首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Following microbial pathogen invasion, the human immune system of activated phagocytes generates and releases the potent oxidant hypochlorous acid (HOCl), which contributes to the killing of menacing microorganisms. Though tightly controlled, HOCl generation by the myeloperoxidase-hydrogen peroxide-chloride system of neutrophils/monocytes may occur in excess and lead to tissue damage. It is thus of marked importance to delineate the molecular pathways underlying HOCl cytotoxicity in both microbial and human cells. Here, we show that HOCl induces the generation of reactive oxygen species (ROS), apoptotic cell death and the formation of specific HOCl-modified epitopes in the budding yeast Saccharomyces cerevisiae. Interestingly, HOCl cytotoxicity can be prevented by treatment with ROS scavengers, suggesting oxidative stress to mediate the lethal effect. The executing pathway involves the pro-apoptotic protease Kex1p, since its absence diminishes HOCl-induced production of ROS, apoptosis and protein modification. By characterizing HOCl-induced cell death in yeast and identifying a corresponding central executor, these results pave the way for the use of Saccharomyces cerevisiae in HOCl research, not least given that it combines both being a microorganism as well as a model for programmed cell death in higher eukaryotes.  相似文献   

2.
Cyclophilins are conserved cistrans peptidyl-prolyl isomerase that are implicated in protein folding and function as molecular chaperones. The accumulation of Cpr1 protein to menadione in Saccharomyces cerevisiae KNU5377Y suggests a possibility that this protein may participate in the mechanism of stress tolerance. Stress response of S. cerevisiae KNU5377Y cpr1Δ mutant strain was investigated in the presence of menadione (MD). The growth ability of the strain was confirmed in an oxidant-supplemented medium, and a relationship was established between diminishing levels of cell rescue enzymes and MD sensitivity. The results demonstrate the significant effect of CPR1 disruption in the cellular growth rate, cell viability and morphology, and redox state in the presence of MD and suggest the possible role of Cpr1p in acquiring sensitivity to MD and its physiological role in cellular stress tolerance. The in vivo importance of Cpr1p for antioxidant-mediated reactive oxygen species (ROS) neutralization and chaperone-mediated protein folding was confirmed by analyzing the expression changes of a variety of cell rescue proteins in a CPR1-disrupted strain. The cpr1Δ to the exogenous MD showed reduced expression level of antioxidant enzymes, molecular chaperones, and metabolic enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH)- or adenosine triphosphate (ATP)-generating systems. More importantly, it was shown that cpr1Δ mutant caused imbalance in the cellular redox homeostasis and increased ROS levels in the cytosol as well as mitochondria and elevated iron concentrations. As a result of excess ROS production, the cpr1Δ mutant provoked an increase in oxidative damage and a reduction in antioxidant activity and free radical scavenger ability. However, there was no difference in the stress responses between the wild-type and the cpr1Δ mutant strains derived from S. cerevisiae BY4741 as a control strain under the same stress. Unlike BY4741, KNU5377Y Cpr1 protein was decarbonylated during MD stress. Decarbonylation of Cpr1 protein in KNU5377Y strain seems to be caused by a rapid and efficient gene expression program via stress response factors Hsf1, Yap1, and Msn2. Hence, the decarbonylated Cpr1 protein may be critical in cellular redox homeostasis and may be a potential chaperone to menadione.  相似文献   

3.
Bioenergetic aspects of apoptosis, necrosis and mitoptosis   总被引:6,自引:2,他引:4  
In this review I summarize interrelations between bioenergetic processes and such programmed death phenomena as cell suicide (apoptosis and necrosis) and mitochondrial suicide (mitoptosis). The following conclusions are made. (I) ATP and rather often mitochondrial hyperpolarization (i.e. an increase in membrane potential, ΔΨ) are required for certain steps of apoptosis and necrosis. (II) Apoptosis, even if it is accompanied by ΔΨ and [ATP] increases at its early stage, finally results in a ΔΨ collapse and ATP decrease. (III) Moderate (about three-fold) lowering of [ATP] for short and long periods of time induces apoptosis and necrosis, respectively. In some types of apoptosis and necrosis, the cell death is mediated by a ΔΨ-dependent overproduction of ROS by the initial (Complex I) and the middle (Complex III) spans of the respiratory chain. ROS initiate mitoptosis which is postulated to rid the intracellular population of mitochondria from those that are ROS overproducing. Massive mitoptosis can result in cell death due to release to cytosol of the cell death proteins normally hidden in the mitochondrial intermembrane space.  相似文献   

4.
Cadmium (Cd) is a known nephrotoxic element. In this study, the primary cultures of rat proximal tubular (rPT) cells were treated with low doses of cadmium acetate (2.5 and 5 μM) to investigate its cytotoxic mechanism. A progressive loss in cell viability, together with a significant increase in the number of apoptotic and necrotic cells, were seen in the experiment. Simultaneously, elevation of intracellular [Ca2+]i and reactive oxygen species (ROS) levels, significant depletion of mitochondrial membrane potential(Δ Ψ) and cellular glutathione (GSH), intracellular acidification, and inhibition of Na+, K+-ATPase and Ca2+-ATPase activities were revealed in a dose-dependent manner during the exposure, while the cellular death and the apoptosis could be markedly reversed by N-acetyl-l-cysteine (NAC). Also, the calcium overload and GSH depletion were significantly affected by NAC. In conclusion, exposure of rPT cells to low-dose cadmium led to cellular death, mediated by an apoptotic and a necrotic mechanism. The apoptotic death might be the chief mechanism, which may be mediated by oxidative stress. Also, a disorder of intracellular homeostasis induced by oxidative stress and mitochondrial dysfunction is a trigger of apoptosis in rPT cells.  相似文献   

5.
Cadmium is a widespread pollutant that has been associated with oxidative stress, but the mechanism behind this effect in prokaryotes is still unclear. In this work, we exposed two glutathione deficient mutants (ΔgshA and ΔgshB) and one respiration deficient mutant (ΔubiE) to a sublethal concentration of cadmium. The glutathione mutants show a similar increase in reactive oxygen species as the wild type. Experiments performed using the ΔubiE strain showed that this mutant is more resistant to cadmium ions and that Cd-induced reactive oxygen species levels were not altered. In the light of these facts, we conclude that the interference of cadmium with the respiratory chain is the cause of the oxidative stress induced by this metal and that, contrary to previously proposed models, the reactive oxygen species increase is not due to glutathione depletion, although this peptide is crucial for cadmium detoxification.  相似文献   

6.
An essential ε-subunit of oligosaccharyltransferase Ost2 is a yeast homolog of mammalian highly conserved DAD1 (defender against apoptotic death). In hamster cells, the Gly38Arg mutation in DAD1 causes apoptosis at restrictive temperatures due to a defect in N-linked glycosylation. To analyze the function of Ost2 in yeast cell death, we constructed Saccharomyces cerevisiae strains expressing Gly58Arg (corresponding to the Gly38Arg mutation in hamster DAD1), Gly86Arg, and Glu113Val mutant Ost2. At elevated temperatures, ost2 mutants arrested growth by decreasing cell viability. Phosphatidylserine exposure, a phenotypic marker of apoptosis in mammalian cells, was found in ost2 mutant cells at 37 °C, although DNA fragmentation was not clearly detected. A high concentration of sorbitol compensates for the temperature sensitivity of the ost2 mutant. These results suggest that apoptosis-like cell death in ost2 mutants is caused by the secondary effect of overall reduced protein N-linked glycosylation.  相似文献   

7.
In the present work, the mode of cell death induced by Pb in Saccharomyces cerevisiae was studied. Yeast cells Pb-exposed, up to 6 h, loss progressively the capacity to proliferate and maintained the membrane integrity evaluated by the fluorescent probes bis(1,3-dibutylbarbituric acid trimethine oxonol) and propidium iodide. Pb-induced death is an active process, requiring the participation of cellular metabolism, since the simultaneous addition of cycloheximide attenuated the loss of cell proliferation capacity. Cells exposed to Pb accumulated intracelullarly reactive oxygen species (ROS), evaluated by 2′,7′-dichlorodihydrofluorescein diacetate. The addition of ascorbic acid (a ROS scavenger) strongly reduced the oxidative stress and impaired the loss of proliferation capacity in Pb-treated cells. Pb-exposed cells displayed nuclear morphological alterations, like chromatin fragmentation, as revealed by diaminophenylindole staining. Together, the data obtained indicate that yeast cells exposition to 1 mmol/l Pb results in severe oxidative stress which can be the trigger of programmed cell death by apoptosis.  相似文献   

8.
Mancozeb (MZ), a mixture of ethylene-bis-dithiocarbamate manganese and zinc salts, is one of the most widely used fungicides in agriculture. Toxicologic studies in mammals and mammalian cells indicate that this fungicide can cause neurological and cytological disorders, putatively associated with pro-oxidant and apoptotic effects. Yeast adaptation to sub-inhibitory concentrations of MZ has been correlated with oxidative response, proteins degradation, and energy metabolism, and its main effect on yeast has been attributed to its high reactivity with thiol groups in proteins. Herein, we show that acute MZ treatments on aerobic exponentially growing yeast of wild type (BY4741) and deletion mutant strains, coupled with multiplex flow cytometry analysis, conclusively demonstrated that MZ displays the typical features of pro-oxidant activity on Saccharomyces, elevating mitochondrial ROS, and causing hyper-polarization of mitochondrial membranes leading to apoptosis. A drastic reduction of cellular viability associated with the maintenance of cell membrane integrity, as well as phosphatidyl serine externalization on yeast cells exposed to MZ, also supports an apoptotic mode of action. Moreover, abrogation of the apoptotic response in yca1 deficient mutants indicates that metacaspase-1 is involved in the programmed cell death mechanism induced by MZ in yeast.  相似文献   

9.
Vitamin A (Vit A) is widely suggested to be protective against oxidative stress. However, different studies have been demonstrated the pro-oxidant effects of retinoids in several experimental models. In this work, we used the yeast Saccharomyces cerevisiae as a model organism to study the Vit A effects on superoxide dismutase (SOD)-deficient yeast strains. We report here that Vit A (10, 20 and 40 mg/ml) decreases the survival of exponentially growing yeast cells, especially in strains deficient in CuZnSOD (sod1Δ) and CuZnSOD/MnSOD (sod1Δsod2Δ). We also observed the protective effect of vitamin E against the Vit A-induced toxicity. Possible adaptation effects induced by sub-lethal oxidative stress were monitored by pre-, co- and post-treatment with the oxidative agent paraquat. The enzymatic activities of catalase (CAT) and glutathione peroxidase (GPx), and the total glutathione content were determined after Vit A treatment. Our results showed that CuZnSOD represents an important defence against Vit A-generated oxidative damage. In SOD-deficient strains, the main defence against Vit A-produced reactive oxygen species (ROS) is GPx. However, the induction of GPx activity is not sufficient to prevent the Vit A-induced cell death in these mutants in exponential phase growth.  相似文献   

10.
The lung is a target organ for cadmium (Cd) toxicity. Apoptosis induced by cadmium acetate (CdAc) was studied in alveolar type 2 cells and Clara cells isolated from rat lung. Relatively low concentrations of CdAc (1–10 μmol/L) induced apoptosis after exposure for 20 h. Type 2 cells were more sensitive than Clara cells to Cd-induced apoptosis and loss of cell viability. On exposure to 10 μmol/L CdAc, the levels of the apoptosis-modulating proteins p53 and Bax were increased at 2 h and 5–12 h, respectively. The expression of p53 preceded the expression of Bax and the apoptotic process. The exposure to 10 μmol/L CdAc did not significantly increase the formation of cellular reactive oxygen species (ROS). However, after exposure to a high concentration of CdAc (100 μmol/L), a 30% increase of the ROS level was observed. No significant nitric oxide production was measured following CdAc exposure. Catalase, superoxide dismutase, dimethyl sulfoxide, or tetramethylthiourea did not protect against Cd-induced apoptosis. In conclusion, the results show that Clara cells and type 2 cells are sensitive to Cd-induced apoptosis. Increased levels of p53 and Bax are suggested to be involved in the apoptosis. The apoptosis did not appear to be mediated by oxidative pathways. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
We previously showed that production of reactive oxygen species (ROS) caused by overexpression of the mitochondrial electron transfer protein adrenodoxin (Adx) induces apoptosis in mammalian cells. In the fission yeast Schizosaccharomyces pombe, ROS are also produced in cells that undergo an apoptotic-like cell death, but it is not yet clear whether they are actually causative for this phenomenon or whether they are merely produced as a by-product. Therefore, the purpose of this study was to trigger mitochondrial ROS production in fission yeast by overexpression of either wildtype Adx (Adx-WT) or of several activated Adx mutants and to investigate its consequences. It was found that strong expression of either Adx-WT or Adx-S112W did not produce any ROS, while Adx-D113Y caused a twofold and Adx1–108 a threefold increase in ROS formation as compared to basal levels. However, no typical apoptotic markers or decreased viability could be observed in these strains. Since we previously observed that an increase in mitochondrial ROS formation of about 60% above basal levels is sufficient to strongly induce apoptosis in mammalian cells, we conclude that S. pombe is either very robust to mitochondrial ROS production or does not undergo apoptotic cell death in response to mitochondrial ROS at all.  相似文献   

12.
In the present study we demonstrated that the flavonoid derivative trifolin acetate (TA), obtained by acetylation of naturally occurring trifolin, induces apoptosis. Associated downstream signaling events were also investigated. TA-induced cell death was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the presence of the selective caspase inhibitors z-LEHD-fmk (caspase-9), z-DEVD-fmk (caspase-3) and z-VEID-fmk (caspase-6). The apoptotic effect of TA was associated with (i) the release of cytochrome c from mitochondria which was not accompanied by dissipation of the mitochondrial membrane potential (ΔΨm), (ii) the activation of the mitogen-activated protein kinases (MAPKs) pathway and (iii) abrogated by the over-expression of Bcl-2 or Bcl-xL. TA-induced cell death was attenuated by inhibition of extracellular signal-regulated kinases (ERK) 1/2 with U0126 and inhibition of p38MAPK with SB203580. In contrast, inhibition of c-Jun NH2-terminal kinase (JNK) by SP600125 significantly enhanced apoptosis. Although reactive oxygen species (ROS) increased in response to TA, this did not seem to play a pivotal role in the apoptotic process since different anti-oxidants were unable to provide cell protection. The present study demonstrates that TA-induced cell death is mediated by an intrinsic-dependent apoptotic event involving mitochondria and MAPK, and through a mechanism independent of ROS generation.  相似文献   

13.
The heavy metal cadmium, an environmental pollutant, has been widely demonstrated to be toxic, in particular for liver. In murines, cadmium induces apoptosis of hepatocytes and hepatomas. In human cells, apoptosis induced by cadmium has been exclusively demonstrated in tumoral cell lines. Nothing was known in normal liver, in vitro or in vivo. In the present study, we examined the effects of cadmium in nonmalignant human hepatocytes. For that purpose, we investigated whether cadmium was able to induce apoptosis of normal human hepatocytes (NHH) in primary culture and of a SV40-immortalized human hepatocyte (IHH) cell line. Treatment of IHH and NHH with cadmium induced the presence of a sub-G1 population at 10 and 100 μmol/L, respectively. DAPI staining of both cell types treated with cadmium 100 μmol/L revealed the induction of nuclear apoptotic bodies, supporting the hypothesis of apoptosis. In IHH and NHH, cadmium 100 μmol/L induced PARP cleavage into a 85 kDa fragment. In order to investigate the involvement of mitochondria in cadmium-induced apoptosis, we measured the mitochondrial membrane potential (ΔΨm). We observed that in IHH and NHH, cadmium 100 μmol/L induced a decrease of ΔΨm. As expected, cadmium under the same conditions enhanced caspase-9 and caspase-3 activities. In addition, cadmium from 1 to 100 μmol/L induced the expression of p53 and phosphorylation of its Ser15 in IHH and NHH. In conclusion, we showed in this study that human hepatocytes were sensitive to cadmium and apoptosis induced at concentrations suggested in the literature to inhibit p53 DNA-binding and DNA repair.  相似文献   

14.
The chemical compound ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F), isolated from the Chinese herbal medicine plant Pteris semipinnata L, has been known to exert antitumor activity. However, the molecular mechanism of the action is not understood. In this study we demonstrated that apoptotic cell death induced by 5F in FRO cells was concentration- and time-dependent. The rapid increase in intracellular reactive oxygen species (ROS) levels was involved in the mechanism of cell death. c-Jun N-terminal kinase (JNK) activation and G2 block were related to cell death induced by 5F. Extracellular signal-related kinase (ERK) and p38 were also activated, but as survival signals in response to 5F treatment to counteract the induction of cell death. In the process of the induction of apoptotic cell death, Bax translocated into mitochondria, a reduction in Δψ m was observed and a release of cytochrome c and apoptosis inducing factor (AIF) from mitochondria into the cytosol occurred, indicating that cell death induced by 5F was through a mitochondrial-mediated pathway.  相似文献   

15.
Growth of Saccharomyces cerevisiae ure2Δ mutant strain was investigated in the presence of diverse oxidant compounds. The inability of the strain to grow on a medium supplemented with H2O2 was confirmed and a relationship between diminishing levels of glutathione (GSH) and peroxide sensitivity was established. Data for the lack of significant effect of URE2 disruption on the cellular growth in the presence of paraquat and menadione were obtained. The possible role of Ure2p in acquiring sensitivity to oxidative stress by means of its regulatory role in the GATA signal transduction pathway was discussed. It was suggested that the susceptibility of ure2Δ mutant to the exogenous hydrogen peroxide can result from increased GSH degradation due to the deregulated localization of the γ-glutamyl transpeptidase activating factors Gln3/Gat1. The important role of Ure2p in in vivo glutathione-mediated reactive oxygen species (ROS) scavenging was shown by measuring the activity of antioxidant enzymes glutathione peroxidase, superoxide dismutase (SOD) and catalase in an URE2 disrupted strain. A time-dependent increase in SOD and catalase activity was observed. More importantly, it was shown that the ure2 mutation could cause significant disturbance in cellular oxidant balance and increased ROS level.  相似文献   

16.
Apoptosis is a common mode of programmed cell death in multicellular organisms. However, the recent observation of yeast cell death displaying the morphology of apoptosis has suggested the presence of an ancestral cell death machinery. Here we examined apoptotic features induced by reactive oxygen species (ROS) in yeast. Saccharomyces cerevisiae show typical apoptotic features upon exposure to ROS: membrane staining with annexin V and DNA fragmentation by the TUNEL assay. The detection of apoptotic features in yeast strongly support the existence of molecular machinery performing the basic pathways of apoptosis. The phosphoinositide 3-OH kinase (PI3K)/protein kinase B (PKB) signaling pathway has been shown to prevent apoptosis in a variety of cells. It is therefore of interest to determine whether the PI3K/PKB signaling pathway is capable of protecting yeast from apoptosis induced by ROS. We determined that PI3K/PKB is capable of significantly inhibiting ROS-evoked apoptosis in yeast. These results suggest that yeast may provide a suitable model system in which to study the apoptotic signaling pathway elicited by a variety of stimuli.  相似文献   

17.
A number of scientific studies have revealed that Lactobacillus strains have beneficial bioactivities in the gastrointestinal tract. In this study, the production of intracellular reactive oxygen species (ROS) and the amounts of intracellular calcium, protein kinase C activity, cytochrome c, Bid, Bcl‐2, Bax and the apoptosis‐mediated proteins [caspase‐8, caspase‐3 and poly ADP ribose polymerase (PARP)] were evaluated to understand the induction of programmed cell death in HT‐29 cells by Lactobacillus plantarum L67. The results obtained from this study indicated that the relative intensities of the apoptotic‐related factors (intracellular ROS and intracellular calcium) and of apoptotic signals (Bax and t‐Bid) increased with increasing concentrations of the membrane proteins isolated from heat‐killed L. plantarum L67, whereas the relative intensities of cytochrome c, Bcl‐2, caspase‐8, caspase‐3 and PARP decreased. This study determines whether proteins (12 and 15 kDa) isolated from heat‐killed L. plantarum L67 induce programmed cell death in HT‐29 cells. Proteins isolated from L. plantarum L67 can stimulate the apoptotic signals and then consequently induce programmed cell death in HT‐29 cells. The results in this study suggest that the proteins isolated from L. plantarum L67 could be used as an antitumoural agent in probiotics and as a component of supplements or health foods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The effects of a xenobiotic on the circulating haemocytes of Lymnaea stagnalis were investigated after short-term (24 h, 96 h) and long-term (504 h) exposure of snails to environmental concentrations. Fomesafen, a pro-oxidant generator led to the activation of the haemocyte apoptotic program by promoting reactive oxygen species (ROS). Cells entering apoptosis underwent a series of events, both on the plasma membrane and in the mitochondria; these events were quantified by flow cytofluorometry. The data showed a loss of mitochondrial transmembrane potential (Δψm), which was dose-dependent and time-dependent and related to an increased release of superoxide anions. The phosphatidylserine that was exposed at the outer plasma membrane was not related to the disruption of either ROS or Δψm but was strongly correlated with the haemocyte concentration (total haemocyte count). This cascade of apoptotic processes occurred in a dose-independent manner and was not strengthened over time. The increase of circulating haemocytes depended upon the life span of the cells and might have reflected either facilitated cell turn-over or the accompanying presence of haemocytes phagocytosing apoptotic cells.  相似文献   

19.
Aims: For this study, we performed a genetic screen of S. cerevisiae’s deletion library for mutants sensitive to dehydration stress, with which we aimed to discover cell dehydration–tolerant genes. Methods and Results: We used a yeast gene deletion set (YGDS) of 4850 viable mutant haploid strains to perform a genome‐wide screen for the identification of desiccation stress modifiers. SIP18 is among the genes identified as essential for cells surviving to drying/rehydration process. Deletion of SIP18 promotes the accumulation of reactive oxygen species and enhances apoptotic and necrotic cell death in response to dehydration/rehydration process. Conclusions: SIP18p acts as an inhibitor of apoptosis in yeast under dehydration stress, as suggested by its antioxidative capacity through the ROS accumulation reduction after an H2O2 attack. Significance and Impact of the Study: To our knowledge, this is the first systematic screen for the identification of putative genes essential to overcoming cell dehydration process. A broad range of identified genes could help to understand why some strains of high biotechnological interest cannot cope with the drying and rehydration treatments. Dehydration sensitivity makes these strains not suitable to be commercialized by yeast manufactures.  相似文献   

20.
We describe a Saccharomyces cerevisiae bioluminescence assay for UV and arsenate in which bacterial luciferase genes are regulated by the promoter of the yeast gene, UFO1. UFO1 encodes the F-box subunit of the Skp1–Cdc53–F-box protein ubiquitin ligase complex and is induced by DNA damage and by arsenate. We engineered the UFO1 promoter into an existing yeast bioreporter that employs human genes for detection of steroid hormone-disrupting compounds in water bodies. Our analysis indicates that use of an endogenous yeast promoter in different mutant backgrounds allows discrimination between different environmental signals. The UFO1-engineered yeast give a robust bioluminescence response to UVB and can be used for evaluating UV protective sunscreens. They are also effective in detecting extremely low concentrations of arsenate, particularly in pdr5Δ mutants that lack a mechanism to extrude toxic chemicals; however, they do not respond to cadmium or mercury. Combined use of endogenous yeast promoter elements and mutants of stress response pathways may facilitate development of high-specificity yeast bioreporters able to discriminate between closely related chemicals present together in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号