首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Familial hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease characterized by varying degrees of ventricular hypertrophy and myofibrillar disarray. Mutations in cardiac contractile proteins cause HCM. However, there is an unexplained wide variability in the clinical phenotype, and it is likely that there are multiple contributing factors. Because mitochondrial dysfunction has been described in heart disease, we tested the hypothesis that mitochondrial dysfunction contributes to the varying HCM phenotypes. Mitochondrial function was assessed in two transgenic models of HCM: mice with a mutant myosin heavy chain gene (MyHC) or with a mutant cardiac troponin T (R92Q) gene. Despite mitochondrial ultrastructural abnormalities in both models, the rate of state 3 respiration was significantly decreased only in the mutant MyHC mice by approximately 23%. Notably, this decrease in state 3 respiration preceded hemodynamic dysfunction. The maximum activity of alpha-ketogutarate dehydrogenase as assayed in isolated disrupted mitochondria was decreased by 28% compared with isolated control mitochondria. In addition, complexes I and IV were decreased in mutant MyHC transgenic mice. Inhibition of beta-adrenergic receptor kinase, which is elevated in mutant MyHC mouse hearts, can prevent mitochondrial respiratory impairment in mutant MyHC mice. Thus our results suggest that mitochondria may contribute to the hemodynamic dysfunction seen in some forms of HCM and offer a plausible mechanism responsible for some of the heterogeneity of the disease phenotypes.  相似文献   

2.
Sirtuin1 (SIRT1) and Sirtuin3 (SIRT3) protects cardiac function against ischemia/reperfusion (I/R) injury. Mitochondria are critical in response to myocardial I/R injury as disturbance of mitochondrial dynamics contributes to cardiac dysfunction. It is hypothesized that SIRT1 and SIRT3 are critical components to maintaining mitochondria homeostasis especially mitochondrial dynamics to exert cardioprotective actions under I/R stress. The results demonstrated that deficiency of SIRT1 and SIRT3 in aged (24–26 months) mice hearts led to the exacerbated cardiac dysfunction in terms of cardiac systolic dysfunction, cardiomyocytes contractile defection, and abnormal cardiomyocyte calcium flux during I/R stress. Moreover, the deletion of SIRT1 or SIRT3 in young (4–6 months) mice hearts impair cardiomyocyte contractility and shows aging‐like cardiac dysfunction upon I/R stress, indicating the crucial role of SIRT1 and SIRT3 in protecting myocardial contractility from I/R injury. The biochemical and seahorse analysis showed that the deficiency of SIRT1/SIRT3 leads to the inactivation of AMPK and alterations in mitochondrial oxidative phosphorylation (OXPHOS) that causes impaired mitochondrial respiration in response to I/R stress. Furthermore, the remodeling of the mitochondria network goes together with hypoxic stress, and mitochondria undergo the processes of fusion with the increasing elongated branches during hypoxia. The transmission electron microscope data showed that cardiac SIRT1/SIRT3 deficiency in aging alters mitochondrial morphology characterized by the impairment of mitochondria fusion under I/R stress. Thus, the age‐related deficiency of SIRT1/SIRT3 in the heart affects mitochondrial dynamics and respiration function that resulting in the impaired contractile function of cardiomyocytes in response to I/R.  相似文献   

3.
Chronic contractile activity of skeletal muscle induces an increase in mitochondria located in proximity to the sarcolemma [subsarcolemmal (SS)] and in mitochondria interspersed between the myofibrils [intermyofibrillar (IMF)]. These are energetically favorable metabolic adaptations, but because mitochondria are also involved in apoptosis, we investigated the effect of chronic contractile activity on mitochondrially mediated apoptotic signaling in muscle. We hypothesized that chronic contractile activity would provide protection against mitochondrially mediated apoptosis despite an elevation in the expression of proapoptotic proteins. To induce mitochondrial biogenesis, we chronically stimulated (10 Hz; 3 h/day) rat muscle for 7 days. Chronic contractile activity did not alter the Bax/Bcl-2 ratio, an index of apoptotic susceptibility, and did not affect manganese superoxide dismutase levels. However, contractile activity increased antiapoptotic 70-kDa heat shock protein and apoptosis repressor with a caspase recruitment domain by 1.3- and 1.4-fold (P<0.05), respectively. Contractile activity elevated SS mitochondrial reactive oxygen species (ROS) production 1.4- and 1.9-fold (P<0.05) during states IV and III respiration, respectively, whereas IMF mitochondrial state IV ROS production was suppressed by 28% (P<0.05) and was unaffected during state III respiration. Following stimulation, exogenous ROS treatment produced less cytochrome c release (25-40%) from SS and IMF mitochondria, and also reduced apoptosis-inducing factor release (approximately 30%) from IMF mitochondria, despite higher inherent cytochrome c and apoptosis-inducing factor expression. Chronic contractile activity did not alter mitochondrial permeability transition pore (mtPTP) components in either subfraction. However, SS mitochondria exhibited a significant increase in the time to Vmax of mtPTP opening. Thus, chronic contractile activity induces predominantly antiapoptotic adaptations in both mitochondrial subfractions. Our data suggest the possibility that chronic contractile activity can exert a protective effect on mitochondrially mediated apoptosis in muscle.  相似文献   

4.
Loss in mitochondrial function and induction of mitochondrial-mediated apoptosis occur as a result of cardiac ischemia/reperfusion. Brief and repeated cycles of ischemia/reperfusion, termed ischemic preconditioning, prevent or minimize contractile dysfunction and apoptosis associated with prolonged episodes of cardiac ischemia and reperfusion. The effects of preconditioning on various indices of ischemia/reperfusion-induced alterations in mitochondrial function and structure were therefore explored. Utilizing an in vivo rat model data is provided indicating that preconditioning completely prevents cardiac ischemia/reperfusion-induced: (1) loss in the activity of the redox sensitive Krebs cycle enzyme alpha-ketoglutarate dehydrogenase; (2) declines in NADH-linked ADP-dependent mitochondrial respiration; (3) insertion of the pro-apoptotic Bcl-2 protein Bax into the mitochondrial membrane; and (4) release of cytochrome c into the cytosol. The results of the current study indicate that preconditioning prevents specific alterations in mitochondrial structure and function that are known to impact cellular viability and provide insight into the collective benefits of preconditioning.  相似文献   

5.
TNFR1/Fas engagement results in the cleavage of cytosolic Bid to truncated Bid (tBid), which translocates to mitochondria. We demonstrate that recombinant tBid induces in vitro immediate destabilization of the mitochondrial bioenergetic homeostasis. These alterations result in mild uncoupling of mitochondrial state-4 respiration, associated with an inhibition the adenosine diphosphate (ADP)-stimulated respiration and phosphorylation rate. tBid disruption of mitochondrial homeostasis was inhibited in mitochondria overexpressing Bcl-2 and Bcl-XL. The inhibition of state-3 respiration is mediated by the reorganization of cardiolipin within the mitochondrial membranes, which indirectly affects the activity of the ADP/ATP translocator. Cardiolipin-deficient yeast mitochondria did not exhibit any respiratory inhibition by tBid, proving the absolute requirement for cardiolipin for tBid binding and activity. In contrast, the wild-type yeast mitochondria underwent a similar inhibition of ADP-stimulated respiration associated with reduced ATP synthesis. These events suggest that mitochondrial lipids rather than proteins are the key determinants of tBid-induced destabilization of mitochondrial bioenergetics.  相似文献   

6.
Although dietary copper deficiency causes physiological, morphological, and biochemical abnormalities in cardiac mitochondria, the relationship observed between abnormalities of mitochondrial structure and function have been inconsistent in previous studies. The purpose of the present study was to re-evaluate the respiration rates of cardiac mitochondria from copper-deficient rats and to use several drugs that uncouple and inhibit mitochondrial respiration in order to clarify the mechanisms of mitochondrial dysfunction found in several laboratories. Copper deficiency reduced state 4 and state 3 cardiac mitochondrial respiration rates with all substrates tested. However, neither the ratio of ADP/oxygen consumed nor the acceptor control index was affected by copper deficiency. Cardiac mitochondria of copper-deficient rats showed a resistance to respiratory blockade by oligomycin and an increased ability to hydrolyze ATP in the presence of oligomycin compared with mitochondria of copper-adequate rats. This suggests that copper deficiency affects the function of the cardiac mitochondrial ATP synthase.  相似文献   

7.
Doxorubicin (DOX) is a highly effective treatment for several forms of cancer. However, clinical experience shows that DOX induces a cumulative and dose-dependent cardiomyopathy that has been ascribed to redox-cycling of the drug on the mitochondrial respiratory chain generating free radicals and oxidative stress in the process. Mitochondrial dysfunction including induction of the mitochondrial permeability transition (MPT) and inhibition of mitochondrial respiration have been implicated as major determinants in the pathogenesis of DOX cardiotoxicity. The present work was aimed at investigating whether the inhibition of mitochondrial respiration occurs secondarily to MPT induction in heart mitochondria isolated from DOX-treated rats and whether one or both consequences of DOX treatment are related with oxidation of protein thiol residues. DOX-induced oxidative stress was associated with the accumulation of products of lipid peroxidation and the depletion of alpha-tocopherol in cardiac mitochondrial membranes. No changes in mitochondrial coenzyme Q9 and Q10 concentrations were detected in hearts of DOX-treated rats. Cardiac mitochondria from DOX-treated rats were more susceptible to diamide-dependent induction of the MPT. Although DOX treatment did not affect state 4 respiration, state 3 respiration was decreased in heart mitochondria isolated from DOX-treated rats, which was reversed in part by adding either cyclosporin A or dithiothreitol, but not Trolox. The results suggest that in DOX-treated rats, (i) induction of the MPT is at least in part responsible for decreased mitochondrial respiration, (ii) heart mitochondria are more susceptible to diamide induced-MPT, (iii) thiol-dependent alteration of mitochondrial respiration is partially reversible ex vivo with dithiothreitol. Collectively, these data are consistent with the thesis that thiol-dependent alteration of MPT and respiration is an important factor in DOX-induced mitochondrial dysfunction.  相似文献   

8.
Cardiac hypertrophy, a risk factor for heart failure, is associated with enhanced oxidative stress in the mitochondria, resulting from high levels of reactive oxygen species (ROS). The balance between ROS generation and ROS detoxification dictates ROS levels. As such, disruption of these processes results in either increased or decreased levels of ROS. In previous publications, we have demonstrated that one of the primary functions of mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) is to control the mitochondrial redox balance, and thereby mediate the cellular defense against oxidative damage, via the production of NADPH. To explore the association between IDH2 expression and cardiac function, we measured myocardial hypertrophy, apoptosis, and contractile dysfunction in IDH2 knockout (idh2−/−) and wild-type (idh2+/+) mice. As expected, mitochondria from the hearts of knockout mice lacked IDH2 activity and the hearts of IDH2-deficient mice developed accelerated heart failure, increased levels of apoptosis and hypertrophy, and exhibited mitochondrial dysfunction, which was associated with a loss of redox homeostasis. Our results suggest that IDH2 plays an important role in maintaining both baseline mitochondrial function and cardiac contractile function following pressure-overload hypertrophy, by preventing oxidative stress.  相似文献   

9.
The cardiac toxicity of doxorubicin (DOX), a potent anticancer anthracycline antibiotic, is believed to be mediated through the generation of reactive oxygen species (ROS) in cardiomyocytes. This study aims to determine the function of cellular glutathione peroxidase (Gpx1), which is located in both mitochondria and cytosol, in defense against DOX-induced cardiomyopathy using a line of transgenic mice with cardiac overexpression of Gpx1. The Gpx1-overexpressing hearts were markedly more resistant than nontransgenic hearts to DOX-induced acute functional derangements, including impaired contractility and diastolic properties, decreased coronary flow rate, and reduced heart rate. In addition, DOX treatment impairs mitochondrial function of nontransgenic hearts as evident in a decreased rate of NAD-linked State 3 respiration, presumably a result of inactivation of complex I activity. This is associated with increases in the rates of NAD- and FAD-linked State 4 respiration and declines in P/O ratio, suggesting that the electron transfer and oxidative phosphorylation are uncoupled in these mitochondrial samples. These functional deficits of mitochondria could be largely prevented by Gpx1 overexpression. Taken together, these studies provide new evidence to further support the role of ROS, particularly H(2)O(2) and/or fatty acid hydroperoxides, in causing contractile and mitochondrial dysfunction in mouse hearts acutely exposed to DOX.  相似文献   

10.
11.
During cardiac ischemia-reperfusion injury, reactive oxygen species (ROS) level is markedly increased, leading to oxidative stress and mitochondrial dysfunction. Although granulocyte-colony stimulating factor (G-CSF) is known to be cardioprotective, its effects on cardiac mitochondria during oxidative stress have never been investigated. In this study, we discovered that G-CSF completely prevented mitochondrial swelling and depolarization, and markedly reduced ROS production caused by H(2)O(2)-induced oxidative stress in isolated cardiac mitochondria. Its effects were similar to those treated with cyclosporine A and 4'-chlorodiazepam. These findings suggest that G-CSF could act directly on cardiac mitochondria to prevent mitochondrial dysfunction caused by oxidative stress.  相似文献   

12.
Effect of Bcl-2 overexpression on mitochondrial structure and function   总被引:6,自引:0,他引:6  
Overexpression of the antiapoptotic Bcl-2 protein enhances the uptake of fluorimetric dyes sensitive to mitochondrial membrane potential, suggesting that Bcl-2 changes the mitochondrial proton gradient. In this study, we performed calibrated measurements of mitochondrial respiration, membrane potential, deltapH, and intramitochondrial [K+] in digitonin-permeabilized PC12 and GT1-7 neural cells that either do not express human Bcl-2 (control transfectants) or that were transfected with and overexpressed the human bcl-2 gene to evaluate whether Bcl-2 alters mitochondrial inner membrane ion transport. We found that although Bcl-2-overexpressing cells exhibit higher fluorescence responses to membrane potential, pH, and K+-sensitive dyes, this increased response is due to an enhanced accumulation of these dyes and not an increased mitochondrial membrane potential, deltapH, or [K+]. This result is supported by the presence of equal respiratory rates in Bcl-2+ and Bcl-2- cells. Possible structural alterations in Bcl-2+ mitochondria that could account for increases in fluorescent dye uptake were evaluated using flow cytometry particle sizing and light scattering determinations. These experiments established that Bcl-2-overexpressing mitochondria present both increased volume and structural complexity. We suggest that increased mitochondrial volume and structural complexity in Bcl-2+ cells may be related to many of the effects of this protein involved in the prevention of cell death.  相似文献   

13.
Doxorubicin (DOX) is a chemotherapeutic agent effective in the treatment of many cancers. However, cardiac dysfunction caused by DOX limits its clinical use. DOX is believed to be harmful to cardiomyocytes by interfering with the mitochondrial phospholipid cardiolipin and causing inefficient electron transfer resulting in the production of reactive oxygen species (ROS). Sirtuin-3 (SIRT3) is a class III lysine deacetylase that is localized to the mitochondria and regulates mitochondrial respiration and oxidative stress resistance enzymes such as superoxide dismutase-2 (SOD2). The purpose of this study was to determine whether SIRT3 prevents DOX-induced mitochondrial ROS production. Administration of DOX to mice suppressed cardiac SIRT3 expression, and DOX induced a dose-dependent decrease in SIRT3 and SOD2 expression in H9c2 cardiomyocytes. SIRT3-null mouse embryonic fibroblasts produced significantly more ROS in the presence of DOX compared with wild-type cells. Overexpression of wild-type SIRT3 increased cardiolipin levels and rescued mitochondrial respiration and SOD2 expression in DOX-treated H9c2 cardiomyocytes and attenuated the amount of ROS produced following DOX treatment. These effects were absent when a deacetylase-deficient SIRT3 was expressed in H9c2 cells. Our results suggest that overexpression of SIRT3 attenuates DOX-induced ROS production, and this may involve increased SOD2 expression and improved mitochondrial bioenergetics. SIRT3 activation could be a potential therapy for DOX-induced cardiac dysfunction.  相似文献   

14.
The relationships between cardiac cell structure and the regulation of mitochondrial respiration were studied by applying fluorescent confocal microscopy and analysing the kinetics of mitochondrial ADP-stimulated respiration, during calcium-induced contraction in permeabilized cardiomyocytes and myocardial fibers, and in their 'ghost' preparations (after selective myosin extraction). Up to 3 microm free calcium, in the presence of ATP, induced strong contraction of permeabilized cardiomyocytes with intact sarcomeres, accompanied by alterations in mitochondrial arrangement and a significant decrease in the apparent K(m) for exogenous ADP and ATP in the kinetics of mitochondrial respiration. The V(max) of respiration showed a moderate (50%) increase, with an optimum at 0.4 microm free calcium and a decrease at higher calcium concentrations. At high free-calcium concentrations, the direct flux of ADP from ATPases to mitochondria was diminished compared to that at low calcium levels. All of these effects were unrelated either to mitochondrial calcium overload or to mitochondrial permeability transition and were not observed in 'ghost' preparations after the selective extraction of myosin. Our results suggest that the structural changes transmitted from contractile apparatus to mitochondria modify localized restrictions of the diffusion of adenine nucleotides and thus may actively participate in the regulation of mitochondrial function, in addition to the metabolic signalling via the creatine kinase system.  相似文献   

15.
We have shown here that the apoptosis inducer staurosporine causes an early decrease in the endogenous respiration rate in intact 143B.TK(-) cells. On the other hand, the activity of cytochrome c oxidase is unchanged for the first 8 h after staurosporine treatment, as determined by oxygen consumption measurements in intact cells. The decrease in the endogenous respiration rate precedes the release of cytochrome c from mitochondria. Moreover, we have ruled out caspases, permeability transition, and protein kinase C inhibition as being responsible for the decrease in respiration rate. Furthermore, overexpression of the gene for Bcl-2 does not prevent the decrease in respiration rate. The last finding suggests that Bcl-2 acts downstream of the perturbation in respiration. The evidence of normal enzymatic activities of complex I and complex III in staurosporine-treated 143B.TK(-) osteosarcoma cells indicates that the cause of the respiration decrease is probably an alteration in the permeability of the outer mitochondrial membrane. Presumably, the voltage-dependent anion channel closes, thereby preventing ADP and oxidizable substrates from being taken up into mitochondria. This interpretation was confirmed by another surprising finding, namely that, in staurosporine-treated 143B.TK(-) cells permeabilized with digitonin at a concentration not affecting the mitochondrial membranes in naive cells, the outer mitochondrial membrane loses its integrity; this leads to a reversal of its impermeability to exogenous substrates. The loss of outer membrane integrity leads also to a massive premature release of cytochrome c from mitochondria. Most significantly, Bcl-2 overexpression prevents the staurosporine-induced hypersensitivity of the outer membrane to digitonin. Our experiments have thus revealed early changes in the outer mitochondrial membrane, which take place long before cytochrome c is released from mitochondria in intact cells.  相似文献   

16.
Heat stress results in cardiac dysfunction and even cardiac failure. To elucidate the cellular and molecular mechanism of cardiomyocyte injury induced by heat stress, the changes of structure and function in cardiac mitochondria of heat-exposed Wistar rats and its role in cardiomyocyte injury were investigated. Heat stress induced apoptosis and necrosis of cardiomyocytes in a time- and dose-dependent fashion. In the mitochondria of heat-stressed cardiomyocytes, the respiratory control rate and oxidative phosphorylation efficiency (P:O) were decreased gradually with the rise of rectal temperature. The Ca2+ -adenosine triphosphatase activity and Ca2+ content were also reduced. Exposing isolated mitochondria to the heat stress induced special internal environmental states including Ca2+ overload, oxidative stress, and altered mitochondrial membrane permeability transition (MPT). In vivo, the heat stress-induced mitochondrial MPT alteration was also found. The changes of mitochondrial MPT resulted in the release of cytochrome c from mitochondria into the cytosol, and in turn, caspase-3 was activated. Transfection of bcl-2 caused Bcl-2 overexpression in cardiomyocyte, which protected the mitochondria and reduced the heat stress-induced cardiomyocyte injury. In conclusion, it appears that the destruction of mitochondrial structure and function not only resulted in the impairment of physiological function of cardiomyocytes under heat stress but may also further lead to severe cellular injury and even cell death. These findings underline the contribution of mitochondria to the injury process in cardiomyocytes under heat stress.  相似文献   

17.
The possible contribution of mitochondrial Ca2+ accumulation and release to contractile phenomena has been investigated. Two intracellular fractions of Ca2+ sequestration can be identified in cardiac myocytes, one ascribed to mitochondria. Two modes of Ca2+ transport exist within the mitochondrial fraction, one dependent upon mitochondrial respiration and the other upon extramitochondrial [Na+]. Experiments with trabeculae show that under appropriate conditions, the rate of relaxation and the amount of tension developed is dependent on these two modes of Ca2+ transport. A model is presented quantifying the contribution of the mitochondria to relaxation.  相似文献   

18.
To study the mechanisms of mitochondrial dysfunction due to ischemia-reperfusion (I/R) injury, rat hearts were subjected to 20 or 30 min of global ischemia followed by 30 min of reperfusion. After recording both left ventricular developed pressure (LVDP) and end-diastolic pressure (LVEDP) to monitor the status of cardiac performance, mitochondria from these hearts were isolated to determine respiratory and oxidative phosphorylation activities. Although hearts subjected to 20 min of ischemia failed to generate LVDP and showed a marked increase in LVEDP, no changes in mitochondrial respiration and phosphorylation were observed. Reperfusion of 20-min ischemic hearts depressed mitochondrial function significantly but recovered LVDP completely and lowered the elevated LVEDP. On the other hand, depressed LVDP and elevated LVEDP in 30-min ischemic hearts were associated with depressions in both mitochondrial respiration and oxidative phosphorylation. Reperfusion of 30-min ischemic hearts elevated LVEDP, attenuated LVDP, and decreased mitochondrial state 3 and uncoupled respiration, respiratory control index, ADP-to-O ratio, as well as oxidative phosphorylation rate. Alterations of cardiac performance and mitochondrial function in I/R hearts were attenuated or prevented by pretreatment with oxyradical scavenging mixture (superoxide dismutase and catalase) or antioxidants [N-acetyl-L-cysteine or N-(2-mercaptopropionyl)-glycine]. Furthermore, alterations in cardiac performance and mitochondrial function due to I/R were simulated by an oxyradical-generating system (xanthine plus xanthine oxidase) and an oxidant (H(2)O(2)) either upon perfusing the heart or upon incubation with mitochondria. These results support the view that oxidative stress plays an important role in inducing changes in cardiac performance and mitochondrial function due to I/R.  相似文献   

19.
It is commonly accepted that the major effect of nitroglycerin (NG) is realized through the release of nitric oxide (NO) catalyzed by aldehyde dehydrogenase-2 (ALDH2). In addition, it has been shown that NG inhibits mitochondrial respiration. The aim of this study was to clarify whether NG-mediated inhibition of mitochondrial respiration is mediated by NO. In rat liver mitochondria, NG inhibited complex-I-dependent respiration and induced reactive oxygen species (ROS) production, preferentially at complex I. Both effects were insensitive to chloral hydrate, an ALDH2 inhibitor. Nitrite, an NG intermediate, had no influence on either mitochondrial respiration or the production of ROS. NO inhibited preferentially complex I but did not elevate ROS production. Hemoglobin, an NO scavenger, and blue light had contrary effects on mitochondria inhibited by NO or NG. In summary, our data suggest that although NG induces vasodilatation via NO release, it causes mitochondrial dysfunction via an NO-independent pathway.  相似文献   

20.
Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号