首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 659 毫秒
1.
The mutagenic and cytotoxic effects of 4 antineoplastic drugs, vinblastine, vincristine, adriamycin and nitrogen mustard and of several monofunctional alkylating agents have been assayed in V79 Chinese hamster cells. Vincristine, vinblastine and nitrogen mustard did not significantly increase the frequency of TGRHGPRT? mutants but were all highly cytotoxic. Adriamycin and the monofunctional alkylating agents were all significantly mutagenic even at the lowest doses tested (approx. 70 % survival level). Induced mutant frequency increased linearly with increasing dose whereas dose-response curves for cytotoxicity for these effective mutagens invariably showed a shoulder followed by an exponential decline. At equitoxic doses the relative mutagenic effectiveness was MNU ENU EMS MMS ? DMS. MNU was approx. 20 times more effective than MMS and DMS.Measurement of the total amount of alkylation and the relative amounts of reaction with individual DNA bases at approx. equitoxic doses of MNU and DMS indicated a significantly higher O6/N7 ratio after MNU (0.15) than after DMS (0.005). However, approx. equal numbers of mutants/105 cells/μM O6-Meguanine were induced by these 2 agents. These results support previous conclusions, that mutagenic and cytotoxic responses are independent in V79 cells.  相似文献   

2.
The effect of mixed mutagen exposures on the rate and type of induced mutants was studied in the L5178Y/TK+/-----TK-/- mouse lymphoma cell mutagenicity assay. In this assay, exposure to ethyl methanesulfonate (EMS) results in more mutants that form large colonies than small colonies. Exposure to methyl methanesulfonate (MMS) results in more mutants that form small colonies than large colonies. Other reports in the literature suggest that large colony TK-/- mutants appear to result from small-scale, perhaps single-gene mutations, and that small-colony TK-/- mutants appear to be associated with chromosomal mutations. Treating cells for 4 h with simple, 2-component mixtures containing 6.45 micrograms/ml MMS and either 261, 392, 560 or 712 micrograms/ml EMS resulted in synergism of mutants at each mixture level. The frequencies of total mutants were synergized 12, 20, 35 and 72%, respectively, in mixed exposures with graded doses of EMS, above the sums of the mixture components. Small colony mutants were synergized to a greater extent than large colony mutants. The frequencies of small colony mutants in mixed exposures were increased 31, 54, 73 and 123%, respectively, while the frequencies of large colony mutants were increased -7, -6, 11 and 39%. Statistical analyses provide strong evidence of synergism (within the limits of the assay) for total and small-colony mutants at all doses of EMS tested, and for large-colony mutants above 400 micrograms/ml EMS. Similar magnitudes of synergism resulted when other constant levels of MMS (4.30 or 8.60 micrograms/ml) were mixed with the same graded doses of EMS. The degree of synergism was dependent on EMS concentration but not on MMS concentration.  相似文献   

3.
The ability of posttreatment exposure to non-toxic concentrations of thymidine (TdR) to enhance the lethal effects of a number of alkylating agents, X-rays and UV and the lethal and mutagenic effects of N′-ethyl-N-nitrosourea (ENU) and N-methyl-N-nitrosourea (MNU) has been examined in V79 cell lines. TdR posttreatment enhanced the cytotoxic effects of ethyl methanesulphonate (EMS), MNU and ENU but not of UV or X-rays and increased both the spontaneous and MNU- and ENU-induced frequencies of azaguanine resistant (AZR) mutants. No significant effect of TdR on the spontaneous frequency of thioguanine resistant (TGR) mutants was demonstrated but the frequency of MNU-induced mutants to TGR was enhanced. The effects on expression of both potentially lethal and premutagenic damage were reversed by addition of an equimolar concentration of deoxycytidine (dCdR). The enhancement in spontaneous and induced mutant frequency (IMF) at the HGPRT locus appears to be due to an alteration in the selective efficiency of purine analogous due to alteration in growth kinetics of cells exposed to TdR or treated with alkylated agents or posttreated with thymidine after alkylation damage and not to an alteration in the miscoding potential of alkylated bases.  相似文献   

4.
It is known that UV, X-rays, MMC and MMS are not mutagenic for H. influenzae, whereas HZ, EMS and MNNG are potent mutagens for this bacterium. All of these agents, however, are known to be both mutagenic and able to induce prophage in E. coli. We report here that all the agents except HZ induce prophage in H. influenzae, and EMS even induces in the recombination-defective recl mutant, which is non-inducible by UV, MMC, MNNG and MMS. MMS did not cause single-strand breaks or gaps in DNA synthesized after treatment of H. influenzae, but EMS and MNNG produced them. EMS caused more breaks in DNA synthesized before treatment than in that synthesized after treatment. On the other hand we did observe such breaks or gaps induced in E. coli in DNA synthesized posttreatment by EMS as well as by MMS and MNNG, at comparable survival levels.  相似文献   

5.
Two UV-sensitive mutants of Saccharomyces cerevisiae rad 3 and rad 6 were tested for sensitivity to X-rays, MMS, EMS, HNO2 and DEB. Rad 3 mutant is more sensitive than the wild type strain only to HNO2 and DEB, while rad 6 is cross sensitive both to X-rays and all chemicals tested. Liquid holding recovery (LHR) was studied by comparison of cell survival immediately after mutagen treatment and after 5 days of storage in phosphate buffer. LH greatly increases cell survival of rad 3 mutant after DEB and slightly after EMS, MMS and HNO2, while after UV treatment LH significantly decreases survival of this mutant. LH increases survival of rad 6 mutant after exposure to UV, MMS and HNO2, but decreases survival of DEB-treated cells. Exposure of wild type strain to LH results in an increase of survival after UV, and DEB but not after MMS and HNO2. The results suggest that LHR is a strain- and mutagen-specific phenomenon and cannot be explained within the present knowledge of repair processes in yeast.  相似文献   

6.
Two UV sensitive DNA-repair-deficient mutants of Chinese hamster ovary cells (43-3B and 27-1) have been characterized. The sensitivity of these mutants to a broad spectrum of DNA-damaging agents: UV254nm, 4-nitroquinoline-1-oxide (4NQO), X-rays, bleomycin, ethylnitrosourea (ENU), ethyl methanesulphonate (EMS), methyl methanesulphonate (MMS) and mitomycin C (MMC) has been determined. Both mutants were not sensitive to X-rays and bleomycin. 43-3B was found to be sensitive to 4NQO, MMC and slightly sensitive to alkylating agents. 27-1 was sensitive only to alkylating agents. The results suggest the existence of two repair pathways for UV-induced cytotoxicity: one pathway which is also used for the removal of 4NQO and MMC adducts and a second pathway which is also used for the removal of alkyl adducts. Parallel to the toxicity, the induction of mutations at the HPRT and Na+/K+-ATPase loci was determined. The increased cytotoxicity to UV, MMC and 4NQO in 43-3B cells and the increased cytotoxicity to UV in 27-1 cells correlated with increased mutability. It was observed that the increase in mutation induction at the HPRT locus was higher than that at the Na+/K+-ATPase locus. As only point mutations give rise to viable mutants at the Na+/K+-ATPase locus the lower mutability at this locus suggests that defective excision repair increases the chance for deletions. Despite an increased cytotoxicity to ENU in 27-1 cells the mutation induction by ENU was the same in 27-1 and wild-type cells at both loci, which suggests that the mutations are mainly induced by directly miscoding adducts (e.g. O-6 alkylguanine), which cannot be removed by CHO cells. As EMS and MMS treatment of 27-1 cells caused an increase in mutation induction at the HPRT locus and a decrease at the Na+/K+-ATPase locus it indicates that these agents induce a substantial fraction of other mutagenic lesions, which can be repaired by wild-type cells. This suggests that O-6 alkylation is not the only mutagenic lesion after treatment with alkylating agents.  相似文献   

7.
A host-mediated assay is described for induction of 8-azaguanine-resistant (azgr) and ouabain-resistant (ouar) mutants in Chinese hamster V79 cells cultured in diffusion chambers (DC) in C3H mice. Injection of the hosts with the indirect mutagen/carcinogen cyclophosphamide (CPP) or 1-(pyridyl-3)-3,3-dimethyltriazene (PyDT) caused a dose-dependent increase in mutation frequency at the loci of azgr and ouar in the V79 target cells. Plating efficiency of V79 cells in DC in mice was decreased depending upon the dose of CPP or PyDT given to the hosts. In addition, the relationship between expression time and mutation frequency was examined and discussed. The data support the use of this system as an effective screening procedure for suspected environmental mutagens or carcinogens, especially those that need to be metabolically activated in vivo.  相似文献   

8.
The alkylating agent MMS was toxic to mouse lymphoma L5178Y cells and decreased their growth rate. A dose-dependent induction of thioguanine- and thymidine- but not ouabain-resistant variants was observed. The prolonged period for expression of thioguanine-resistant variants observed with other mutagens was also found in these studies. A comparison of MMS and EMS showed that MMS on a molar basis was approximately 10 times more toxic than EMS. With mutation, however, when evaluated at equal levels of cell killing MMS and EMS induced the same number of thymidine-resistant variants. For thioguanine-resistant variants MMS was approximately 10-fold less efficient than EMS, while for ouabain-resistance MMS, unlike EMBS, produced no variants at all. The ouabain results were further compared with positive results obtained using a modified Luria--Delbrück fluctuation test.  相似文献   

9.
DNA synthesis in two mutants of Chinese hamster overy cells, ts 13A and ts 15C, which were temperature sensitive for growth, was found to be shut off rapidly at the nonpermissive temperature. The mutants did not complement each other and the ts lesion was not located on the X chromosome. Both isolates were found to be considerably more sensitive to the alkylating agents, ethylmethanesulfonate (EMS) and methylmethanesulfonate (MMS), as compared to the parental cells, but showed normal sensitivity to UV irradiation. The mutants also showed interesting differences in their response to EMS-induced mutation frequencies at the ouabain-resistant and thioguanine-resistant loci. At high survival (50%) the frequencies of mutations at these genetic loci were markedly low in the ts mutants as compared to the parental cells. In ts+ revertants isolated from the mutants, the ts phenotype and the increased sensitivity to EMS and MMS were affected simultaneously, indicating that both these characteristics resulted from a single genetic lesion.  相似文献   

10.
The V79-4 Chinese hamster line was mutagenized and surviving clones screened for X-ray sensitivity using a replica microwell technique. One slightly sensitive clone and 3 clearly sensitive clones were isolated from approximately 5000 screened, and designated irs 1 to irs 4. The 3 more sensitive clones showed different responses to the genotoxic agents mitomycin C (MMC), ethyl methanesulphonate (EMS) and ultraviolet light (UV). irs 1 showed considerable sensitivity to all the agents tested, in the order MMC much greater than EMS greater than UV. irs 2 and irs 3 had similar sensitivities to EMS and to UV (EMS greater than UV) but irs 3 was more sensitive than irs 2 to MMC. None of these mutants is identical in phenotype to previously published mutants.  相似文献   

11.
A technique involving culture in soft agar was used for the assay of forward mutation of V79 cells to 6-thioguanine (6TG) resistance. The main reason for the use of soft agar was to prevent reduction in recovery of mutants depending on the cell density plated for mutation selection, which is the chief problem in the liquid method, and which results mainly from metabolic co-operation due to cell-to-cell contact.V79 cells grew well in fortified soft agar medium (DMEM + 20% FBS) showing cloning efficiencies (>80%) as high as in liquid culture. Therefore, V79/HGPRT mutagenesis could be assayed quantitatively in soft agar culture.The frequency of 6TG-resistant colonies in agar selective medium increased linearly with increase in concentration of EMS. Toxicity and mutagenic responses were greater in soft agar than in liquid culture.In cultures of untreated and EMS-treated cells, more than 95% of the 6TG-resistant colonies isolated were aminopterin-sensitive.Use of soft agar for selection prevented the reduction in the number of mutants with increase in the size of incula on plating up to 1?2 × 106 cells per 9-cm dish: in liquid culture, even with a lower plating number (2 × 105 cells per 9-cm dish), a notable reduction in numbers of mutants was observed. This character was re-examined in a reconstruction experiment. The results show that, when up to 2 × 106 cells were plated per 9-cm dish, 6TG-resistant cells were almost completely recovered from the soft agar medium, whereas only 10% were recovered from liquid culture.  相似文献   

12.
B. C. Myhr  J. A. DiPaolo 《Genetics》1975,80(1):157-169
With V79 Chinese hamster cell cultures treated with a mutagen, the maximum frequency of colonies resistant to 8-azaguanine (AZG) was attained when the cells were dispersed after a suitable expression time before adding the selection medium. V79–4 cells were exposed to 500 µM MMS, 7 µM AFAA, or 10 µM MNNG and allowed to multiply before being reseeded at 4 x 104 cells/60 mm dish and selected with 10 µg/ml AZG. Maximum frequencies of 4 x 10-5, 4 x 10-4, and 2.4 x 10-3 were obtained about 100, 130, and 200 hrs after exposure to MMS, AFAA, and MNNG, respectively. The maximum frequencies following MMS or MNNG treatments were about 10-fold greater than those obtained when induction and selection of AZG-resistant colonies were performed in the same culture dish. The reseeding of treated cells eliminated the possibility of metabolic cooperation within mosaic colonies of wild-type and mutant cells and achieved expression of the induced changes before intercolony crossfeeding reduced the frequency of resistant colonies.—AZG-resistant colonies were selected in medium containing dialyzed fetal bovine serum, and the selection medium was replaced at least twice. Both serum dialysis and selection medium replacement were necessary for consistent achievement of background frequencies of resistant colonies near 10-6. Reconstruction experiments with AZG-resistant V79 lines showed that the efficiency of recovery of resistant cells in the selection medium was constant over a range of 0–20 colonies observed/dish. A mixed population of V79 and AZG-resistant cells was also correctly analyzed by the procedure used in mutagenesis studies.  相似文献   

13.
Barley seeds were treated with methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS), stored at 15% water content and washed for 16–24 h. These treatments resulted in an increase of toxic and genetic effects. In teh DNA of embryos of such stored MMS- and EMS-treated seeds, a strong enhancement of the amount of single-strand breaks and/or alkali-labile sites took place. In contrast, the amount of alkylated sites, particularly of 7-methylguanine, was somewhat lower. It can be that the depurination and/or backbone breakage, which proceeds during the storage period, is responsible for the enhancement of toxic and genetic effects, whereas the influence of the alkylation of DNA during the storage period by the unreacted residual mutagen is negligible.  相似文献   

14.
Summary Selection for defective reversion induction, after UV treatment of E. coli K 12, yielded uvm mutants. These mutants exhibited highly reduced or no UV mutability for all loci tested although they were moderately and normally mutable by X-rays and EMS, respectively. Uvm mutations confer only a slight sensitivity to killing by UV and X-rays and no clear sensitivity to the lethal effect of HN2, EMS or MMS. Growth and viability of untreated uvm cells were normal. The properties of uvm mutants are discussed in relation to those of other relevant mutant types and to some actual problems of induced mutagenesis.  相似文献   

15.
16.
Wild-type Friend mouse erythroleukaemia cells (clone 707) were compared with adenine phosphoribosyltransferase (APRT)-deficient mutant subclones (707DAP8 and 707DAP10) for sensitivity to cell killing and mutagenesis by ethyl methanesulphonate (EMS) and methyl methanesulphonate (MMS). Cells were exposed to 0-300 micrograms/ml EMS and to 0-20 micrograms/ml MMS for a period of 16 h. A slight difference was found between wild-type cells and the two APRT-deficient subclones in terms of sensitivity to cell killing by both mutagens. The APRT-deficient subclones were, however, significantly more sensitive than wild-type cells to mutagenesis to 5-bromo-2-deoxyuridine resistance and 6-thioguanine resistance by EMS and MMS. The APRT-deficient subclones were found to have significantly decreased levels of dATP and dTTP nucleotides and decreased levels of all four ribonucleoside triphosphates (ATP, GTP, CTP and UTP) relative to wild-type cells. Wild-type Friend cells were found to have insignificant levels O6-methylguanine-DNA methyl transferase and it is suggested that the increased mutagen sensitivity of APRT-deficient cells may be due to imbalance of deoxyribonucleoside triphosphate pools during DNA excision-repair processes, or more probably due to deficiency of ATP for ATP-dependent DNA excision-repair enzymes.  相似文献   

17.
The combined effects of methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) on the induction of 6-thioguanine (6TG)-resistant mutants and chromosome aberrations were examined in Chinese hamster V79 cells. Cells were simultaneously treated with EMS at a concentration of D20 and MMS at various concentrations for 3, 6 or 9 h. In other experiments cells were simultaneously treated with MMS at a concentration of D20 and EMS at various concentrations for 3, 6 or 9 h. The mathematical analysis of the combined effects of both chemicals for cell killing (cytotoxicity) and 6TG-resistant mutations indicates that synergistic interactions were observed for both cell killing and mutations induced by MMS and EMS. The frequency of chromosome aberrations induced by simultaneous treatment with MMS at a concentration of D20 and EMS at various concentrations for 3 h was additive. However, the frequency of chromosome aberrations induced by EMS at a concentration of D20 and MMS at various concentrations for 3 h was not significantly different from those induced by MMS alone.  相似文献   

18.
Antipain (AP) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) were tested in V79 Chinese hamster cells for cytotoxicity and effects on survival and 6-thioguanine-resistant (6TGr) mutation after UV-irradiation. AP and/or TPA were relatively non-cytotoxic and had no significant effects on UV survival. Despite their non-mutagenicity, the recovery of UV-induced 6TGr colonies was significantly enhanced by the pretreatment with either AP (0.5–2 mM) or TPA (0.1–1 μg/ml) only during the expression period before the 6TG selection at a low density of cells in the absence of AP or TPA. Such enhancing effects were maximal when AP or TPA was present during the late expression period after the mutation fixation and extensive dilution of DNA lesions. Reconstruction experiments revealed the antagonistic actions that TPA and AP tended to eliminate and increase, respectively, the metabolic co-operation. In the TPA-plus-AP treatment, AP abolished the TPA-enhanced recovery of induced mutants. Thus, it seems that TPA increases the mutant recovery largely through decreased metabolic co-operation and AP could modulate the mutation expression. Further, an error-prone inducible repair may not exist or, if it exists, AP may not inhibit it in V79 Chinese hamster cells.  相似文献   

19.
Incubation in thymidine-containing medium resulted in increased lethality and micronucleus frequency in V79 cells treated with ethyl nitrosourea (ENU), methyl nitrosourea (MNU) and ethyl methanesulphonate (EMS) but not with methyl methanesulfonate (MMS). Thymidine had no effect in ENU treated HeLa cells. In V79 cells, the presence of thymidine during post-treatment DNA replication was necessary for the effect. It is suggested that the increase in chromosome damage was the result of an increased O6-alkylguanine-thymine mispairing in cells which are defective in the repair of O6-alkylguanine. Treatment of V79 cells with O6-ethylguanine resulted in increased production of both micronuclei and polyploid cells. These effects might be explained by spindle dysfunction caused by the alkylated guanine.  相似文献   

20.
Two X-ray-sensitive mutants of CHO-K1 cells, xrs 5 and xrs 6, were characterised with regard to their responses to genotoxic chemicals, namely bleomycin, MMS, EMS, MMC and DEB for induction of cell killing, chromosomal aberrations and SCEs at different stages of the cell cycle. In addition, induction of mutations at the HPRT and Na+/K+ ATPase (Oua) loci was evaluated after treatment with X-rays and MMS. Xrs 5 and xrs 6 cells were more sensitive than wild-type CHO-K1 to the cell killing effect of bleomycin (3 and 13 times respectively) and for induction of chromosomal aberrations (3 and 4.5 times). In these mutants a higher sensitivity for induction of chromosomal aberrations to MMS, EMS, MMC and DEB was observed (1.5-3.5 times). The mutants also showed increased sensitivity for cell killing effects of mono- and bi-functional alkylating agents (1.7-2.5 times). The high cell killing effect of X-rays in these mutants was accompanied by a slight increase in the frequency of HPRT mutation. The xrs mutants were also more sensitive to MMS for the increased frequency of TGr and Ouar mutants when compared to wild-type CHO-K1 cells. Though bleomycin is known to be a poor inducer of SCEs, an increase in the frequency of SCEs in xrs 6 cells (doubling at 1.2 micrograms/ml) was found in comparison to no significant increase in xrs 5 or CHO-K1 cells. The induced frequency of SCEs in all cell types increased in a similar way after the treatment with mono- or bi-functional alkylating agents. MMS treatment of G2-phase cells yielded a higher frequency of chromatid breaks in the mutants in a dose-dependent manner compared to no effect in wild-type CHO-K1 cells. Treatment of synchronised mutant cells at G1 stage with bleomycin resulted in both chromosome- and chromatid-type aberrations (similar to the response to X-ray treatment) in contrast to the induction of only chromosome-type aberrations in wild-type CHO-K1 cells. The frequency of chromosomal aberrations chromosome and chromatid types) also increased with MMC treatment in G1 cells of xrs mutants. DEB treatment of G1 cells induced mainly chromatid-type aberrations in all cell types. The possible reasons for the increased sensitivity of xrs mutants to the chemical mutagens studied are discussed and the results are compared to cells derived from radiosensitive ataxia telangiectasia patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号