首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipophilic insect hormones and their analogs affect mammalian physiology by regulating the expression of metabolic genes. Therefore, we determined the effect of fenoxycarb, a juvenile hormone analog, on lipid metabolism in adipocytes. Here, we demonstrated that fenoxycarb dose‐dependently promoted lipid accumulation in 3T3‐L1 adipocytes during adipocyte differentiation and that its lipogenic effect was comparable to that of rosiglitazone, a well‐known ligand for peroxisome proliferator‐activated receptor gamma (PPARγ). Furthermore, fenoxycarb stimulated PPARγ activity without affecting other nuclear receptors, such as liver X receptor (LXR), farnesoid X‐activated receptor (FXR) and Nur77. In addition, fenoxycarb treatment increased the expression of PPARγ and fatty acid transporter protein 1 (FATP1) in 3T3‐L1 adipocytes, suggesting that fenoxycarb may facilitate adipocyte differentiation by enhancing PPARγ signaling, the master regulator of adipogenesis. Together, our results suggest that fenoxycarb promoted lipid accumulation in adipocytes, in part, by stimulating PPARγ.  相似文献   

2.
Dicer is a rate-limiting enzyme for microRNA (miRNA) synthesis. To determine the effects of Dicer on adipogenesis, we performed stage-specific knockdown of Dicer using adenovirus encoding short-hairpin RNAi against Dicer in 3T3-L1 cells. When cells were infected with the adenovirus before induction of adipocyte differentiation, Dicer RNAi suppressed the gene expression of inducers of adipocyte differentiation such as PPARγ, C/EBPα, and FAS in 3T3-L1 cells during adipocyte differentiation. Concurrently, both adipocyte differentiation and cellular lipid accumulation were cancelled by Dicer RNAi when compared with control RNAi. Meanwhile, we addressed the roles of Dicer in lipid synthesis and accumulation in the final stages of differentiation. When the differentiated cells at day 4 after induction of differentiation were infected with adenovirus Dicer RNAi, cellular lipid accumulation was unchanged. Consistent with this, Dicer RNAi had no effects on the expression of genes related to cellular lipid accumulation, including PPARγ and FAS. Thus, Dicer controls proadipogenic genes such as C/EBPα and PPARγ in the early, but not in the late, stage of adipogenesis via regulation of miRNA synthesis.  相似文献   

3.
The insulin-independent and combined effects of fatty acids (FA; linoleic and oleic acids) and insulin in modulating lipid accumulation and adipogenesis in 3T3-L1 cells was investigated using a novel protocol avoiding the effects of a complex hormone 'induction' mixture. 3T3-L1 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) plus serum (control) or in DMEM plus either 0.3 mmol/l linoleic or oleic acids with 0.3 mmol/l FA-free bovine serum albumin in the presence or absence of insulin. Cells were cultured for 4 to 8 days and cell number, lipid accumulation, peroxisome proliferator-activated receptor-gamma (PPAR-γ) and glucose transporter 4 (GLUT-4) protein expression were determined. Cell number appeared to be decreased in comparison with control cultures. In both oleic acid and linoleic acid-treated cells, notably in the absence (and presence) of insulin, oil-red O stain-positive cells showed abundant lipid. The percentage of cells showing lipid accumulation was greater in FA-treated cultures compared with control cells grown in DMEM plus serum (P < 0.001). Treatment with both linoleic and oleic acid-containing media evoked higher levels of PPAR-γ than observed in control cultures (P < 0.05). GLUT-4 protein also increased in response to treatment with both linoleic and oleic acid-containing media (P < 0.001). Lipid accumulation in 3T3-L1 cells occurs in response to either oleic or linoleic acids independently of the presence of insulin. Both PPAR-γ and GLUT-4 protein expression were stimulated. Both proteins are considered markers of adipogenesis, and these observations suggest that these cells had entered the physiological state broadly accepted as differentiated. Furthermore, 3T3-L1 cells can be induced to accumulate lipid in a serum-free medium supplemented with FA, without the use of induction protocols using complex hormone mixtures. We have demonstrated a novel model for the study of lipid accumulation that will improve the understanding of adipogenesis in adipocyte lineage cells.  相似文献   

4.
The importance of peroxisomes for adipocyte function is poorly understood. Herein, we provide insights into the critical role of peroxin 16 (PEX16)-mediated peroxisome biogenesis in adipocyte development and lipid metabolism. Pex16 is highly expressed in adipose tissues and upregulated during adipogenesis of murine and human cells. We demonstrate that Pex16 is a target gene of the adipogenesis “master-regulator” PPARγ. Stable silencing of Pex16 in 3T3-L1 cells strongly reduced the number of peroxisomes while mitochondrial number was unaffected. Concomitantly, peroxisomal fatty acid (FA) oxidation was reduced, thereby causing accumulation of long- and very long-chain (polyunsaturated) FAs and reduction of odd-chain FAs. Further, Pex16-silencing decreased cellular oxygen consumption and increased FA release. Additionally, silencing of Pex16 impaired adipocyte differentiation, lipogenic and adipogenic marker gene expression, and cellular triglyceride stores. Addition of PPARγ agonist rosiglitazone and peroxisome-related lipid species to Pex16-silenced 3T3-L1 cells rescued adipogenesis. These data provide evidence that PEX16 is required for peroxisome biogenesis and highlights the relevance of peroxisomes for adipogenesis and adipocyte lipid metabolism.  相似文献   

5.
6.
Plasma cysteine is strongly associated with body fat mass in human cohorts and diets low in cysteine prevents fat accumulation in mice. It is unclear if plasma cysteine affects fat development or if fat accumulation raises plasma cysteine. To determine if cysteine affects adipogenesis, we differentiated 3T3-L1 preadipocytes in medium with reduced cysteine. Cells incubated in media with 10–20 μM cysteine exhibited reduced capacity to differentiate into triacylglycerol-storing mature adipocytes compared with cells incubated with 50 μM cysteine. Low cysteine severely reduced expression of peroxisome proliferator-activated receptor gamma2 (Pparγ2) and its target genes perlipin1 (Plin1) and fatty acid binding protein-4 (Fabp4). Expression of stearoyl-CoA desaturase-1 (Scd1), known to be repressed with cysteine depletion, was also reduced with low cysteine. Medium depletion of the essential amino acids leucine, valine, and isoleucine had only a modest effect on adipocyte specific gene expression and differentiation. Stimulation with the PPARγ agonist BRL-49653 or addition of a hydrogen sulfide donor enhanced differentiation of 3T3-L1 cells cultured in low cysteine. This demonstrates that the ability to induce PPARγ expression is preserved when cells are cultured in low cysteine. It therefore appears that cysteine depletion inhibits adipogenesis by specifically affecting molecular pathways required for induction of PPARγ expression, rather than through a general reduction of global protein synthesis. In conclusion, we show that low extracellular cysteine reduces adipocyte differentiation by interfering with PPARγ2 and PPARγ target gene expression. Our results provide further evidence for the hypothesis that plasma cysteine is a casual determinant for body fat mass.  相似文献   

7.
We demonstrate that expression of the myocardial lipid droplet protein (MLDP) and ERα observed in adipose tissues is undetectable in 3T3-L1 cells but detectable in mouse embryonic fibroblasts (MEFs) and stromal-vascular cells (SVCs) during adipocyte differentiation. MLDP gene expression in MEFs or SVCs is induced by treatment with a PPARγ agonist or forced expression of PPARγ, indicating that PPARγ enhances MLDP expression during adipogenesis. PCR analyses reveal the dual expression of SREBP-1a and SREBP-1c in MEFs and SVCs as well as white adipose tissues unlike the predominant expression of SREBP-1a in 3T3-L1 cells. These results suggest that MEFs and SVCs are useful model cells for examining function of MLDP in lipid droplet formation and adipocyte differentiation.  相似文献   

8.
9.
Bone marrow mesenchymal stromal cells (BMSCs) are the common precursors for both osteoblasts and adipocytes. With aging, BMSC osteoblast differentiation decreases whereas BMSC differentiation into adipocytes increases, resulting in increased adipogenesis and bone loss. In the present study, we investigated the effect of asiatic acid (AA) on adipocytic differentiation of BMSCs. AA inhibited the adipogenic induction of lipid accumulation, activity of glycerol-3-phosphate dehydrogenase, and expression of marker genes in adipogenesis: peroxisome proliferation-activated receptor (PPAR)γ, adipocyte fatty acid-binding protein (ap) 2, and adipsin. Further, we found that AA did not alter clonal expansion rate and expression of C/EBPβ, upstream key regulator of PPARγ, and binding activity of C/EBPβ to PPARγ promoter was not affected by AA as well. These findings suggest that AA may modulate differentiation of BMSCs to cause a lineage shift away from the adipocytes, and inhibition of PPARγ by AA is through C/EBPβ-independent mechanisms. Thus, AA could be a potential candidate for a novel drug against osteoporosis.  相似文献   

10.
11.
Dave S  Kaur NJ  Nanduri R  Dkhar HK  Kumar A  Gupta P 《PloS one》2012,7(1):e30831
The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2), fatty acid synthase (FAS), lipoprotein lipase (LPL), CD36, and acetyl-CoA carboxylase (ACC) were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPARγ expression seems to stem from its ability to inhibit Akt and augment the TNFα pathway. The Akt-TSC2-mTORC1 pathway has recently been described for PPARγ expression in adipocytes. In our experiments, TNFα upregulation compromised cell viability of mature adipocytes (via apoptosis) and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B), and GTP binding protein G(i)α(1), as well as sustained expression of hormone sensitive lipase (HSL). These data indicate that SBM, together with all-trans retinoic-acid (atRA), may be a potent modulator of obesity by repressing the PPARγ-regulated adipogenesis pathway at all stages and by augmenting TNFα-induced lipolysis and apoptosis in mature adipocytes.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
Dioxinodehydroeckol (DHE) isolated from Ecklonia cava, has previously been investigated for its inhibition of the differentiation of 3T3-L1 preadipocytes into adipocytes. Levels of lipid accumulation were measured, along with changes in the expression of genes and proteins associated with adipogenesis and lipolysis. Confluent 3T3-L1 preadipocytes in medium with or without different concentrations of DHE for 7 days were differentiated into adipocytes. Lipid accumulation was quantified by measuring direct triglyceride contents and Oil-Red O staining. The expression of genes and proteins associated with adipogenesis and lipolysis was measured using RT-PCR, quantitative real-time RT-PCR and Western blotting analysis. It was found that the presence of DHE significantly reduced lipid accumulation and down-regulated the expression of peroxisome proliferator-activated receptor-γ (PPARγ), sterol regulatory element-binding protein 1 (SREBP1) and CCAAT/enhancer-binding proteins (C/EBPα) in a dose-dependent manner. Moreover, DHE suppressed regulation of the adipocyte-specific gene promoters such as fatty acid binding protein (FABP4), fatty acid transport protein (FATP1), fatty acid synthase (FAS), lipoprotein lipase (LPL), acyl-CoA synthetase 1 (ACS1), leptin, perilipin and HSL compared to control adipocytes. The specific mechanism mediating the effects of DHE was confirmed by activation of phosphorylated AMP-activated protein kinase (pAMPK). Therefore, these results suggest that DHE exerts anti-adipogenic effect on adipocyte differentiation through the activation and modulation of the AMPK signaling pathway.  相似文献   

20.
Adult mice abundantly express neudesin, an extracellular heme-binding protein with neurotrophic activity, in white adipose tissues. At the early stage of adipocyte differentiation during adipogenesis, however, the expression of neudesin decreased transiently. Neudesin-hemin significantly suppressed adipogenesis in 3T3-L1 cells. The knockdown of neudesin by RNA interference markedly promoted adipogenesis in 3T3-L1 cells and decreased MAPK activation during adipocyte differentiation. The addition or knockdown of neudesin affected the expression of C/EBPα and PPARγ but not of C/EBPβ. These findings suggest that neudesin plays a critical role in the early stage of adipocyte differentiation in which C/EBPβ induces PPARγ and C/EBPα expressions, by controlling the MAPK pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号