首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fres isolated blood cells recombined with normal heparinized plasma and then incubated with endotoxin, induced a 100-fold increase in monocyte tissue thromboplastin synthesis. In contrast, recombination of these cells with heat inactivated plasma, cobra venom factor-treated plasma, Ca2+-free plasma, or BioRex 70-treated plasma (plasma free of Clq and D) before incubation with endotoxin, failed to induce monocyte synthesis of tissue thromboplastin. These results strongly support the hypothesis that complement is required for endotoxin stimulation of blood monocyte synthesis of tissue thromboplastin.  相似文献   

2.
In an attempt to define the mechanism by which endotoxin induces its biologic activity, LPS was incorporated into phospholipid vesicles (liposomes) and compared with free LPS for ability to stimulate human monocytes. Activation of human monocytes by free LPS caused the translocation of protein kinase C (PKC) from the cytosol to the plasma membranes, the production of both IL-1, alpha and beta, and IL-1 secretion. Activation by LPS presented in multilamellar vesicles (MLV)-LPS caused IL-1 production but not IL-1 secretion. Moreover, MLV-LPS did not induce PKC translocation. MLV themselves did not inhibit monocyte stimulation by LPS, since LPS presented at the surface of lyophilized liposomes behaved like free LPS in cell activation. In contrast, MLV-LPS primed monocytes for subsequent LPS stimulation. When monocytes were activated by LPS in the presence of PKC inhibitors, no plasma membrane-associated PKC or IL-1 secretion was detected, whereas IL-1 production was observed. PKC inhibitors did not affect IL-1 alpha and IL-1 beta production, showing that PKC is not involved in the production of either IL-1. It can be concluded that IL-1 production and secretion are induced independently, and that IL-1 secretion involves PKC.  相似文献   

3.
Endotoxin tolerance is characterized by a decreased production of proinflammatory cytokines by cultured leukocytes in response to lipopolysaccharide (LPS) following a first exposure to the same stimulus. Gamma interferon (IFNgamma) and granulocyte/monocyte colony-stimulating factor (GM-CSF) are immunostimulatory cytokines that prime monocytes and prevent endotoxin tolerance. In this study, we show that the deactivating effects of LPS, as well as the priming effects of IFNgamma and GM-CSF or their capacity to restore tumor necrosis factor (TNF) production by LPS-tolerized human monocytes are independent of the modulation of TLR2, TLR4, or MD-2. In monocytes pretreated with IFNgamma or GM-CSF, interleukin-1 receptor-associated kinase (IRAK) expression is up-regulated. After LPS stimulation, an increased IRAK kinase activity, a higher MyD88/IRAK association, and a stronger NF-kappaB activation are observed. In contrast, in LPS-tolerized monocytes, IRAK expression and kinase activity, IRAK/MyD88 association, and NF-kappaB activation are inhibited. Furthermore, the prevention of tolerance by IFNgamma and GM-CSF was independent of IRAK kinase activity. Our results suggest that these cytokines prevent endotoxin tolerance induced by low but not by high doses of LPS by inhibiting IRAK degradation and by promoting its association with MyD88 after a second LPS stimulation, which in turn leads to NF-kappaB activation and TNF production.  相似文献   

4.
Rabbit monocytes stimulated with endotoxin produced endogenous pyrogen, even under conditions of high or low extracellular calcium concentrations. Maximal production occurred when the concentration was in the near-physiological range. Prolonged incubation of cells with a calcium chelator prevented subsequent activation with endotoxin, an effect which was rapidly reversible by re-addition of calcium but not other cations. Addition of small amounts of lanthanum, which acts as a calcium channel blocker, prevented the restoration of pyrogen production, indicating that entry of the added calcium into the monocyte was required. Incorporation of a calcium ionophore into the cell membrane did not stimulate pyrogen production, and no measurable influx or efflux of calcium occurred during stimulation with endotoxin. These observations suggest that a slowly exchangeable calcium pool is necessary for the production of endogenous pyrogen, but that a rise in intracellular calcium is not by itself a necessary or sufficient stimulus. This stands in contrast to other biological systems in which Ca2+ directly couples stimulus and hormone secretion. Incubation of cells with agents shown to increase cyclic 3',5' AMP or cyclic 3',5' GMP levels in monocytes similarly did not stimulate pyrogen production or modulate its production by endotoxin stimulation. Thus, cyclic nucleotides also did not play a detectable role as intracellular messengers in this system. Future work is required to define more clearly the mechanism for the production of endogenous pyrogen, given its marked effects on the immune system through lymphocyte activation and temperature regulation.  相似文献   

5.
Human monocytes in culture release small amounts of prostaglandin E (PGE) into the medium. Addition of Fc fragments of IgG to human monocyte monolayer cultures results in a marked increase in PGE release; Fab fragments, monomeric IgG, and human serum albumin have no effect. An IgG1 myeloma has no effect on PGE levels but addition of the heat aggreagted protein results in a marked increase of PGE secretion. Exposure of the cells to Con A, which binds to a specific monocyte plasma membrane receptor, also results in a large increase in PGE release. The magnitude of the increase in PGE secretion produced by exposure of the monocytes to these ligands greatly exceeds the stimulation observed after the addition of antigen-activated mononuclear cell supernatants, zymosan, Sephadex beads, or endotoxin, to monocyte cultures. Prostaglandin E2 (PGE2) accounts for approximately 70% of the total prostaglandins released by stimulated cells. After addition of Indomethacin to monocyte cultures, the stimulatory effects of the ligands on PGE release are inhibited. Addition of Con A to monocyte cultures results in an increased incorporation of [3H]-arachidonic acid into PGE2. These results suggest that this ligand stimulates synthesis as well as release of this prostaglandin.  相似文献   

6.
The coagulation protein thrombin has been shown to stimulate multiple endothelial-cell (EC) functions, including production of platelet-derived growth factor and of platelet-activating factor (PAF), and neutrophil adhesion. We have found that thrombin causes increased binding of monocytic cells (U937 cells and normal human monocytes) to cultured EC of various species. Maximum adhesion of monocytes to pig aortic EC occurred 6 h after thrombin treatment and remained elevated through 24 h. Stimulation of adherence by bovine alpha-thrombin was half-maximal at 15 units/ml, and reached a plateau at 50 units/ml. Catalytically inactive thrombin (phenylmethanesulphonyl fluoride-treated) had no effect on monocyte adhesion to EC. Heparin, but not the endotoxin antagonist polymyxin B, suppressed the stimulation of adhesion by thrombin without altering basal adhesion. Two lines of evidence suggested that protein kinase C (PKC) was involved in the intracellular signalling to increase monocyte adhesion to EC. First the PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated monocytic-cell adhesion to EC at a dose consistent with stimulation of PKC (half-maximal response at 1-3 nM) and with a time course similar to that for thrombin stimulation (maximal by 4 h). Diacylglycerol, a physiological activator of PKC, also stimulated U937-cell adhesion to EC. Secondly, H7, a PKC inhibitor, completely blocked stimulation of monocyte adhesion to EC by thrombin or PMA. The structural analogue of H7, HA1004, which preferentially inhibits cyclic-AMP- and cyclic-GMP-dependent protein kinases, had no effect on stimulated monocyte adhesion. The PKC inhibitor also blocked the stimulation of monocyte adhesion to EC by interleukin-1 and endotoxin, but did not alter the basal level of monocyte binding to unstimulated EC. Thrombin stimulation of monocyte adhesion differed from the reported stimulation of neutrophil adhesion by thrombin in that the latter process reached a maximum in minutes rather than hours. In addition, neither PAF itself nor agents known to stimulate PAF production by EC, such as arachidonate and the Ca2+ ionophore A23187, had any effect on monocyte adhesion. These results demonstrate a PKC-dependent cytokine-like action of the coagulation protein thrombin in modulating monocytic-cell adhesion to EC, a phenomenon of potential importance in many pathological and physiological processes.  相似文献   

7.
In the present study we examined whether endothelin-1 stimulation of human monocytes causes release of chemotactic factors. It was found that monocytes released neutrophil- and monocyte-chemotactic activity in a dose- and time-dependent manner in response to ET-1. ET-1 did not show any chemotactic activity by itself. NCA was detected in monocyte supernatants in response to ET-1 (0.01-100 nM) after 1, 4, 8 and 24 h stimulation. MCA was detected only after 24 h stimulation with ET-1 (0.1-100 nM). Preincubation of the monocyte cultures with the lipoxygenase inhibitors nordihydroguaiaretic acid (10(-4) M) or diethylcarbamazine (10(-9) M) completely abolished the appearance of NCA and MCA. NCA was neutralized by > 75% using a polyclonal antibody against human interleuktn-8. The ET-1 induced release of IL-8 was confirmed by IL-8 ELISA. A monoclonal antibody against human monocyte chemotactic protein-1 neutralized MCA by > 80%. It is concluded that ET-1 stimulation of monocytes in vitro causes release of neutrophil- and monocyte-chemotactic activity identified as IL-8 and MCP-I respectively. An intact lipoxygenase pathway is crucial for this effect of ET-1 to occur.  相似文献   

8.
Cells of the monocyte/macrophage lineage are known to produce urokinase type plasminogen activator (u-PA) and are active participants in the inflammatory response. Modulation of cellular u-PA production, for instance in response to LPS, may have an important impact on the evolution of inflammatory lesions. A definitive picture of how monocyte u-PA production and activity are regulated by LPS is lacking. We addressed this issue directly by measuring u-PA Ag and activity in mononuclear cell cultures. By using a competition ELISA to quantitate u-PA Ag, we found that LPS-stimulated mononuclear cells in culture increased u-PA production in a dose-dependent manner and that all the u-PA detected was attributable to the monocytes therein. Increasing amounts of u-PA were secreted into the medium, bound to the cell surface, and found intracellularly. Although the absolute amounts of u-PA varied from donor to donor, the increases seen with LPS stimulation were a consistent and statistically significant finding. Only the cell-surface-bound u-PA was fibrinolytically active, however, with this activity increasing upon LPS stimulation. All monocyte cell-surface-associated fibrinolytic activity was attributed to u-PA, as shown by plasminogen dependence, neutralization by antibodies to u-PA, and identification of fibrinolytically active molecules eluted from the cell surface. The surface bound u-PA was not inhibited by its physiologic inhibitors, PAI-1 or PAI-2, whereas free u-PA was. Hence LPS stimulation results in monocytes exhibiting increased cell-surface-associated u-PA Ag and fibrinolytic activity, in spite of concomitant high levels of plasminogen activator inhibitor type 2 production. This surface-bound enzymatic activity may influence the ability of monocytes to migrate in and interact with an inflammatory microenvironment.  相似文献   

9.
10.
We report here that the bacterial lipopolysaccharide endotoxin induces human blood monocytes in a time- and dose-dependent manner to release prodigious amounts of prostaglandins with thromboxane A2, the major metabolite formed. Cells responded to as little as 1 ng/ml lipopolysaccharide to release prostaglandin E2 and thromboxane A2 with maximal stimulation at 10 micrograms/ml. Lipopolysaccharide was found to induce increased activity of cyclooxygenase enzyme without affecting the activities of phospholipase and thromboxane synthase or the formation of 5-lipoxygenase products (e.g. leukotriene B4). The glucocorticoid dexamethasone completely blocked the lipopolysaccharide-induced prostanoid release by inhibiting the activity of monocyte cyclooxygenase. Dexamethasone did not affect phospholipase and thromboxane synthase activities or leukotriene formation. Immunoprecipitation of [35S]methionine-labeled cyclooxygenase confirmed that the effect of lipopolysaccharide and dexamethasone on the monocyte prostanoid production could be attributed to an increase or decrease, respectively, in cellular cyclooxygenase de novo synthesis.  相似文献   

11.
Nitric oxide (NO) production during endotoxemia is associated with decreased total CYP content, CYP 1A1/2, 2B1/2, 2C6, 2C11, 3A1, and 3A2 mRNA, protein expression or activity which is prevented by NO synthase (NOS) inhibitors in rats. This study was conducted to determine if endotoxin-induced hypotension caused by NO production is mediated by inhibition of renal CYP 4A protein expression and activity. In conscious male Sprague-Dawley rats, endotoxin (10 mg/kg, ip) reduced mean arterial pressure (MAP), increased serum and renal nitrite levels, and inducible NOS (iNOS), and decreased renal CYP 4A1/A3 protein and CYP 4A activity. The selective iNOS inhibitor 1,3-PBIT (10 mg/kg, ip; 1h after endotoxin) prevented endotoxin-induced decrease in MAP, renal CYP 4A1/A3 protein level and CYP 4A activity and increase in systemic and renal nitrite production. The selective constitutive NOS (cNOS) inhibitor N(G)-nitro-L-arginine (L-NNA; 20 mg/kg, ip; 1 h after endotoxin) partially attenuated endotoxin-induced decrease in MAP. The selective CYP 4A inhibitor, aminobenzotriazole (50 mg/kg, ip; 1 h after endotoxin) diminished CYP 4A1/A3 protein level and CYP 4A activity. Aminobenzotriazole did not alter the endotoxin-induced decrease in MAP, but it reversed the effect of 1,3-PBIT in preventing endotoxin-induced fall in MAP and CYP 4A activity. These data suggest that the endotoxemia-induced increase in NO production primarily via iNOS suppresses renal CYP 4A expression and activity, and inhibition of iNOS with 1,3-PBIT restores renal CYP 4A protein and activity and MAP presumably due to increased production of arachidonic acid metabolites derived from CYP 4A.  相似文献   

12.
13.
Chou MH  Chuang JH  Eng HL  Tsai PC  Hsieh CS  Liu HC  Wang CH  Lin CY  Lin TM 《PloS one》2012,7(4):e34903
Cholestasis is frequently related to endotoxemia and inflammatory response. Our previous investigation revealed a significant increase in plasma endotoxin and CD14 levels during biliary atresia. We therefore propose that lipopolysacharides (LPS) may stimulate CD14 production in liver cells and promote the removal of endotoxins. The aims of this study are to test the hypothesis that CD14 is upregulated by LPS and investigate the pathophysiological role of CD14 production during cholestasis. Using Western blotting, qRT-PCR, and promoter activity assay, we demonstrated that LPS was associated with a significant increase in CD14 and MD2 protein and mRNA expression and CD14 promoter activity in C9 rat hepatocytes but not in the HSC-T6 hepatic stellate cell line in vitro. To correlate CD14 expression and endotoxin sensitivity, in vivo biliary LPS administration was performed on rats two weeks after they were subjected to bile duct ligation (BDL) or a sham operation. CD14 expression and endotoxin levels were found to significantly increase after LPS administration in BDL rats. These returned to basal levels after 24 h. In contrast, although endotoxin levels were increased in sham-operated rats given LPS, no increase in CD14 expression was observed. However, mortality within 24 h was more frequent in the BDL animals than in the sham-operated group. In conclusion, cholestasis and LPS stimulation were here found to upregulate hepatic CD14 expression, which may have led to increased endotoxin sensitivity and host proinflammatory reactions, causing organ failure and death in BDL rats.  相似文献   

14.
12-O-Tetradecanoylphorbol 13-acetate (TPA), phorbol 12,13-diacetate and phorbol 12,13-didecanoate were all potent inducers of thromboplastin activity in human monocytes in vitro, whereas 4 alpha-phorbol 12,13-didecanoate and 4 alpha-phorbol had no such effect. A concomitant increase in titrable apoprotein III antigen was found (apoprotein III is the protein component of thromboplastin). The increase was inhibited by cycloheximide and actinomycin D and partly by alpha-amanitin. The increase of thromboplastin activity was therefore most likely due to synthesis de novo of apoprotein III. The response was approximately halved in the absence of serum or Ca2+. Retinol had a weak inhibitory effect, and retinoic acid was inhibitory only at concentrations that also induced signs of cytotoxicity. TPA caused an initial rise in monocyte cyclic AMP concentration of about 90-120 min duration. No increase in 45Ca2+ influx was induced over 2 h. Good correlation exists between induction of apoprotein III synthesis in monocytes in vitro and mouse skin-tumour promotion in vivo by the various phorbol derivatives. Substances inactive in tumour promotion do not induce the synthesis of apoprotein III. General activating and cytotoxic effects of TPA were monitored by determining release of lysozyme, beta-glucuronidase and lactate dehydrogenase.  相似文献   

15.
Lipopolysaccharide (LPS) endotoxin is implicated as the bacterial product responsible for the clinical syndrome of Gram-negative septicemia. Although the lipid A domain of LPS appears to be responsible for the toxicity of endotoxin, lipid A from the photosynthetic bacterium Rhodobacter sphaeroides (RSLA) and a disaccharide precursor of lipid A from enteric bacteria, termed lipid IVA, have little activity on human cells. Using the human promonomyelocytic cell line THP-1 and human monocytic cells, we now show that both lipid IVA and RSLA are antagonists of LPS. Complete, apparently competitive, inhibition of LPS activity is possible at a 10-100-fold excess of antagonist, as judged by measuring the release of cytokines and prostaglandin E2. Both antagonists prevent monocyte stimulation by endotoxin extracted from a variety of Gram-negative bacteria. Cells pretreated with either inhibitor and subsequently washed still show attenuated responses to LPS. Stimulation of monocytes by whole Gram-negative bacteria is also antagonized in a dose-dependent manner. Lipid X has no inhibitory effect in the same dose range as lipid IVA and RSLA. These findings rule out LPS sequestration as the explanation for the observed antagonism. Neither inhibitor alters monocyte stimulation by phorbol 12-myristate 13-acetate, Staphylococcus aureus, or purified protein derivative, demonstrating specificity for LPS. Although RSLA appears to inhibit LPS when tested with macrophages from both humans and mice, lipid IVA had the unique ability to act as an LPS antagonist with human-derived cells but to exhibit LPS-like effects with murine-derived cells. Like LPS, lipid IVA stimulated the release of both tumor necrosis factor alpha and arachidonic acid from murine-derived RAW 264.7 macrophage tumor cells. The range of concentrations necessary for lipid IVA to induce LPS-like effects in murine cells was similar to that necessary to antagonize the actions of LPS in human monocytes. The agonist activities of lipid IVA were completely inhibitable by RSLA. This unique species-dependent pharmacology observed with lipid IVA may reflect differences between human and murine LPS receptors. RSLA and lipid IVA may be useful in defining the role of LPS in Gram-negative bacterial infections and may prove to be prototypical therapeutic agents for the treatment of Gram-negative septicemia.  相似文献   

16.
Exposure to lipopolysaccharides (LPS; 10 micrograms/ml derived from either S. enteritidis or E. coli or to their lipid A moiety alone induced procoagulant activity in cultured human endothelial cells. This exclusively cell-associated activity was identified as tissue factor activity by two criteria: Firstly, the presence of Factor VII was required for its expression and, secondly, clotting was abolished by the addition of the IgG fraction of anti-human tissue factor antibodies. Concomitant analysis of prostacyclin (PGl2) formation by the cells showed a substantial increase in the production of this potent platelet inhibiting substance during exposure to endotoxin. LPS-induced release of PGl2 did not result in refractoriness of the cells to generate new PGl2 as indicated by the retained response to stimulation with 20 microM arachidonic acid. While the release of PGl2 could be inhibited by pretreatment of the cells with 100 microM acetylsalicylic acid (ASA), the induction of tissue factor activity remained unaffected by ASA. In contrast to LPS-free control cultures, ASA did not completely prevent PGl2 formation by human endothelial cells after exposure to LPS suggesting the induction of a cyclooxygenase-independent pathway by LPS.  相似文献   

17.
In evaluation of macrophage-activating principles other than lymphokines, we systematically investigated the effects of endotoxin on the formation of reactive oxygen intermediates measured by chemiluminescence. Surprisingly, endotoxin exposure of human blood monocytes cultured in vitro for 36 h lessened in a dose-dependent manner the amount of O2- and H2O2 secreted in response to phagocytosis of opsonized particles or to PMA, a soluble stimulant. Blunting of the respiratory burst by endotoxin was independent from the state of macrophage activation. Endotoxin thus impaired formation of reactive oxygen metabolites before, during, or after activation of macrophages by IFN-gamma. The median effective concentration (EC50) was 1.95 ng/ml LPS in resting macrophages and 7.22 ng/ml in IFN-gamma-activated macrophages with as little as 0.1 ng/ml reproducibly giving detectable inhibition. Lipid A, but not "detoxified" monophosphoryl lipid A gave an inhibition comparable to that of complete LPS. The inhibitory effect of endotoxin was attenuated by dexamethasone, but not by inhibitors of arachidonic acid metabolism. Because endotoxin induces and dexamethasone inhibits production of some monokines, it is tempting to speculate that endotoxin is part of an autoregulatory system of mononuclear phagocytes for the control of excessive production of potentially harmful oxidants. The two monokines identified to be secreted in response to LPS and to be inhibited by dexamethasone, IL-1 and TNF, had, however, no comparable effect on chemiluminescence.  相似文献   

18.
Treatment of newborn rat calvaria discs with a variety of unsaturated fatty acids led to a 50% enhancement of calcium uptake. Arachidonic acid was effective at lower concentrations than cis-vaccenic or oleic acid, while trans-vaccenic acid and saturated fatty acids did not enhance calcium uptake. Cyclooxygenase inhibitors indomethacin and acetylsalicylic acid abolished the enhancement of calcium uptake seen in response to cis-vaccenic acid and inhibited calcium uptake by otherwise untreated bones. Prostacyclin was found to produce up to 2 fold stimulation of calcium uptake with an EC50 of approximately 0.1 microM. No statistically significant stimulation of calcium uptake was seen in response to PGE2 or PGE1 alpha up to 25 microM, while slight stimulation was produced by 6-keto PGE1 alpha but only at concentrations of 10 microM. Prostacyclin production by calvaria was demonstrated and was stimulated over 50% by cis-vaccenic acid. These results suggest that not only is enhanced prostacyclin production responsible for elevation of calcium uptake in response to unsaturated fatty acids, but also that prostacyclin may be an important regulator of bone calcium homeostasis.  相似文献   

19.
The effects of cholera toxin or pertussis toxin and nonhydrolyzable GTP analogs on Salmonella enteritidis endotoxin stimulation of iTxB2 and i6-keto-PGF1 alpha synthesis in control and endotoxin tolerant rat peritoneal macrophages were determined. Pretreatment with pertussis toxin alone had no effect on basal macrophage iTxB2 or i6-keto-PGF1 alpha production, but pertussis toxin (0.1, 1.0 and 10 ng/ml) significantly inhibited endotoxin-stimulated iTxB2 and i6-keto-PGF1 alpha synthesis. Pretreatment with cholera toxin, which did not affect basal iTxB2 or i6-keto-PGF1 alpha synthesis, significantly enhanced endotoxin-induced synthesis of iTxB2 and i6-keto-PGF1 alpha. The effects of pertussis and cholera toxin with or without endotoxin were significantly (P less than 0.05) less in macrophages from endotoxin tolerant rats compared to control macrophages. GTP[gamma-S] (100 microM) significantly increased iTxB2 synthesis and significantly augmented endotoxin-stimulated iTxB2 synthesis in control macrophages (P less than 0.05). However, in macrophages from endotoxin tolerant rats the effect of GTP[gamma-S] on iTxB2 synthesis was significantly less (P less than 0.05) compared to control macrophages. Collectively, these data suggest that: (1) guanine nucleotide binding regulatory proteins mediate endotoxin-stimulated arachidonic acid metabolism in rat peritoneal macrophages; and (2) endotoxin tolerance induces alterations in guanine nucleotide binding protein activity.  相似文献   

20.
Receptors for extracellular nucleotides (P2, or purinergic receptors) have previously been implicated in the transduction of endotoxin signaling in macrophages. The most compelling evidence has been the observation that inhibitors of ionotropic nucleotide (P2X) receptors, including periodate-oxidized ATP (oATP), attenuate a subset of endotoxin-induced effects such as activation of NF-kappaB and up-regulation of inducible NO synthase. We investigated whether endotoxin induces ATP release from a murine macrophage cell line (BAC1.2F5) using sensitive on-line assays for extracellular ATP. These cells constitutively released ATP, producing steady-state extracellular concentrations of approximately 1 nM when assayed as monolayers of 10(6) adherent cells bathed in 1 ml of medium. However, the macrophages did not release additional ATP during either acute or prolonged endotoxin stimulation. In addition, cellular ecto-ATPase activities were measured following prolonged endotoxin activation and were found not to be significantly altered. Although oATP treatment significantly attenuated the endotoxin-induced production of NO, this inhibitory effect was not reproduced when the cells were coincubated with apyrase, a highly effective ATP scavenger. These results indicate that activation of macrophages by endotoxin does not induce autocrine stimulation of P2 nucleotide receptors by endogenous ATP released to extracellular compartments. Moreover, the data suggest that the ability of oATP to interfere with endotoxin signaling is due to its interaction with molecular species other than ATP-binding P2 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号