首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nasser MW  Qamri Z  Deol YS  Smith D  Shilo K  Zou X  Ganju RK 《PloS one》2011,6(9):e23901

Background

Cannabinoids bind to cannabinoid receptors CB1 and CB2 and have been reported to possess anti-tumorigenic activity in various cancers. However, the mechanisms through which cannabinoids modulate tumor growth are not well known. In this study, we report that a synthetic non-psychoactive cannabinoid that specifically binds to cannabinoid receptor CB2 may modulate breast tumor growth and metastasis by inhibiting signaling of the chemokine receptor CXCR4 and its ligand CXCL12. This signaling pathway has been shown to play an important role in regulating breast cancer progression and metastasis.

Methodology/Principal Findings

We observed high expression of both CB2 and CXCR4 receptors in breast cancer patient tissues by immunohistochemical analysis. We further found that CB2-specific agonist JWH-015 inhibits the CXCL12-induced chemotaxis and wound healing of MCF7 overexpressing CXCR4 (MCF7/CXCR4), highly metastatic clone of MDA-MB-231 (SCP2) and NT 2.5 cells (derived from MMTV-neu) by using chemotactic and wound healing assays. Elucidation of the molecular mechanisms using various biochemical techniques and confocal microscopy revealed that JWH-015 treatment inhibited CXCL12-induced P44/P42 ERK activation, cytoskeletal focal adhesion and stress fiber formation, which play a critical role in breast cancer invasion and metastasis. In addition, we have shown that JWH-015 significantly inhibits orthotopic tumor growth in syngenic mice in vivo using NT 2.5 cells. Furthermore, our studies have revealed that JWH-015 significantly inhibits phosphorylation of CXCR4 and its downstream signaling in vivo in orthotopic and spontaneous breast cancer MMTV-PyMT mouse model systems.

Conclusions/Significance

This study provides novel insights into the crosstalk between CB2 and CXCR4/CXCL12-signaling pathways in the modulation of breast tumor growth and metastasis. Furthermore, these studies indicate that CB2 receptors could be used for developing innovative therapeutic strategies against breast cancer.  相似文献   

2.
Aberrant expression of CXCR4 in human breast cancer correlates with metastasis to tissues secreting CXCL12. To understand the mechanism by which CXCR4 mediates breast cancer metastasis, MCF-7 breast carcinoma cells were transduced to express wild-type CXCR4 (CXCR4WT) or constitutively active CXCR4 (CXCR4ΔCTD) and analyzed in two-dimensional (2D) cultures, three-dimensional reconstituted basement membrane (3D rBM) cultures, and mice using intravital imaging. Two-dimensional cultures of MCF-7 CXCR4ΔCTD cells, but not CXCR4WT, exhibited an epithelial-to-mesenchymal transition (EMT) characterized by up-regulation of zinc finger E box–binding homeobox 1, loss of E-cadherin, up-regulation of cadherin 11, p120 isoform switching, activation of extracellular signal-regulated kinase 1/2, and matrix metalloproteinase-2. In contrast to the 2D environment, MCF-7 CXCR4WT cells cultured in 3D rBM exhibited an EMT phenotype, accompanied by expression of CXCR2, CXCR7, CXCL1, CXCL8, CCL2, interleukin-6, and granulocyte–macrophage colony stimulating factor. Dual inhibition of CXCR2 with CXCR4, or inhibition of either receptor with inhibitors of mitogen-activated protein kinase 1 or phosphatidylinositol 3-kinase, reversed the aggressive phenotype of MCF-7 CXCR4-expressing or MDA-MB-231 cells in 3D rBM. Intravital imaging of CXCR4-expressing MCF-7 cells revealed that tumor cells migrate toward blood vessels and metastasize to lymph nodes. Thus CXCR4 can drive EMT along with an up-regulation of chemokine receptors and cytokines important in cell migration, lymphatic invasion, and tumor metastasis.  相似文献   

3.
The mechanisms leading to renal cell carcinoma (RCC) metastasis are incompletely understood. Although evidence shows that the chemokine receptor CXCR4 and its ligand CXCL12 may regulate tumor dissemination, their role in RCC is not clearly defined. We examined CXCR4 expression and functionality on RCC cell lines, and explored CXCL12-triggered tumor adhesion to human endothelium (HUVEC) or extracellular matrix proteins. Functional CXCR4 was expressed on A498 tumor cells, enabling them to migrate towards a CXCL12 gradient. CXCR4 engagement by CXCL12 induced elevated cell adhesion to HUVEC, to immobilized fibronectin, laminin or collagen. Anti-CXCR4 antibodies or CXCR4 knock down by siRNA applied prior to CXCL12 stimulation impaired CXCL12-triggered tumor adhesion. However, blocking CXCR4 subsequent to CXCL12 stimulation did not. This pointed to an indirect control of tumor cell adhesion by CXCR4. In fact, CXCR4 engagement by CXCL12 also induced alterations of receptors of the integrin family, notably alpha3, alpha5, beta1 and beta3 subunits, and blocking beta1 integrins with a function-blocking antibody prevented CXCL12-induced A498 adhesion. Focal adhesion kinase (total and activated) and integrin-linked kinase significantly increased in CXCL12-treated A498 cells, accompanied by a distinct up-regulation of ERK1/2, JNK and p38 phosphorylation. Therefore, CXCR4 may be crucial in controlling adhesion of A498 cells via cross talking with integrin receptors. These data show that CXCR4 receptors contribute to RCC dissemination and may provide a novel link between CXCR4 chemokine receptor expression and integrin triggered RCC adhesion to the vascular wall and subendothelial matrix components.  相似文献   

4.
5.
The C-X-C motif chemokine receptor 4 (CXCR4) pathway can promote tumor metastasis but is dependent on cross talk with other signaling pathways. The MET proto-oncogene (c-MET) participates in metastasis and is highly expressed in gastric cancer. However, the relationship between CXCR4 and c-MET signaling and their mechanisms of action in gastric cancer metastasis remain unclear. In this study, in vitro experiments demonstrated that C-X-C motif chemokine ligand 12 (CXCL12)/CXCR4 induces epithelial-mesenchymal transition (EMT) and promotes migration in gastric cancer cells, which is accompanied by c-MET activation. These phenomena were reversed by c-MET inhibition. Further investigation revealed that c-MET activation correlated with its interaction with caveolin 1 in lipid rafts, induced by CXCL12. In clinical samples, we observed a significant positive association between CXCR4 expression and c-MET phosphorylation (r = 0.259, P = .005). Moreover, samples expressing both receptors were found to indicate significantly poorer patient prognosis (P < .001). These results suggest that CXCL12 induces EMT at least partially through cross talk between CXCR4 and c-MET signaling. In addition, changes in these pathways could have clinical importance for the treatment of gastric cancer.  相似文献   

6.
7.
Chemokines and their receptors function in migration and homing of cells to target tissues. Recent evidence suggests that cancer cells use a chemokine receptor axis for metastasis formation at secondary sites. Previously, we showed that binding of the chemokine CXCL12 to its receptor CXCR4 mediated signaling events resulting in matrix metalloproteinase-9 expression in prostate cancer bone metastasis. A variety of methods, including lipid raft isolation, stable overexpression of CXCR4, cellular adhesion, invasion assays, and the severe combined immunodeficient-human bone tumor growth model were used. We found that (a) CXCR4 and HER2 coexist in lipid rafts of prostate cancer cells; (b) the CXCL12/CXCR4 axis results in transactivation of the HER2 receptor in lipid rafts of prostate cancer cells; (c) Src kinase mediates CXCL12/CXCR4 transactivation of HER2 in prostate cancer cells; (d) a pan-HER inhibitor desensitizes CXCR4-induced transactivation and subsequent matrix metalloproteinase-9 secretion and invasion; (e) lipid raft-disrupting agents inhibited raft-associated CXCL12/CXCR4 transactivation of the HER2 and cellular invasion; (f) overexpression of CXCR4 in prostate cancer cells leads to increased HER2 phosphorylation and migratory properties of prostate cancer cells; and (g) CXCR4 overexpression enhances bone tumor growth and osteolysis. These data suggest that lipid rafts on the cell membrane are the key site for CXCL12/CXCR4-induced HER2 receptor transactivation. This transactivation contributes to enhanced invasive signals and metastatic growth in the bone microenvironment.  相似文献   

8.
The chemokine, stromal-derived factor-1/CXCL12, is expressed by normal and neoplastic tissues and is involved in tumor growth, metastasis, and modulation of tumor immunity. T cell-mediated tumor immunity depends on the migration and colocalization of CTL with tumor cells, a process regulated by chemokines and adhesion molecules. It has been demonstrated that T cells are repelled by high concentrations of the chemokine CXCL12 via a concentration-dependent and CXCR4 receptor-mediated mechanism, termed chemorepulsion or fugetaxis. We proposed that repulsion of tumor Ag-specific T cells from a tumor expressing high levels of CXCL12 allows the tumor to evade immune control. Murine B16/OVA melanoma cells (H2b) were engineered to constitutively express CXCL12. Immunization of C57BL/6 mice with B16/OVA cells lead to destruction of B16/OVA tumors expressing no or low levels of CXCL12 but not tumors expressing high levels of the chemokine. Early recruitment of adoptively transferred OVA-specific CTL into B16/OVA tumors expressing high levels of CXCL12 was significantly reduced in comparison to B16/OVA tumors, and this reduction was reversed when tumor-specific CTLs were pretreated with the specific CXCR4 antagonist, AMD3100. Memory OVA-specific CD8+ T cells demonstrated antitumor activity against B16/OVA tumors but not B16/OVA.CXCL12-high tumors. Expression of high levels of CXCL12 by B16/OVA cells significantly reduced CTL colocalization with and killing of target cells in vitro in a CXCR4-dependent manner. The repulsion of tumor Ag-specific T cells away from melanomas expressing CXCL12 confirms the chemorepellent activity of high concentrations of CXCL12 and may represent a novel mechanism by which certain tumors evade the immune system.  相似文献   

9.
Chemokines and their receptors participate in the development of cancers by enhancing tumor cell proliferation, angiogenesis, invasion, metastasis and penetration of tumor immune cells. It remains unclear whether CXC chemokine ligand 4 (CXCL4)/CXC chemokine receptor 3-B (CXCR3-B) can be used as an independent molecular marker for establishing prognosis for breast cancer patients. We evaluated CXCL4 and CXCR3-B expression in 114 breast cancer tissues and 30 matched noncancerous tissues using immunohistochemistry and western blot, and determined the correlation between their expression and clinicopathologic findings. We observed that breast cancer tissues express CXCL4 strongly and CXCR3-B weakly compared to noncancerous tissues. Strong CXCL4 expression was detected in 94.7% and weak CXCR3-B expression was detected in 78.9% of the tissues. Therefore, CXCL4/CXCR3-B might play a crucial role in breast cancer progression. We found no significant correlation between CXCL4 and age, tumor stage, tumor grade or TNM stage. CXCR3-B was associated significantly with tumor grade. Moreover, the Chi-square test of association showed that the expression of CXCL4/CXCR3-B might be an independent prognostic marker for breast cancer. Therefore, we suggest that CXCR3-B is an indicator of poor prognosis and may also be a chemotherapeutic target.  相似文献   

10.
Small-cell lung cancer (SCLC) is a particularly aggressive form of lung cancer. Responsible for this highly malignant phenotype is an early and widespread metastasis with a high propensity of SCLC cells for bone marrow involvement and the ability to develop resistance against chemotherapeutic agents. Tumor cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and adhesion molecules. There is growing evidence that the chemokine stromal derived factor-1 (SDF-1/CXCL12) and its receptor CXCR4 (CD184) regulate migration and metastasis of a variety of cancers including SCLC. SCLC cells express high levels of functional CXCR4 receptors. Engagement of CXCR4 by CXCL12 leads to an upregulation of integrin-mediated adhesion in SCLC and other tumor cells. Activation of CXCR4 chemokine receptors and integrins on SCLC cells promotes adhesion to accessory cells (such as stromal cells) and extracellular matrix molecules within the tumor microenvironment. These adhesive interactions result in an increased resistance of SCLC cells to chemotherapy. As such, inhibitors of the CXCR4/CXCL12 axis and/or integrin activation may increase the chemosensitivity of SCLC cells and lead to new therapeutic avenues for patients with SCLC.  相似文献   

11.
The tumor microenvironment makes a decisive contribution to the development and dissemination of cancer, for example, through extracellular matrix components such as hyaluronan (HA), and through chemokines that regulate tumor cell behavior and angiogenesis. Here we report a molecular link between HA, its receptor CD44 and the chemokine CXCL12 in the regulation of cell motility and angiogenesis. High-molecular-weight HA (hHA) was found to augment CXCL12-induced CXCR4 signaling in both HepG2iso cells and primary human umbilical vein endothelial cells, as evidenced by enhanced ERK phosphorylation and increased cell motility. The augmentation of CXCR4 signaling translated into increased vessel sprouting and angiogenesis in a variety of assays. Small HA oligosaccharides (sHA) efficiently inhibited these effects. Both siRNA-mediated reduction of CD44 expression and antibodies that block the interaction of CD44 with HA provided evidence that CXCL12-induced CXCR4 signaling depends on the binding of hHA to CD44. Consistently, CD44 and CXCR4 were found to physically interact in the presence of CXCL12, an interaction that could be inhibited by sHA. These findings provide novel insights into how microenvironmental components interact with cell surface receptors in multi-component complexes to regulate key aspects of tumor growth and progression.  相似文献   

12.
Although chemokines are well established to function in immunity and endothelial cell activation and proliferation, a rapidly growing literature suggests that CXC Chemokine receptors CXCR3, CXCR4 and CXCR7 are critical in the development and progression of solid tumors. The effect of these chemokine receptors in tumorigenesis is mediated via interactions with shared ligands I-TAC (CXCL11) and SDF-1 (CXCL12). Over the last decade, CXCR4 has been extensively reported to be overexpressed in most human solid tumors and has earned considerable attention toward elucidating its role in cancer metastasis. To enrich the existing armamentarium of anti-cancerous agents, many inhibitors of CXCL12–CXCR4 axis have emerged as additional or alternative agents for neo-adjuvant treatments and even many of them are in preclinical and clinical stages of their development. However, the discovery of CXCR7 as another receptor for CXCL12 with rather high binding affinity and recent reports about its involvement in cancer progression, has questioned the potential of “selective blockade” of CXCR4 as cancer chemotherapeutics. Interestingly, CXCR7 can also bind another chemokine CXCL11, which is an established ligand for CXCR3. Recent reports have documented that CXCR3 and their ligands are overexpressed in different solid tumors and regulate tumor growth and metastasis. Therefore, it is important to consider the interactions and crosstalk between these three chemokine receptors and their ligand mediated signaling cascades for the development of effective anti-cancer therapies. Emerging evidence also indicates that these receptors are differentially expressed in tumor endothelial cells as well as in cancer stem cells, suggesting their direct role in regulating tumor angiogenesis and metastasis. In this review, we will focus on the signals mediated by this receptor trio via their shared ligands and their role in tumor growth and progression.  相似文献   

13.
《FEBS letters》2014,588(24):4769-4775
C-X-C motif chemokine 12/C-X-C chemokine receptor type 4 (CXCL12/CXCR4) signaling is involved in ontogenesis, hematopoiesis, immune function and cancer. Recently, the orphan chemokine CXCL14 was reported to inhibit CXCL12-induced chemotaxis – probably by allosteric modulation of CXCR4. We thus examined the effects of CXCL14 on CXCR4 regulation and function using CXCR4-transfected human embryonic kidney (HEK293) cells and Jurkat T cells. CXCL14 did not affect dose–response profiles of CXCL12-induced CXCR4 phosphorylation, G protein-mediated calcium mobilization, dynamic mass redistribution, kinetics of extracellular signal-regulated kinase 1 (ERK1) and ERK2 phosphorylation or CXCR4 internalization. Hence, essential CXCL12-operated functions of CXCR4 are insensitive to CXCL14, suggesting that interactions of CXCL12 and CXCL14 pathways depend on a yet to be identified CXCL14 receptor.  相似文献   

14.
Studies in experimental animal models have demonstrated that chemokines produced by tumor cells attract chemokine receptor-positive T lymphocytes into the tumor area, which may lead to tumor growth inhibition in vitro and in vivo. However, in cancer patients, the role of chemokines in T lymphocyte trafficking toward human tumor cells is relatively unexplored. In the present study, the role of chemokines and their receptors in the migration of a melanoma patient's CTL toward autologous tumor cells has been studied in a novel organotypic melanoma culture, consisting of a bottom layer of collagen type I with embedded fibroblasts followed successively by a tumor cell layer, collagen/fibroblast separating layer, and, finally, a top layer of collagen with embedded fibroblasts and T cells. In this model, CTL migrated from the top layer through the separating layer toward tumor cells, resulting in tumor cell apoptosis. CTL migration was mediated by chemokine receptor CXCR4 expressed by the CTL and CXCL12 (stromal cell-derived factor 1alpha) secreted by tumor cells, as evidenced by blockage of CTL migration by Abs to CXCL12 or CXCR4, high concentrations of CXCL12 or small molecule CXCR4 antagonist. These studies, together with studies in mice indicating regression of CXCL12-transduced tumor cells, followed by regression of nontransduced challenge tumor cells, suggest that CXCL12 may be useful as an immunotherapeutic agent for cancer patients, when transduced into tumor cells, or fused to anti-tumor Ag Ab or tumor Ag.  相似文献   

15.
李宣朋  李玉  丁鹏 《生物磁学》2011,(6):1184-1186
CXCL12是趋化因子家族成员之一,是能够特异性结合其受体CXCR4发挥趋化性作用的细胞因子。最初,CXCL12及CXCR4被发现于炎症细胞,参与机体炎症、免疫等病理反应。接下来的几年中发现,它在机体发育、成熟过程中也有重要作用。如今,大量研究表明它与肿瘤的生长、侵袭及转移密切相关。据报道,在乳腺癌、肺癌、卵巢癌等二十余种肿瘤组织中发现CXCL12及CXCR4的表达,其中也包括中枢系统肿瘤-胶质瘤。CXCL12/CXCR4参与胶质瘤生长过程的多个步骤,包括肿瘤增殖、侵袭、转移等。有实验指出,转移灶的CXCR4表达水平较原发灶高,CXCR4有可能成为抑制胶质瘤生长、转移的重要靶目标。  相似文献   

16.
Microenvironmental factors affect different aspects of tumor cell biology, including cell survival, invasion, and metastasis. Here, we report that hepatocyte growth factor and hypoxia may contribute to breast carcinoma cell invasiveness by inducing the chemokine receptor CXCR4. Hepatocyte growth factor enhanced CXCR4 mRNA and protein expression exclusively in MCF-7 (low invasive) carcinoma cells, while in response to hypoxia, CXCR4 induction was observed in both MCF-7 and MDA-MB 231 (highly invasive) carcinoma cells. The receptor induction had a functional role in cancer cells, as demonstrated by the fact that hepatocyte growth factor pretreatment promoted MCF-7 cell migration toward the CXCR4-specific ligand CXCL12. Extracellular signal-regulated protein kinase 1/2 (ERK1/2) and phosphoinositide-3-kinase (PI3K) transduction pathways seemed to be differently implicated in the early induction of CXCR4 by hepatocyte growth factor or hypoxia in the two breast carcinoma cells examined.  相似文献   

17.
The chemokine SDF-1/CXCL12 induces and modulates major steps of ontogenesis, regeneration and tumorigenesis. Depending on the organ or tissue, CXCL12 serves as a proliferation or cell survival factor, influences differentiation, induces adhesion and/or regulates cell migration. These functions are mediated by the two chemokine receptors, CXCR4 and CXCR7. Whereas CXCR4 is still viewed as the sole G-protein-activating and, hence, signaling receptor for CXCL12, CXCR7 is regarded as a non-classic scavenging or decoy receptor that modulates the function of CXCR4. However, this view might be too limited, since evidence has accumulated favoring a cell-type-specific mode of CXCL12 signaling. In addition to the “classic” CXCL12 signaling mode via CXCR4, CXCR4 and CXCR7 have to form a receptor unit for successful CXCL12 signaling in some cells. Moreover, examples exist whereby CXCL12 receptors split functions or switch roles, such that CXCR7 (instead of CXCR4) mediates signal transduction. The obvious lack of a universal mode of CXCL12 signaling urges a re-evaluation of the role of this chemokine in development, health and disease. This review depicts the exceptional characteristics of CXCL12-induced signal transduction in various cells and organs, points out remaining controversies and mentions consequences for therapeutic interventions.  相似文献   

18.
Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis   总被引:9,自引:0,他引:9  
The chemokine stroma-derived factor (SDF-1/CXCL12) plays multiple roles in tumor pathogenesis. It has been demonstrated that CXCL12 promotes tumor growth and malignancy, enhances tumor angiogenesis, participates in tumor metastasis, and contributes to immunosuppressive networks within the tumor microenvironment. Therefore, it stands to reason that the CXCL12/CXCR4 pathway is an important target for the development of novel anti-cancer therapies. In this review, we consider the pathological nature and characteristics of the CXCL12/CXCR4 pathway in the tumor microenvironment. Strategies for therapeutically targeting the CXCL12/CXCR4 axis also are discussed. migration; immune suppression; tumor angiogenesis; tumor metastasis; stem cells  相似文献   

19.
Metastasis is considered the obvious mark for most aggressive cancers. However, little is known about the molecular mechanism of the regulation of cancer metastasis. Recent evidence increasingly suggests that the interaction between chemokines and chemokine receptors is pivotal in the process of metastasis. The chemokine receptor CXCR4 and its ligand CXCL12, for example, have been reported to play a vital role in cancer metastasis. Another chemokine and chemokine receptor pair, the CXCL16/CXCR6 axis, has been studied by several independent research groups. Here, we summarize recent advances in our knowledge of the function of CXC chemokine receptor CXCR6 and its ligand CXCL16 in regulating metastasis and invasion of cancer. CXCR6 and CXCL16 are up-regulated in multiple cancer tissue types and cancer cell lines relative to normal tissues and cell lines. In addition, both CXCR6 and CXCL16 levels increase as tumor malignancy increases. Trans-membranous CXCL16 chemokine reduces proliferation while soluble CXCL16 chemokine enhances proliferation and migration. TM-CXCL16 functions as an inducer for lymphocyte build-up around tumor sites. High trans-membranous CXCL16 expression correlates with a good prognosis. Moreover, the Akt/mTOR signal pathway is involved in activating the CXCR6/CXCL16 axis. These findings suggest multiple opportunities for blocking the CXCR6/CXCL16 axis and the Akt/mTOR signal pathway in novel cancer therapies.  相似文献   

20.
CXC chemokine receptor 4 (CXCR4) plays a role in the development of immune and central nervous systems as well as in cancer growth and metastasis. CXCR4-initiated signaling cascades leading to cell proliferation and chemotaxis are critical for these functions. The present study demonstrated that stimulation of CXCR4 by its ligand, CXCL12, induced transient translocation of cortactin from endosomal compartments to the cell periphery where it colocalized with CXCR4 followed by internalization of CXCR4 together with cortactin into endosomes. Cortactin was co-immunoprecipitated with CXCR4 in response to CXCL12 treatment in a time-dependent manner. Ligand stimulation induced phosphorylation of cortactin at tyrosine 421, and the phosphorylation was both c-Src- and dynamin-dependent. Cortactin overexpression promoted CXCR4 internalization and recycling. However, overexpression of a cortactin mutant in which tyrosine 421 was replaced with alanine (cortactin-Y421A) or knockdown of cortactin with RNA interference (RNAi) reduced CXCR4 internalization in response to CXCL12. CXCR4-mediated activation of extracellular signal-regulated kinases 1 and 2 was significantly prolonged by overexpression of wild-type cortactin but not by the cortactin-Y421A mutant and was inhibited by cortactin knockdown with RNAi. Moreover, CXCL12-induced chemotaxis was enhanced by cortactin overexpression, reduced by overexpression of the cortactin-Y421A mutant, and blocked by cortactin knockdown with RNAi. These data provide strong evidence for an important role of cortactin in CXCR4 signaling and trafficking as well in the receptor-mediated cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号