首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
《Free radical research》2013,47(9):1076-1081
Abstract

Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.  相似文献   

2.
In a previous study we demonstrated that acute footshock stress increased glutathione peroxidase activity in the prefrontal cortex and striatum of adult male rats. Adolescents may respond differently to stress as life stressors may be greater than at other ages. The present study examined the effects of the acute footshock stress on superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities and thiobarbituric acid reactive substances (TBARS) levels in adolescent male and female rat brains. We demonstrated that acute footshock stress increased SOD activity in the prefrontal cortex, and increased GPx activity in the hippocampus in female rats. In males, acute footshock stress increased GPx activity in the prefrontal cortex and hippocampus. Footshock stress did not change TBARS levels. These results indicate a strong role of gender in the response of adolescent subjects to various aspects of stress.  相似文献   

3.
Hypobaric hypoxia induces oxidative stress in rat brain   总被引:7,自引:0,他引:7  
High altitude exposure results in decreased partial pressure of oxygen and an increased formation of reactive oxygen and nitrogen species (RONS), which causes oxidative damage to lipids, proteins and DNA. Exposure to high altitude appears to decrease the activity and effectiveness of antioxidant enzyme system. The antioxidant system is very less in brain tissue and is very much susceptible to hypoxic stress. The aim of the present study was to investigate the time dependent and region specific changes in cortex, hippocampus and striatum on oxidative stress markers on chronic exposure to hypobaric hypoxia. The rats were exposed to simulated high altitude equivalent to 6100 m in animal decompression chamber for 3 and 7 days. Results indicate an increase in oxidative stress as seen by increase in free radical production, nitric oxide level, lipid peroxidation and lactate dehydrogenase levels. The magnitude of increase in oxidative stress was more in 7 days exposure group as compared to 3 days exposure group. The antioxidant defence system such as reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and reduced/oxidized glutathione (GSH/GSSG) levels were significantly decreased in all the three regions. The observation suggests that the hippocampus is more susceptible to hypoxia than the cortex and striatum. It may be concluded that hypoxia differentially affects the antioxidant status in the cortex, hippocampus and striatum.  相似文献   

4.
5.
This study evaluated the effects of chronic stress and lithium treatments on oxidative stress parameters in hippocampus, hypothalamus, and frontal cortex. Adult male Wistar rats were divided into two groups: control and submitted to chronic variate stress, and subdivided into treated or not with LiCl. After 40 days, rats were killed, and lipoperoxidation, production free radicals, total antioxidant reactivity (TAR) levels, and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were evaluated. The results showed that stress increased lipoperoxidation and that lithium decreased free radicals production in hippocampus; both treatments increased TAR. In hypothalamus, lithium increased TAR and no effect was observed in the frontal cortex. Stress increased SOD activity in hippocampus; while lithium increased GPx in hippocampus and SOD in hypothalamus. We concluded that lithium presented antioxidant properties, but is not able to prevent oxidative damage induced by chronic variate stress.  相似文献   

6.
Paraquat (PQ), a widely used herbicide is a well-known free radical producing agent. The mechanistic pathways of PQ neurotoxicity were examined by assessing oxidative/nitrosative stress markers. Focus was on the role of glutathione (GSH) cycle and to examine whether the pre-treatment with enzyme glutathione reductase (GR) could protect the vulnerable brain regions (VBRs) against harmful oxidative effect of PQ. The study was conducted on Wistar rats, randomly divided in five groups: intact-control group, (n=8) and four experimental groups (n=24). All tested compounds were administered intrastriatally (i.s.) in one single dose. The following parameters of oxidative status were measured in the striatum, hippocampus and cortex, at 30min, 24h and 7days post treatment: superoxide anion radical (O(2)(-)), nitrate (NO(3)(-)), malondialdehyde (MDA), superoxide dismutase (SOD), total GSH (tGSH) and its oxidized, disulfide form (GSSG) and glutathione peroxidase (GPx). Results obtained from the intact and the sham operated groups were not statistically different, confirming that invasive i.s. route of administration would not influence the reliability of results. Also, similar pattern of changes were observed between ipsi- and contra- lateral side of examined VBRs, indicating rapid spatial spreading of oxidative stress. Mortality of the animals (10%), within 24h, along with symptoms of Parkinsonism, after awakening from anesthesia for 2-3h, were observed in the PQ group, only. Increased levels of O(2)(-), NO(3)(-) and MDA, increased ratio of GSSG/GSH and considerably high activity of GPx were measured at 30min after the treatment. Cytotoxic effect of PQ was documented by drastic drop of all measured parameters and extremely high peak of the ratio GSSG/GSH at 24th hrs after the PQ i.s. injection. In the GR+PQ group, markedly low activity of GPx and low content of NO(3)(-) (in striatum and cortex) were measured during whole experiment, while increase value was observed only for O(2)(-), at 7th days. We concluded that oxidative/nitrosative stress and excitotoxicity are the most important events since the early stage of PQ induced neurotoxicity. Based on the ratio GSSG/GSH, the oxidation of GSH to GSSG is probably dominant way of GHS depletion and main reason for reduced antioxidative defense against PQ harmful oxidative effect. The GR pre-treatment resulted in the absence of Parkinson's disease-like symptoms and mortality of the rats. Additionally, oxidative/nitrosative stress did not developed, as well as almost diminished metabolism of the VBRs at 24th hours (as has been documented in the PQ group) did not occurred in the GR+PQ, suggesting a neuroprotective role for the GR in PQ induced neurotoxicity.  相似文献   

7.
Although the involvement of oxidative mechanisms in the cytotoxicity of excitatory amino acids has been well documented, it is not known whether the intrastriatal injection of quinolinic acid (QA) induces changes in glutathione (GSH) metabolism. In this work, the activities of the enzymes GSH reductase (GRD), GSH peroxidase (GPX), and GSH S-transferase (GST), as well as the GSH content, were studied in the striatum, hippocampus, and frontal cortex of rats 1 and 6 weeks following the intrastriatal injection of QA (225 nmol). One group of animals remained untreated. This lesion resulted in a 20% decrease in striatal GRD activity at both the 1- and 6-week postlesion times, whereas GST exhibited a 30% activity increase in the lesioned striatum observable only 6 weeks after the lesion. GPX activity remained unchanged. In addition, the QA injection elicited a 30% fall in GSH level at the 1-week postlesion time. GSH related enzyme activities and GSH content from other areas outside the lesioned striatum were not affected. GST activation could represent a beneficial compensatory response to neutralize some of the oxidant agents generated by the lesion. However, this effect together with the reduction in GRD activity could be the cause or a contributing factor to the observed QA-induced deficit in GSH availability and, consequently, further disrupt the oxidant homeostasis of the injured striatal tissue. Therefore, these results provide evidence that the in vivo excitotoxic injury to the brain might affect oxidant/antioxidant equilibrium by eliciting changes in glutathione metabolism.  相似文献   

8.
Attention-deficit/hyperactivity disorder (ADHD) is a highly heterogeneous disorder characterized by impairing levels of hyperactivity, impulsivity and inattention. Oxidative and inflammatory parameters have been recognized among its multiple predisposing pathways, and clinical studies indicate that ADHD patients have increased oxidative stress. In this study, we aimed to evaluate oxidative (DCFH oxidation, glutathione levels, glutathione peroxidase, catalase and superoxide dismutase activities) and inflammatory (TNF-α, IL-1β and IL-10) parameters in the most widely accepted animal model of ADHD, the spontaneously hypertensive rats (SHR). Prefrontal cortex, cortex (remaining regions), striatum and hippocampus of adult male SHR and Wistar Kyoto rats were studied. SHR presented increased reactive oxygen species (ROS) production in the cortex, striatum and hippocampus. In SHR, glutathione peroxidase activity was decreased in the prefrontal cortex and hippocampus. TNF-α levels were reduced in the prefrontal cortex, cortex (remaining regions), hippocampus and striatum of SHR. Besides, IL-1β and IL-10 levels were decreased in the cortex of the ADHD model. Results indicate that SHR presented an oxidative profile that is characterized by an increase in ROS production without an effective antioxidant counterbalance. In addition, this strain showed a decrease in cytokine levels, mainly TNF-α, indicating a basal deficit. These results may present a new approach to the cognitive disturbances seen in the SHR.  相似文献   

9.
We studied the role of oxidative stress and the effect of vinpocetine (1.5, 3 or 6 mg/kg) and piracetam (150 or 300 mg/kg) in acute demyelination of the rat brain following intracerebral injection of ethidium bromide (10 μl of 0.1%). Results: ethidium bromide caused (1) increased malondialdehyde (MDA) in cortex, hippocampus and striatum; (2) decreased total antioxidant capacity (TAC) in cortex, hippocampus and striatum; (3) decreased reduced glutathione (GSH) in cortex and hippocampus (4); increased serum nitric oxide and (5) increased striatal (but not cortical or hippocampal) acetylcholinesterase (AChE) activity. MDA decreased in striatum and cortex by the lower doses of vinpocetine or piracetam but increased in cortex and hippocampus and in cortex, hypothalamus and striatum by the higher dose of vinpocetine or piracetam, respectively along with decreased TAC. GSH increased by the higher dose of piracetam and by vinpocetine which also decreased serum nitric oxide. Vinpocetine and piracetam displayed variable effects on regional AChE activity.  相似文献   

10.
The objective of this study was to determine the effect of age and chronic intracerebral administration of nerve growth factor (NGF) on the activity of the presynaptic cholinergic neuronal markers hemicholinium-sensitive high-affinity choline uptake (HACU) and choline acetyltransferase (ChAT) in the brain of Fisher 344 male rats. In 24-month-old rats, a substantial decrease in ChAT activity (30%) was measured in striatum, and decreases in HACU were found in frontal cortex (28%) and hippocampus (23%) compared with 4-month-old controls. Cholinergic neurons in brain of both young adult and aged rats responded to administration of exogenous NGF by increased expression of both phenotypes. In 4-month-old animals, NGF treatment at 1.2 micron/day resulted in increased activities of both ChAT and HACU in striatum (175 and 170%, respectively), frontal cortex (133 and 125%), and hippocampus (137 and 125%) compared with untreated and vehicle-treated 4-month-old animals; vehicle treatment had no effect on the activity of either marker. In 24-month-old animals treated with NGF for 2 weeks, ChAT activity was increased in striatum (179%), frontal cortex (134%), and hippocampus (119%) compared with 24-month-old control animals. Synaptosomal HACU in 24-month-old rats was increased in striatum (151%) and frontal cortex (128%) after 2 weeks of NGF treatment, but hippocampal HACU was not significantly different from control values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
1. Glutaric acidemia type I (GA I) is a neurometabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase, which leads to tissue accumulation of predominantly glutaric acid (GA) and also 3-hydroxyglutaric acid to a lesser amount. Affected patients usually present progressive cortical atrophy and acute striatal degeneration attributed to the toxic accumulating metabolites. 2. In the present study, we determined a number of oxidative stress parameters, namely chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), total antioxidant reactivity (TAR), glutathione (GSH) levels, and the activities of catalase and glutathione peroxidase (GPx), in various tissues from rats chronically exposed to GA or to saline (controls). High GA concentrations, similar to those found in glutaric aciduria type I, were induced in the brain by three daily subcutaneous injections of saline-buffered GA (5 μmol/g body weight) to Wistar rats of 5–22 days of life. The parameters were assessed 12 h after the last GA administration in different brain structures, skeletal muscle, heart, liver, erythrocytes, and plasma. The lipid peroxidation parameters chemiluminescence and/or TBA-RS measurements were found significantly increased in midbrain, liver, and erythrocytes of GA-injected rats. The activity of GPx was significantly reduced in midbrain and markedly increased in liver. TAR measurement was significantly reduced in midbrain and liver. Furthermore, GSH levels were reduced in liver and heart. We also investigated the acute in vivo effect of GA administration on the same oxidative stress parameters in cerebral structures and erythrocytes from 22-day-old rats. We found that TBA-RS values were significantly increased in erythrocytes, TAR levels were markedly decreased in midbrain and cerebellum, and GPx activity mildly reduced in the midbrain. 3. These data showing an imbalance between antioxidant defences and oxidative damage, particularly in midbrain, liver, and erythrocytes from GA-injected rats, indicate that oxidative stress might be involved in GA toxicity and that the midbrain, where the striatum is located, is the brain structure more susceptible to GA chronic and acute exposition.  相似文献   

12.
The effects of MDMA administration on oxidative stress markers in rat eye and hippocampus, and the neuroprotective effects of the antioxidant 3,4-dihydro-6-hydroxy-7-methoxy-2,2-dimethyl-1(2H)-benzopyran (CR-6) have been studied. MDMA effects on liver were used for comparison with those in eye and hippocampus and to test CR-6 protective effects. Another goal was to test for apoptosis in retinal cells, as it is known that happens in liver and brain. After 1 week of ecstasy administration, malondialdehyde (MDA) concentration increased, glutathione peroxidase (GPx) activity and glutathione (GSH) content decreased in liver, as previously described. MDA concentration increased and GPx activity decreased in hippocampus; whereas no change was observed in GSH concentration. MDMA decreased ocular GSH concentration and GPx activity; no change was observed in MDA concentration. The number of TUNEL-positive nuclei increased significantly in rat retinas after 1 week of MDMA administration. CR-6 normalized the modifications in liver, hippocampus and retina mentioned above.  相似文献   

13.
Abstract— The levels of hydroxyl radicals and oxidized GSH have been examined as indices of oxidative stress in young (3 months), middle-aged (15 months), and old (20–24 months) gerbil brain hippocampus, cortex, and striaturn. The hydroxyl radical stress was estimated by measuring the salicylate hydroxyl radical trapping products 2,5-and 2,3-dihydroxybenzoic acid. The stress was significantly higher in all three brain regions in middle-aged and old gerbils versus young animals (66.0%). Regional comparisons showed that the stress was significantly higher in cortex than in either the hippocampus or striatum of the middle-aged and old gerbils (32.0%). The ratio of oxidized to total GSH also increased progressively in middle-aged and old animals in all three brain regions (p < 0.05, 41.1%), further indicating a general age-related increase in oxidative stress. Parallel to this age-related increase in oxidative stress, a significant, albeit slight (8%), decrease in neuronal number in hippocampal CA1 region was observed in both the middle-aged and old animals. Possible differences in antioxidant levels were also examined. Total GSH levels were similar across age groups (variance <12%). However, the regional comparison showed that it was highest in striatum in all age groups. The levels of a-tocopherol (vitamin E) were significantly higher in the middle-aged and old animals in all three regions (70.4%). Vitamin E was highest in the hippocampus and the differences between the hippocampus and the cortex and striatum increased with age. Although of a lesser magnitude, significant increases in hippocampal total ascorbic acid level were also noted with age (p < 0.05, 10%). Ascorbic acid was the most regionally specific of the three antioxidants examined, with hippocampus > cortex > striatum for all age groups. The difference in ascorbic acid level between hippocampus and cortex also increased with age (64.4%). The results suggest that the general age-related, regionally specific increases in oxidative stress stimulate the accumulation of antioxidants. It is interesting that the hippocampus, which is selectively vulnerable to various insults such as ischemia, epilepsy, and insulin-induced hypoglycemia, exhibits the greatest age-related increase in vitamin E and ascorbic acid, perhaps reflective of a greater impact of the progressive increase in baseline oxidative stress.  相似文献   

14.
Chronic oxidative stress plays an important role in depression. The aim of present study was to examine the stress-induced changes in serum corticosterone (CORT) levels, cytosolic protein carbonyl groups, malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO) and total superoxide dismutase (SOD) activity in the prefrontal cortex versus hippocampus of male Wistar rats exposed to acute (2 h of immobilization or cold), chronic (21d of social isolation) stress, and their combination (chronic + acute stress). The subcellular distribution of nuclear factor-κB (NF-κB) and cytosolic cyclooxygenase 2 (COX-2) protein expressions were also examined. Depressive- and anxiety-like behaviors were assessed via the forced swim, sucrose preference, and marble burying tests in chronically isolated rats. Although both acute stressors resulted in elevated CORT, increased MDA in the prefrontal cortex and NF-κB activation accompanied by increased NO in the hippocampus were detected only following acute cold stress. Chronic isolation resulted in no change in CORT levels, but disabled appropriate response to novel acute stress and led to depressive- and anxiety-like behaviors. Increased oxidative/nitrosative stress markers, likely by NF-κB nuclear translocation and concomitant COX-2 upregulation, associated with decreased SOD activity and GSH levels, suggested the existence of oxidative stress in the prefrontal cortex. In contrast, hippocampus was less susceptible to oxidative damage showing only increase in protein carbonyl groups and depleted GSH. Taken together, the prefrontal cortex seems to be more sensitive to oxidative stress than the hippocampus following chronic isolation stress, which may be relevant for further research related to stress-induced depressive-like behavior.  相似文献   

15.
Old rats (28 months), when compared with young adults (9 months), did not show differences in activities of superoxide dismutase (SOD) or selenium-dependent and -independent glutathione peroxidases (GPx), or in levels of GSH, GSSG, GSSG/GSH and endogenous peroxidation in liver and brain. Rates of stimulated peroxidation in vitro were decreased in the livers of old rats. Old animals showed decreased levels of hepatic catalase and glutathione reductase. Nevertheless, when enzyme activities were referred to cytochrome oxidase activity these decreases disappeared, and GPx and SOD (brain) were even increased in old rats.  相似文献   

16.
Previous studies, conducted on experimental animals, have indicated that reactive oxygen species (ROS) are involved in the aging process. The objective of this work was to study the relationship between oxidative damage and human skeletal muscle aging, measuring the activity of the main antioxidant enzymes superoxide dismutase (total and MnSOD), glutathione peroxidase (GPx) and catalase in the skeletal muscle of men and women in the age groups: young (17–40 years), adult (41–65 years) and aged (66–91 years). We also measured glutathione and glutathione disulfide (GSH and GSSG) levels and the redox index; lipid peroxidation and protein carbonyl content. Total SOD activity was lower in the 66–91 year-old vs. the 17–40 year-old men; MnSOD activity was significantly greater in 66–91 year-old vs. 17–40 year-old women. GPx activity remained unchanged. The activity of catalase was lower in adults than in young men but higher in the aged. We observed no changes in GSH levels and significantly higher GSSG levels only in aged men vs. adult men, and a significant decrease in aged women vs. aged men. The protein carbonyl content increased significantly in the 41–65 and 66–91 year-old vs. the 17–40 year-old men. Finally, young women have lower lipid peroxidation levels than young men. Significantly higher lipid peroxidation levels were observed in aged men vs. both young and adult men, and the same trend was noticed for women. We conclude that oxidative damage may play a crucial role in the decline of functional activity in human skeletal muscle with normal aging in both sexes; and that men appear to be more subject to oxidative stress than women.  相似文献   

17.
Previous studies, conducted on experimental animals, have indicated that reactive oxygen species (ROS) are involved in the aging process. The objective of this work was to study the relationship between oxidative damage and human skeletal muscle aging, measuring the activity of the main antioxidant enzymes superoxide dismutase (total and MnSOD), glutathione peroxidase (GPx) and catalase in the skeletal muscle of men and women in the age groups: young (17-40 years), adult (41-65 years) and aged (66-91 years). We also measured glutathione and glutathione disulfide (GSH and GSSG) levels and the redox index; lipid peroxidation and protein carbonyl content. Total SOD activity was lower in the 66-91 year-old vs. the 17-40 year-old men; MnSOD activity was significantly greater in 66-91 year-old vs. 17-40 year-old women. GPx activity remained unchanged. The activity of catalase was lower in adults than in young men but higher in the aged. We observed no changes in GSH levels and significantly higher GSSG levels only in aged men vs. adult men, and a significant decrease in aged women vs. aged men. The protein carbonyl content increased significantly in the 41-65 and 66-91 year-old vs. the 17-40 year-old men. Finally, young women have lower lipid peroxidation levels than young men. Significantly higher lipid peroxidation levels were observed in aged men vs. both young and adult men, and the same trend was noticed for women. We conclude that oxidative damage may play a crucial role in the decline of functional activity in human skeletal muscle with normal aging in both sexes; and that men appear to be more subject to oxidative stress than women.  相似文献   

18.
It is well known that chronic exposure to lead (Pb(+2)) alters a variety of behavioral tasks in rats and mice. Here, we investigated the effect of flaxseed oil (1,000?mg/kg) on lead acetate (20?mg/kg)-induced brain oxidative stress and neurotoxicity in rats. The levels of Pb(+2), lipid peroxidation, nitric oxide (NO), and reduced glutathione (GSH) and the activity of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GPx) were determined in adult male albino rats. The level of Pb(+2) was markedly elevated in brain and blood of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in GSH, CAT, SOD, GR, GST, and GPx activities. These findings were associated with DNA fragmentation. In addition, lead acetate induced brain injury as indicated by histopathological changes of the brain. Treatment of rats with flaxseed oil resulted in marked improvement in most of the studied parameters as well as histopathological features. These findings suggest to the conclusion that flaxseed oil significantly decreased the adverse harmful effects of lead acetate exposure on the brain as well as Pb(+2)-induced oxidative stress.  相似文献   

19.
Hepatic Encephalopathy (HE) is one of the most common complications of acute liver diseases and is known to have profound influence on the brain. Most of the studies, available from the literature are pertaining to whole brain homogenates or mitochondria. Since brain is highly heterogeneous with functions localized in specific areas, the present study was aimed to assess the oxidative stress in different regions of brain-cerebral cortex, cerebellum and pons medulla during acute HE. Acute liver failure was induced in 3-month old adult male Wistar rats by intraperitoneal injection of thioacetamide (300 mg/kg body weight for two days), a well known hepatotoxin. Oxidative stress conditions were assessed by free radical production, lipid peroxidation, nitric oxide levels, GSH/GSSG ratio and antioxidant enzyme machinery in three distinct structures of rat brain-cerebral cortex, cerebellum and pons medulla. Results of the present study indicate a significant increase in malondialdehyde (MDA) levels, reactive oxygen species (ROS), total nitric oxide levels [(NO) estimated by measuring (nitrites + nitrates)] and a decrease in GSH/GSSG ratio in all the regions of brain. There was also a marked decrease in the activity of the antioxidant enzymes-glutathione peroxidase, glutathione reductase and catalase while the super oxide dismutase activity (SOD) increased. However, the present study also revealed that pons medulla and cerebral cortex were more susceptible to oxidative stress than cerebellum. The increased vulnerability to oxidative stress in pons medulla could be due to the increased NO levels and increased activity of SOD and decreased glutathione peroxidase and glutathione reductase activities. In summary, the present study revealed that oxidative stress prevails in different cerebral regions analyzed during thioacetamide-induced acute liver failure with more pronounced effects on pons medulla and cerebral cortex. Murthy Ch.R.K—Deceased while in service.  相似文献   

20.
The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号