proximal tubule (PT) sodium reabsorption. However, the target sodium transporters as well as the molecular mechanisms involved in these processes remain poorly understood.MethodsTo address the effects of UGN on PT (Na+ + K+)ATPase and the signal transduction pathways involved in this effect, we used LLC-PK1 cells. The effects of UGN were determined through ouabain-sensitive ATP hydrolysis and immunoblotting assays during different experimental conditions.ResultsWe observed that UGN triggers cGMP/PKG and cAMP/PKA pathways in a sequential way. The activation of PKA leads to the inhibition of mTORC2 activity, PKB phosphorylation at S473, PKB activity and, consequently, a decrease in the mTORC1/S6K pathway. The final effects are decreased expression of the α1 subunit of (Na+ + K+)ATPase and inhibition of enzyme activity.ConclusionsThese results suggest that the molecular mechanism of action of UGN on sodium reabsorption in PT cells is more complex than previously thought. We propose that PKG-dependent activation of PKA leads to the inhibition of the mTORC2/PKB/mTORC1/S6K pathway, an important signaling pathway involved in the maintenance of the PT sodium pump expression and activity.General significanceThe current results expand our understanding of the signal transduction pathways involved in the overall effect of UGN on renal sodium excretion.  相似文献   

15.
Maternal undernutrition can cause reduced nephron number and glomerular hypertrophy, consequently leading to adult kidney disease. We intended to elucidate whether NO deficiency evolves to kidney disease vulnerability in offspring from mothers with caloric restriction diets and whether maternal l-citrulline (l-Cit) supplementation can prevent this. Using a rat model with 50% caloric restriction, four groups of 3-month-old male offspring were sacrificed to determine their renal outcome: control, caloric restriction (CR), control treated with 0.25% l-citrulline solution during the whole period of pregnancy and lactation (Cit), and CR treated in the same way (CR + Cit group). The CR group had low nephron numbers, increased glomerular diameter, and an increased plasma creatinine level compared with the control group. Maternal l-Cit supplementation prevented these effects. The CR + Cit and Cit groups developed hypertension beginning at 4 and 8 weeks of age, respectively. Plasma asymmetric and symmetric dimethylarginine (ADMA and SDMA) levels were increased, but l-arginine/ADMA ratios (AAR) were decreased in the CR group vs the control group. This was prevented by maternal l-Cit supplementation. Renal cortical neuronal NOS-α (nNOSα) protein abundance was significantly decreased in the Cit and CR + Cit groups. Collectively, reduced nephron number, reduced renal nNOSα expression, increased ADMA, and decreased AAR contribute to the developmental programming of adult kidney disease and hypertension. Although maternal l-Cit supplementation prevents caloric restriction-induced low nephron number and renal dysfunction, it also induces hypertension.  相似文献   

16.
A novel series of substituted benzoylguanidine derivatives were designed and synthesized as potent NHE1 inhibitors. Most compounds can significantly inhibit NHE1-mediated platelet swelling in a concentration-dependent manner, among which compound 5f (IC50 = 3.60 nM) and 5l (IC50 = 4.48 nM) are 18 and 14 times respectively more potent than cariporide (IC50 = 65.0 nM). Furthermore, when tested in vivo and in vitro, compound 5f showed superior cardioprotective effects against SD rat myocardial ischemic-reperfusion injury over cariporide, representing a promising lead compound for further exploration.  相似文献   

17.
18.
Inhibition of renal sodium-dependent glucose cotransporter 2 (SGLT2) increases urinary glucose excretion (UGE), and thus reduces blood glucose levels in hyperglycemia. A series of N-glucosides was synthesized for biological evaluation as human SGLT2 (hSGLT2) inhibitors. Among these compounds, N-glucoside 9d possessing an indole core structure showed good in vitro activity (IC50 = 7.1 nM against hSGLT2). Furthermore, 9d exhibited favorable in vivo potency with regard to UGE in rats based on good pharmacokinetic profiles.  相似文献   

19.
20.
The phospholipid (PL) fatty acyl chain (FA) composition (mol%) was determined in the kidney, liver, lung and brain of 8 avian species ranging in body mass from 150 g (Japanese quail, Coturnix coturnix japonica) to 19 kg (turkey, Meleagris gallopavo). In all organs except the brain, docosahexaenoic acid (C22:6 n3, DHA) was found to show a negative allometric scaling (allometric exponent: B = ? 0.18; ? 0.20 and ? 0.24, for kidney, liver and lung, respectively). With minor inter-organ differences, smaller birds had more n3 FAs and longer FA chains in the renal, hepatic and pulmonary PLs. Comparing our results with literature data on avian skeletal muscle, liver mitochondria and kidney microsomes and divergent mammalian tissues, the present findings in the kidney, liver and lung PLs seem to be a part of a general relationship termed “membranes as metabolic pacemakers”. Marked negative allometric scaling was found furthermore for the tissue malondialdehyde concentrations in all organs except the brain (B = ? 0.17; ? 0.13 and ? 0.05, respectively). In the liver and kidney a strong correlation was found between the tissue MDA and DHA levels, expressing the role of DHA in shaping the allometric properties of membrane lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号