首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The long-term consequences of traumatic brain injury (TBI), specifically the detrimental effects of inflammation on the neurogenic niches, are not very well understood. In the present in vivo study, we examined the prolonged pathological outcomes of experimental TBI in different parts of the rat brain with special emphasis on inflammation and neurogenesis. Sixty days after moderate controlled cortical impact injury, adult Sprague-Dawley male rats were euthanized and brain tissues harvested. Antibodies against the activated microglial marker, OX6, the cell cycle-regulating protein marker, Ki67, and the immature neuronal marker, doublecortin, DCX, were used to estimate microglial activation, cell proliferation, and neuronal differentiation, respectively, in the subventricular zone (SVZ), subgranular zone (SGZ), striatum, thalamus, and cerebral peduncle. Stereology-based analyses revealed significant exacerbation of OX6-positive activated microglial cells in the striatum, thalamus, and cerebral peduncle. In parallel, significant decrements in Ki67-positive proliferating cells in SVZ and SGZ, but only trends of reduced DCX-positive immature neuronal cells in SVZ and SGZ were detected relative to sham control group. These results indicate a progressive deterioration of the TBI brain over time characterized by elevated inflammation and suppressed neurogenesis. Therapeutic intervention at the chronic stage of TBI may confer abrogation of these deleterious cell death processes.  相似文献   

2.
While it is well known that production of new neurons from neural stem/progenitor cells (NSC) in the dentate gyrus (DG) diminishes greatly by middle age, the phases and mechanisms of major age-related decline in DG neurogenesis are largely unknown. To address these issues, we first assessed DG neurogenesis in multiple age groups of Fischer 344 rats via quantification of doublecortin-immunopositive (DCX+) neurons and then measured the production, neuronal differentiation and initial survival of new cells in the subgranular zone (SGZ) of 4-, 12- and 24-month-old rats using four injections (one every sixth hour) of 5'-bromodeoxyuridine (BrdU), and BrdU-DCX dual immunostaining. Furthermore, we quantified the numbers of proliferating cells in the SGZ of these rats using Ki67 immunostaining. Numbers of DCX+ neurons were stable at 4-7.5 months of age but decreased progressively at 7.5-9 months (41% decline), 9-10.5 months (39% decline), and 10.5-12 months (34% decline) of age. Analyses of BrdU(+) cells at 6 h after the last BrdU injection revealed a 71-78% decline in the production of new cells per day between 4-month-old rats and 12- or 24-month-old rats. Numbers of proliferating Ki67+ cells (putative NSCs) in the SGZ also exhibited similar (72-85%) decline during this period. However, the extent of both neuronal differentiation (75-81%) and initial 12-day survival (67-74%) of newly born cells was similar in all age groups. Additional analyses of dendritic growth of 12-day-old neurons revealed that newly born neurons in the aging DG exhibit diminished dendritic growth compared with their age-matched counterparts in the young DG. Thus, major decreases in DG neurogenesis occur at 7.5-12 months of age in Fischer 344 rats. Decreased production of new cells due to proliferation of far fewer NSCs in the SGZ mainly underlies this decline.  相似文献   

3.
Acute Seizure (AS) activity in young adult age conspicuously modifies hippocampal neurogenesis. This is epitomized by both increased addition of new neurons to the granule cell layer (GCL) by neural stem/progenitor cells (NSCs) in the dentate subgranular zone (SGZ), and greatly enhanced numbers of newly born neurons located abnormally in the dentate hilus (DH). Interestingly, AS activity in old age does not induce such changes in hippocampal neurogenesis. However, the effect of AS activity on neurogenesis in the middle-aged hippocampus is yet to be elucidated. We examined hippocampal neurogenesis in middle-aged F344 rats after a continuous AS activity for >4 hrs, induced through graded intraperitoneal injections of the kainic acid. We labeled newly born cells via daily intraperitoneal injections of the 5'-bromodeoxyuridine (BrdU) for 12 days, commencing from the day of induction of AS activity. AS activity enhanced the addition of newly born BrdU+ cells by 5.6 fold and newly born neurons (expressing both BrdU and doublecortin [DCX]) by 2.2 fold to the SGZ-GCL. Measurement of the total number of DCX+ newly born neurons also revealed a similar trend. Furthermore, AS activity increased DCX+ newly born neurons located ectopically in the DH (2.7 fold increase and 17% of total newly born neurons). This rate of ectopic migration is however considerably less than what was observed earlier for the young adult hippocampus after similar AS activity. Thus, the plasticity of hippocampal neurogenesis to AS activity in middle age is closer to its response observed in the young adult age. However, the extent of abnormal migration of newly born neurons into the DH is less than that of the young adult hippocampus after similar AS activity. These results also point out a highly divergent response of neurogenesis to AS activity between middle age and old age.  相似文献   

4.
Pubertal development is marked by significant decreases in cellular proliferation and neurogenesis in the dentate gyrus of the hippocampal formation. Although it is unclear what mediates these developmental changes in the dentate gyrus, gonadal hormones have been implicated in modulating many neurobiological processes during puberty and various parameters of neurogenesis in adulthood. Thus, it is possible that the gradual and sustained increase in gonadal hormones experienced during puberty plays a role in these changes in neurogenesis. In this experiments, we first quantified cellular proliferation and neurogenesis using 5-bromo-2'-deoxyuridine (BrdU) and doublecortin (DCX) immunohistochemistry, respectively, in the dentate gyrus of prepubertal (30 d), midpubertal (45 d), and adult (90 d) male rats. We found the decline in BrdU and DCX cell numbers throughout these ages was coincident with increases in their plasma testosterone levels. We next tested whether exposure to the pubertal rise in gonadal hormones was necessary for this decrease in hippocampal neurogenesis to occur. Thus, we examined cellular proliferation and neurogenesis in intact 30 day (prepubertal) and 60-day-old (late-pubertal) rats, as well as 60-day-old rats that had previously been gonadectomized or sham-gonadectomized at 30 days of age. Although we again found the expected decline in BrdU and DCX cell numbers between 30 and 60 days of age in the intact groups, there were no differences among the 60-day-old animals, regardless of gonadal status. These data indicate that the pubertal-related decline in hippocampal cellular proliferation and neurogenesis is independent of the pubertal change in gonadal hormones.  相似文献   

5.
Doublecortin (DCX), a microtubule-associated protein, specifically expresses in neuronal precursors. This protein has been used as a marker for neuronal precursors and neurogenesis. In the present study, we observed differences in DCX immunoreactivity and its protein levels in the hippocampal dentate gyrus between adult and aged dogs. In the adult dog, DCX immunoreactive cells with well-stained processes were detected in the subgranular zone of the dentate gyrus. Numbers of DCX immunoreactive cells in the dentate gyrus of the aged dog were significantly decreased compared to those in the adult dog. DCX immunoreactive cells in both adult and aged dog did not show NeuN (a marker for mature neurons) immunoreactivity. NeuN immunoreactivity in the aged dog was poor compared to that in the adult dog. DCX protein level in the aged dentate gyrus was decreased by 80% compared to that in the adult dog. These results suggest that the reduction of DCX in the aged hippocampal dentate gyrus may be involved in some neural deficits related to the hippocampus.  相似文献   

6.

Background

Essentially all knowledge about adult hippocampal neurogenesis in humans still comes from one seminal study by Eriksson et al. in 1998, although several others have provided suggestive findings. But only little information has been available in how far the situation in animal models would reflect the conditions in the adult and aging human brain. We therefore here mapped numerous features associated with adult neurogenesis in rodents in samples from human hippocampus across the entire lifespan. Such data would not offer proof of adult neurogenesis in humans, because it is based on the assumption that humans and rodents share marker expression patterns in adult neurogenesis. Nevertheless, together the data provide valuable information at least about the presence of markers, for which a link to adult neurogenesis might more reasonably be assumed than for others, in the adult human brain and their change with increasing age.

Methods and Findings

In rodents, doublecortin (DCX) is transiently expressed during adult neurogenesis and within the neurogenic niche of the dentate gyrus can serve as a valuable marker. We validated DCX as marker of granule cell development in fetal human tissue and used DCX expression as seed to examine the dentate gyrus for additional neurogenesis-associated features across the lifespan. We studied 54 individuals and detected DCX expression between birth and 100 years of age. Caveats for post-mortem analyses of human tissues apply but all samples were free of signs of ischemia and activated caspase-3. Fourteen markers related to adult hippocampal neurogenesis in rodents were assessed in DCX-positive cells. Total numbers of DCX expressing cells declined exponentially with increasing age, and co-expression of DCX with the other markers decreased. This argued against a non-specific re-appearance of immature markers in specimen from old brains. Early postnatally all 14 markers were co-expressed in DCX-positive cells. Until 30 to 40 years of age, for example, an overlap of DCX with Ki67, Mcm2, Sox2, Nestin, Prox1, PSA-NCAM, Calretinin, NeuN, and others was detected, and some key markers (Nestin, Sox2, Prox1) remained co-expressed into oldest age.

Conclusions

Our data suggest that in the adult human hippocampus neurogenesis-associated features that have been identified in rodents show patterns, as well as qualitative and quantitative age-related changes, that are similar to the course of adult hippocampal neurogenesis in rodents. Consequently, although further validation as well as the application of independent methodology (e.g. electron microscopy and cell culture work) is desirable, our data will help to devise the framework for specific research on cellular plasticity in the aging human hippocampus.  相似文献   

7.
Erythropoietin is a primary regulator of erythropoiesis in the hematopoietic system. More recently erythropoietin has been shown to play a role in neurogenesis and provide neurotrophic support to injured CNS tissue. Here the effects of large systemic doses of erythropoietin on basal levels of adult hippocampal neurogenesis in mice were examined. A 7-day period of recombinant human erythropoietin (rhEPO) administration increased the number of bromodeoxyuridine [BrdU(+)] cells in the sub-granular zone (SGZ) by 30%. Analysis of cell phenotype revealed an increase in mitotically active doublecortin(+) neuronal progenitor cells and glial fibrillary acidic protein(+) SGZ radial astrocytes/stem cells but not mature S100beta(+) astrocytes. These effects appeared to be mediated, in part, by mitogen-activated protein kinase signaling and potentially regulated by suppressor of cytokine signaling-3. Hippocampal levels of phosphorylated extracellular signal-related kinase 42/44 and suppressor of cytokine signaling-3 were increased 2-6 h after a single systemic rhEPO injection. However, rhEPO had no observed effect on the long-term survival of new born cells in the SGZ, with similar numbers of BrdU(+) cells and BrdU(+)/NeuN(+) co-labeled cells after 4 weeks. Therefore, systemically delivered rhEPO transiently increased adult hippocampal neurogenesis without any apparent long-term effects.  相似文献   

8.
Liu JX  Pinnock SB  Herbert J 《PloS one》2011,6(3):e17562
The dentate gyrus is a site of continued neurogenesis in the adult brain. The CA3 region of the hippocampus is the major projection area from the dentate gyrus. CA3 sends reciprocal projections back to the dentate gyrus. Does this imply that CA3 exerts some control over neurogenesis? We studied the effects of lesions of CA3 on neurogenesis in the dentate gyrus, and on the ability of fluoxetine to stimulate mitotic activity in the progenitor cells. Unilateral ibotenic-acid generated lesions were made in CA3. Four days later there was no change on the number of either BrdU or Ki67-positive progenitor cells in the dentate gyrus. However, after 15 or 28 days, there was a marked reduction in surviving BrdU-labelled cells on the lesioned side (but no change in Ki-67+ cells). pCREB or Wnt3a did not co-localise with Ki-67 but with NeuN, a marker of mature neurons. Lesions had no effect on the basal expression of either pCREB or Wnt3a. Subcutaneous fluoxetine (10 mg/kg/day) for 14 days increased the number of Ki67+ cells as expected on the control (non-lesioned) side but not on that with a CA3 lesion. Nevertheless, the expected increase in BDNF, pCREB and Wnt3a still occurred on the lesioned side following fluoxetine treatment. Fluoxetine has been reported to decrease the number of “mature” calbindin-positive cells in the dentate gyrus; we found this still occurred on the side of a CA3 lesion. We then showed that the expression GAP-43 was reduced in the dentate gyrus on the lesioned side, confirming the existence of a synaptic connection between CA3 and the dentate gyrus. These results show that CA3 has a hitherto unsuspected role in regulating neurogenesis in the dentate gyrus of the adult rat.  相似文献   

9.
10.
Neurogenesis, which may contribute to the ability of the adult brain to function normally and adapt to disease, nevertheless declines with advancing age. Adult neurogenesis can be enhanced by administration of growth factors, but whether the aged brain remains responsive to these factors is unknown. We compared the effects of intracerebroventricular fibroblast growth factor (FGF)-2 and heparin-binding epidermal growth factor-like growth factor (HB-EGF) on neurogenesis in the hippocampal dentate subgranular zone (SGZ) and the subventricular zone (SVZ) of young adult (3-month) and aged (20-month) mice. Neurogenesis, measured by labelling with bromodeoxyuridine (BrdU) and by expression of doublecortin, was reduced by approximately 90% in SGZ and by approximately 50% in SVZ of aged mice. HB-EGF increased BrdU labelling in SGZ at 3 months by approximately 60% and at 20 months by approximately 450%, which increased the number of BrdU-labelled cells in SGZ of aged mice to approximately 25% of that in young adults. FGF-2 also stimulated BrdU labelling in SGZ, by approximately 25% at 3 months and by approximately 250% at 20 months, increasing the number of newborn neurones in older mice to approximately 20% of that in younger mice. In SVZ, HB-EGF and FGF-2 increased BrdU incorporation by approximately 140% at 3 months and approximately 170% at 20 months, so the number of BrdU-labelled cells was comparable in untreated 3-month-old and growth factor-treated 20-month-old mice. These results demonstrate that the aged brain retains the capacity to respond to exogenous growth factors with increased neurogenesis, which may have implications for the therapeutic potential of neurogenesis enhancement in age-associated neurological disorders.  相似文献   

11.
It has been demonstrated that melatonin plays important roles in memory improvement and promotes neurogenesis in experimental animals. We examined effects of melatonin on cognitive deficits, neuronal damage, cell proliferation, neuroblast differentiation and neuronal maturation in the mouse dentate gyrus after cotreatment of scopolamine (anticholinergic agent) and melatonin. Scopolamine (1 mg/kg) and melatonin (10 mg/kg) were intraperitoneally injected for 2 and/or 4 weeks to 8-week-old mice. Scopolamine treatment induced significant cognitive deficits 2 and 4 weeks after scopolamine treatment, however, cotreatment of scopolamine and melatonin significantly improved spatial learning and short-term memory impairments. Two and 4 weeks after scopolamine treatment, neurons were not damaged/dead in the dentate gyrus, in addition, no neuronal damage/death was shown after cotreatment of scopolamine and melatonin. Ki67 (a marker for cell proliferation)- and doublecortin (a marker for neuroblast differentiation)-positive cells were significantly decreased in the dentate gyrus 2 and 4 weeks after scopolamine treatment, however, cotreatment of scopolamine and melatonin significantly increased Ki67- and doublecortin-positive cells compared with scopolamine-treated group. However, double immunofluorescence for NeuN/BrdU, which indicates newly-generated mature neurons, did not show double-labeled cells (adult neurogenesis) in the dentate gyrus 2 and 4 weeks after cotreatment of scopolamine and melatonin. Our results suggest that melatonin treatment recovers scopolamine-induced spatial learning and short-term memory impairments and restores or increases scopolamine-induced decrease of cell proliferation and neuroblast differentiation, but does not lead to adult neurogenesis (maturation of neurons) in the mouse dentate gyrus following scopolamine treatment.  相似文献   

12.
We investigated the hippocampal long-term potentiation (LTP), neurogenesis, and the activation of signaling molecules in the 20-month-old aged rats following chronic lithium treatment. Chronic lithium treatment produced a significant 79% increase in the numbers of BrdU(+) cells after treatment completion in the dentate gyrus (DG). Both LTP obtained from slices perfused with artificial cerebrospinal fluid (ACSF-LTP), and LTP recorded in the presence of bicuculline (bicuculline-LTP) were significantly greater in the lithium group than in the saline controls. Our results show that as with young rats, chronic lithium can substantially increase LTP and the number of BrdU(+) cells in the aged rats. However, neurogenesis, assessed by colocalization of NeuN and BrdU, was not detected in the aged rat DG subjected to chronic lithium treatment. Therefore, it is concluded that the increase in LTP and the number of BrdU(+) cells might not be associated with increases in neurogenesis in the granule cell layer of the DG. Lithium might has a beneficial effects through other signaling pathways in the aged brain.  相似文献   

13.
Tanshinone I (TsI), a lipophilic diterpene extracted from Danshan (Radix Salvia miltiorrhizae), exerts neuroprotection in cerebrovascular diseases including transient ischemic attack. In this study, we examined effects of TsI on cell proliferation and neuronal differentiation in the subgranular zone (SGZ) of the mouse dentate gyrus (DG) using Ki-67, BrdU and doublecortin (DCX) immunohistochemistry. Mice were treated with 1 and 2 mg/kg TsI for 28 days. In the 1 mg/kg TsI-treated-group, distribution patterns of BrdU, Ki-67 and DCX positive (+) cells in the SGZ were similar to those in the vehicle-treated-group. However, in the 2 mg/kg TsI-treated-group, double labeled BrdU+/NeuN+ cells, which are mature neurons, as well as Ki-67+, DCX+ and BrdU+ cells were significantly increased compared with those in the vehicle-treated-group. On the other hand, immunoreactivities and protein levels of Wnt-3, β-catenin and serine-9-glycogen synthase kinase-3β (p-GSK-3β), which are related with morphogenesis, were significantly increased in the granule cell layer of the DG only in the 2 mg/kg TsI-treated-group. Therefore, these findings indicate that TsI can promote neurogenesis in the mouse DG and that the neurogenesis is related with increases of Wnt-3, p-GSK-3β and β-catenin immunoreactivities.  相似文献   

14.
Ongoing neurogenesis in the adult mammalian dentate gyrus and olfactory bulb is generally accepted, but its existence in other adult brain regions is highly controversial. We labeled newly born cells in adult rats with the S-phase marker bromodeoxyuridine (BrdU) and used neuronal markers to characterize new cells at different time points after cell division. In the neocortex and striatum, we found BrdU-labeled cells that expressed each of the eight neuronal markers. Their size as well as staining for gamma-aminobutyric acid (GABA), glutamic acid decarboxylase 67, calretinin and/or calbindin, suggest that new neurons in both regions are GABAergic interneurons. BrdU and doublecortin-immunoreactive (BrdU+/DCX+) cells were seen within the striatum, suggesting migration of immature neurons from the subventricular zone. Surprisingly, no DCX+ cells were found within the neocortex. NG2 immunoreactivity in some new neocortical neurons suggested that they may instead be generated from the NG2+ precursors that reside within the cortex itself.  相似文献   

15.
Lemon balm, leaves of Melissa officinalis L., has been used for anti-anxiety and spasmolytics. We observed the extract of Melissa officinalis L. (MOE) on cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus (DG) of middle-aged mice (12 months of age) using Ki67 and doublecortin (DCX), respectively. We also observed changes in corticosterone, GAD67 and GABA-transaminase (GABA-T) to check their possible mechanisms related to neurogenesis. We administered 50 or 200 mg/kg MOE to the animals once a day for 3 weeks. For labeling of newly generated cells, we also administered 5-bromodeoxyuridine (BrdU) twice a day for 3 days from the day of the first MOE treatment. Administration of 50 or 200 mg/kg MOE dose-dependently increased Ki67 positive nuclei to 244.1 and 763.9% of the vehicle-treated group, respectively. In addition, 50 or 200 mg/kg MOE significantly increased DCX positive neuroblasts with well-developed (tertiary) dendrites. Furthermore, MOE administration significantly increased BrdU/calbindin D-28 k double labeled cells (integrated neurons into granule cells in the DG) to 245.2% of the vehicle-treated group. On the other hand, administration of MOE reduced corticosterone levels in serum and decreased GABA-T levels in the DG homogenates. These results suggest that MOE increases cell proliferation, neuroblast differentiation and integration into granule cells by decreasing serum corticosterone levels as well as by increasing GABA levels in the mouse DG.  相似文献   

16.
In the healthy adult brain, neurogenesis normally occurs in the subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Cerebral ischemia enhances neurogenesis in neurogenic and non-neurogenic regions of the ischemic brain of adult rodents. This study demonstrated that post-insult treatment with a histone deacetylase inhibitor, sodium butyrate (SB), stimulated the incorporation of bromo-2'-deoxyuridine (BrdU) in the SVZ, DG, striatum, and frontal cortex in the ischemic brain of rats subjected to permanent cerebral ischemia. SB treatment also increased the number of cells expressing polysialic acid–neural cell adhesion molecule, nestin, glial fibrillary acidic protein, phospho-cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF) in various brain regions after cerebral ischemia. Furthermore, extensive co-localization of BrdU and polysialic acid–neural cell adhesion molecule was observed in multiple regions after ischemia, and SB treatment up-regulated protein levels of BDNF, phospho-CREB, and glial fibrillary acidic protein. Intraventricular injection of K252a, a tyrosine kinase B receptor antagonist, markedly reduced SB-induced cell proliferation detected by BrdU and Ki67 in the ipsilateral SVZ, DG, and other brain regions, blocked SB-induced nestin expression and CREB activation, and attenuated the long-lasting behavioral benefits of SB. Together, these results suggest that histone deacetylase inhibitor-induced cell proliferation, migration and differentiation require BDNF–tyrosine kinase B signaling and may contribute to long-term beneficial effects of SB after ischemic injury.  相似文献   

17.
Vascular endothelial growth factor-B (VEGFB) is an angiogenic and neuroprotective protein that reduces hypoxic and ischemic neuronal injury. To determine if VEGFB also regulates neurogenesis in the adult brain, we studied the effects of VEGFB administration in vitro and in vivo, as well as the effect of VEGFB gene knockout (KO) in mice, on bromodeoxyuridine (BrdU) incorporation and expression of immature neuronal markers in the subgranular zone (SGZ) of the hippocampal dentate gyrus and the forebrain subventricular zone (SVZ). Intracerebroventricular VEGFB administration increased BrdU incorporation into cells of neuronal lineage both in vitro and in vivo, and VEGFB-KO mice showed impaired neurogenesis, consistent with a neurogenesis-promoting effect of VEGFB. In addition, intraventricular administration of VEGFB restored neurogenesis to wild-type levels in VEGFB-KO mice. These results suggest a role for VEGFB in the regulation of adult neurogenesis, which could have therapeutic implications for diseases associated with central neuronal loss.  相似文献   

18.
The health risks to astronauts exposed to high-LET radiation include possible cognitive deficits. The pathogenesis of radiation-induced cognitive injury is unknown but may involve loss of neural precursor cells from the subgranular zone (SGZ) of the hippocampal dentate gyrus. To address this hypothesis, adult female C57BL/6 mice received whole-body irradiation with a 1 GeV/nucleon iron-particle beam in a single fraction of 0, 1, 2 and 3 Gy. Two months later mice were given BrdU injections to label proliferating cells. Subsequently, hippocampal tissue was assessed using immunohistochemistry for detection of proliferating cells and immature neurons. Routine histopathological methods were used to qualitatively assess tissue/cell morphology in the hippocampal formation and adjacent areas. When compared to controls, irradiated mice showed progressively fewer BrdU-positive cells as a function of dose. This observation was confirmed by Ki-67 immunostaining in the SGZ showing reductions in a dose-dependent fashion. The progeny of the proliferating SGZ cells, i.e. immature neurons, were visualized by doublecortin staining and were significantly reduced by irradiation, with the decreases ranging from 34% after 1 Gy to 71% after 3 Gy. Histopathology showed that in addition to cell changes in the SGZ, (56)Fe particles induced a chronic and diffuse astrocytosis and changes in pyramidal neurons in and around the hippocampal formation. The present data provide the first evidence that high-LET radiation has deleterious effects on cells associated with hippocampal neurogenesis.  相似文献   

19.
《Phytomedicine》2015,22(13):1178-1185
BackgroundWater extract of the fixed combination of Gardenia jasminoides Ellis fruit, Citrus aurantium L. fruit and Magnolia officinalis Rehd. et Wils. bark, traditional name – Zhi-Zi-Hou-Po (ZZHPD) is used for treatment of depressive-like symptoms in traditional Chinese medicine for centuries.Hypothesis/PurposeThe present study aimed to explore antidepressant-like effects and potential mechanisms of ZZHPD in a rat model of chronic unpredictable mild stress (CUMS).Study designAntidepressant-like effects of ZZHPD were investigated through behavioral tests, and potential mechanism was assessed by neuroendocrine system, neurotrophin and hippocampal neurogenesis.MethodsAntidepressant-like effects of ZZHPD (3.66, 7.32 and 14.64 g/kg/day) were estimated through coat state test, sucrose preference test, forced swimming test and open-field test. Effects of ZZHPD on hypothalamic-pituitary-adrenal (HPA) axis were evaluated by hormones measurement and dexamethasone suppression test. In addition, the expression of brain-derived neurotrophic factor (BDNF) in hippocampus was measured, as well as hippocampal neurogenesis was investigated by doublecortin (DCX) and 5-bromo-2-deoxyuridine/neuronal nuclei (BrdU/NeuN).ResultsThe results demonstrated that ZZHPD significantly reversed the depressive-like behaviors, normalized the levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT), restored the negative feedback loop of HPA axis and improved the levels of BDNF, DCX and BrdU/NeuN compared with those in CUMS-induced rats.ConclusionThe above results revealed that ZZHPD exerted antidepressant-like effects possibly by normalizing HPA axis function, increasing expression of BDNF in hippocampus and promoting hippocampal neurogenesis.  相似文献   

20.
The neurogenic niche within the subgranular zone (SGZ) of the dentate gyrus is a source of new neurons throughout life. Interestingly, SGZ proliferative capacity is regulated by both physiological and pathophysiological conditions. One outstanding question involves the molecular mechanisms that regulate both basal and inducible adult neurogenesis. Here, we examined the role of the MAPK‐regulated kinases, mitogen‐ and stress‐activated kinase (MSK)1 and MSK2. as regulators of dentate gyrus SGZ progenitor cell proliferation and neurogenesis. Under basal conditions, MSK1/2 null mice exhibited significantly reduced progenitor cell proliferation capacity and a corollary reduction in the number of doublecortin (DCX)‐positive immature neurons. Strikingly, seizure‐induced progenitor proliferation was totally blocked in MSK1/2 null mice. This blunting of cell proliferation in MSK1/2 null mice was partially reversed by forskolin infusion, indicating that the inducible proliferative capacity of the progenitor cell population was intact. Furthermore, in MSK1/2 null mice, DCX‐positive immature neurons exhibited reduced neurite arborization. Together, these data reveal a critical role for MSK1/2 as regulators of both basal and activity‐dependent progenitor cell proliferation and morphological maturation in the SGZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号