共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsomes from two species of parasitic Hymenoptera, Exeristes roborator and Itoplectis conquisitor, exhibited little or no de novo glyceride synthesis but actively acylated endogenous mono- and diacylglycerides. It is suggested that this lack of de novo synthesis is related to the fact that the fatty acid composition of these parasitoid species closely resembles that of the hosts on which they are reared. Microsomes from three other species of parasitic Hymenoptera, Aphaereta pallipes, Brachymeria lasus, and Hyposoter exigua, whose fatty acid compositions are little influenced by the host species, exhibited active de novo glyceride synthesis as well as acylation of endogenous mono- and diacylglycerides. Radiotracer studies indicated that E. roborator microsomes and cytosol did not contain noncompetitive or uncompetitive inhibitors of glycerophosphate acyltransferase. E. roborator microsomes acylated exogenous phosphatidic acid but not dihydroxyacetone phosphate or glycerol. The maximum rate of glycerophosphate acylation was less than 0.1 nmole/min/mg microsomal protein after 15 min incubation. The incorporation was subject to rapid lipolysis on further incubation. The addition of bovine serum albumin (BSA) reduced the ability of E. roborator microsomes to acylate mono- and diacylglycerides with endogenous acyl groups. In the absence of BSA, palmitoyl-CoA was a more effective substrate than stearoyl-CoA for both mono- and diacylglyceride acyltransferases. 相似文献
2.
Ito O Omata K Ito S Hoagland KM Roman RJ 《American journal of physiology. Regulatory, integrative and comparative physiology》2001,280(3):R822-R830
The effects of blockade of the renin-angiotensin system on the renal metabolism of arachidonic acid (AA) were examined. Male Sprague-Dawley rats were treated with vehicle, captopril (25 mg x kg(-1) x day(-1)), enalapril (10 mg x kg(-1) x day(-1)), or candesartan (1 mg x kg(-1) x day(-1)) for 1 wk. The production of 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) by renal cortical microsomes increased in rats treated with captopril by 59 and 24% and by 90 and 58% in rats treated with enalapril. Captopril and enalapril increased 20-HETE production in the outer medulla by 100 and 143%, respectively. In contrast, blockade of ANG II type 1 receptors with candesartan had no effect on the renal metabolism of AA. Captopril and enalapril increased cytochrome P-450 (CYP450) reductase protein levels in the renal cortex and outer medulla and the expression of CYP450 4A protein in the outer medulla. The effects of captopril on the renal metabolism of AA were prevented by the bradykinin-receptor antagonist, HOE-140, or the nitric oxide (NO) synthase inhibitor, N(G)-nitro-L-arginine methyl ester. These results suggest that angiotensin-converting enzyme inhibitors may increase the formation of 20-HETE and EETs secondary to increases in the intrarenal levels of kinins and NO. 相似文献
3.
S H Rogers 《Experimental parasitology》1976,40(3):397-405
Pathways of carbohydrate metabolism in the adults of Schistosomatium douthitti: were investigated. Histochemical reactions for adenosinetriphosphatase (EC 3.6.1.3) glucose 6-phosphate dehydrogenase (EC 1.1.1.49), phosphogluconate dehydrogenase (EC 1.1.1.43), glycerol-3-phosphate dehydrogenase (EC 1.1.1.8), lactate dehydrogenase (EC 1.1.1.27, 1.1.2.3) isocitrate dehydrogenase (EC 1.1.1.41), succinate dehydrogenase (EC 1.3.99.1), malate dehydrogenase (EC 1.1.1.37), cytochrome oxidase (EC 1.9.3.1), and adenosine triphosphatase (EC 3.6.1.3) were found in the adult worms. Glycogen deposits occurred in the parenchyma.Low oxygen tension immobilized the worms. Tartar emetic, sodium cyanide reduced adult motility in vitro. Manometric experiments demonstrated a respiratory quotient of approximately one. Oxygen uptake was completely inhibited by tartar emetic and partially inhibited by sodium fluoracetate and sodium cyanide. Inhibition by sodium fluoroacetate was partially counteracted by citric acid in the medium.Adults demonstrated an oxygen debt following anaerobic incubation. A maximum of 52% of the glucose consumed under aerobic conditions was excreted as lactic acid. Under anaerobic conditions the amount of lactic acid excreted increased. Acids other than lactic acid were also released. Results indicate that although glycolysis is the major pathway, two additional aerobic pathways also exist, one which is cyanide sensitive and the other cyanide insensitive. 相似文献
4.
Erik A.C. Wiemer Marcel Out Anita Schelen Ronald J.A. Wanders Ruud B.H. Schutgens Henk Van Den Bosch Joseph M. Tager 《生物化学与生物物理学报:疾病的分子基础》1991,1097(3):232-237
We have studied fibroblast cell lines derived from a control subject (cell line 85AD5035F) and three patients clinically described as having the Zellweger syndrome (cell line W78/515), the infantile form of Refsum disease (cell line BOV84AD) and hyperpipecolic acidaemia (cell line GM3605), respectively. The mutant cell lines belonged to the same complementation group. The fibroblasts were cultured under identical conditions and were harvested at different time intervals after reaching confluece. Several peroxisomal parameters were determined. In agreement with previous reports, a lowered enzymic activity of acyl-CoA:dihydroxyacetonephosphate acyltransferase and a decrease in latent catalase clearly distinguished the patient cell limes from the control cell line. However, the cell lines exhibited a phenotypic heterogeneity. This was most strikingly encountered when cells were processed for indirect immunofluorescence microscopy and stained with anti-(catalase). The control cells exhibited a punctate fluorescence, which is indicative of the presence of catalase in peroxisomes. In the mutant cell line W78.515 a diffuse fluorescence was observed, indicative of the presence of catalase in the cytosol. In the other two mutant cell lines a puncate fluorescence was observed in some of the cells. Moreover, clear differences in the extent of proteolytic processing of acyl-CoA oxidase were detected. The mutant cell line BOV84AD displayed a control-like pattern with all molecular forms of acyl-CoA oxidase (72, 52 and 20 kDa) present, whereas in the W78/515 cell line only the 72 kDa component could be visualised. The GM3605 cell line was intermediate in this respect. 相似文献
5.
Small muscle strips were dissected from the circular and longitudinal muscle layers of the human oviduct. The preparations showed rhythmic spontaneous activity when perfused by Krebs-Ringer buffer. Excitatory effects of the prostaglandin (PG) precursor arachidonic acid were totally blocked by the cyclooxygenase inhibitors 5,8,11,14-eicosatetraynoic acid (ETYA) and indomethacin. The latter drugs also caused a reversible inhibition of spontaneous activity in both muscle layers. After total inhibition produced by ETYA, the initial activity was restored by adding low concentrations of prostaglandin F2 alpha (PGF2 alpha) to the medium. PGE2 was able to reestablish the activity only in the longitudinal layer. It is concluded that isolated smooth muscle of the human oviduct has the capacity of generating PGs from both endogenous and exogenous substrate. The data also suggest that the formation of PGF2 alpha is a prerequisite for maintenance of normal tubal contractions. 相似文献
6.
Tang Y Zhou L Gunnet JW Wines PG Cryan EV Demarest KT 《Biochemical and biophysical research communications》2006,345(1):29-37
HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A(2) (PLA(2))/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca(2+)-mobilization and enhanced bradykinin-promoted Ca(2+)-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPARgamma agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs. 相似文献
7.
Phenylacetic acid (PAA) significantly stimulated the elongation of isolated Phaseolus vulgaris internodal segments and prevented the decline in acid invertase specific activity observed in segments incubated in the absence of growth substances. Unlike IAA, which stimulated both elongation and invertase activity over a very wide range of concentrations (<10-4 - 1 mol.m-3; optimum 10-2 mol.m-3), the response to PAA was restricted to a much narrower range of concentrations (3 × 10-2 - 1 mol.m-3; optimum ca. 1–2 × 10-1mol.m-3). At the optimum concentration of PAA, the stimulation of both responses was about 63–75% of that induced by the optimum concentration of IAA. The differences in the concentration range and magnitude of the responses to IAA and PAA were not due to differences in uptake of the two compounds. The stimulation of elongation by both compounds was prevented by 3.6 × 10-2mol.m-3 cycloheximide (CH), and acid invertase activites were greatly reduced compared with samples treated with growth substances alone. A saturating concentration of the specific auxin efflux carrier inhibitor N-1-naphthylphthalamic acid (NPA) slightly promoted the growth of control segments, probably by reducing the loss of residual endogenous auxin to the incubation medium. The elongation induced by PAA at its optimum concentration was considerably greater than the elongation induced by NPA, indicating that PAA did not cause growth by preventing the loss of endogenous auxin from the segments. Elongation responses to combinations of IAA and PAA suggested that the compounds were acting additively and that they were affecting growth by the same mechanism. 相似文献
8.
To gain insight into the mechanism of formation of chromosomal aberrations by the tumor promoter phorbolmyristate acetate (PMA) in human lymphocytes, we investigated the effect of antioxidants and inhibitors of arachidonic acid metabolism. Among the antioxidants bovine erythrocyte CuZn superoxide dismutase, glutathione peroxidase, mannitol (a scavenger of hydroxyl radicals), butylated hydroxytoluene and butylated hydroxyanisole were anticlastogenic while catalase and dimethylfuran (a scavenger of singlet oxygen) were inactive. These results show that the induction of aberrations by PMA occurs via indirect action, i.e. the intermediacy of superoxide and hydroxyl radicals. The following inhibitors of arachidonic acid metabolism were strongly anticlastogenic: the cyclo-oxygenase inhibitors indomethacin and flufenamic acid and the lipoxygenase inhibitor BN1015. Imidazole, nordihydroguaiaretic acid BN 1048 and 5,8,11,14-eicosatetraynoic acid were moderately active. The inhibitor of phospholipase A2, fluocinolone acetonide, was also anticlastogenic.
We conclude that the oxidative metabolism of arachidonic acid is involved in the induction of chromosomal aberrations by PMA in human lymphocytes. However, because of the limited selectivity of these drugs, it is not yet possible to identify unambiguously the step(s) in the arachidonic acid cascade responsible for PMA clastogenicity. 相似文献
9.
Human umbilical endothelial cells in culture retain differentiated morphological and functional characterization in primary culture and even in the early subcultures, after which they begin to degenerate. We have studied the morphological and biochemical characterization (ability to produce prostacyclin, prostaglandin E2 and thromboxane A2 in culture) of endothelial cells in the first seven subcultures. In addition the influence of serum and endothelial cell growth factor added to the culture medium have been evaluated. With 20% normal human serum, cell proliferation is faster than with the same concentration of human fetal or bovine fetal serum.After the 3rd passage, morphological and growth alterations become observable in the endothelial cells. However, prostacyclin, prostaglandin E2 and thromboxane A2 production showed no variations during the study. 相似文献
10.
The effects of TNF-alpha and inhibitors of arachidonic acid metabolism on human colon HT-29 cells depend on differentiation status 总被引:2,自引:0,他引:2
Kovaríková M Hofmanová J Soucek K Kozubík A 《Differentiation; research in biological diversity》2004,72(1):23-31
The level of differentiation could influence sensitivity of colonic epithelial cells to various stimuli. In our study, the effects of TNF-alpha, inhibitors of arachidonic acid (AA) metabolism (baicalein, BA; indomethacin, INDO; niflumic acid, NA; nordihydroguaiaretic acid, NDGA), and/or their combinations on undifferentiated or sodium butyrate (NaBt)-differentiated human colon adenocarcinoma HT-29 cells were compared. NaBt-treated cells became growth arrested (blocked in G0/G1 phase of the cell cycle), and showed down-regulated Bcl-xL and up-regulated Bak proteins and increased expression of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX). These cells were more perceptive to anti-proliferative and apoptotic effects of TNF-alpha. Both inhibitors of LOX (BA and NDGA) and COX (INDO and NA) in higher concentrations modulated cell cycle changes accompanying NaBt-induced differentiation and induced various level of cell death in undifferentiated and differentiated cells. Most important is our finding that TNF-alpha action on proliferation and cell death can be potentiated by co-treatment of cells with AA metabolism inhibitors, and that these effects were more significant in undifferentiated cells. TNF-alpha and INDO co-treatment was associated with accumulation of cells in G0/G1 cell cycle phase, increased reactive oxygen species production, and elevated caspase-3 activity. These results indicate the role of differentiation status in the sensitivity of HT-29 cells to the anti-proliferative and proapoptotic effects of TNF-alpha, AA metabolism inhibitors, and their combinations, and imply promising possibility for novel anti-cancer strategies. 相似文献
11.
Ph.D. James A. Rillema 《Prostaglandins & other lipid mediators》1975,10(4):307-312
Arachidonic acid stimulated 3H-uridine incorporation into RNA in mammary gland explants of mice in a manner similar to that of prolactin. The onset of the effects of both prolactin and arachidonic acid occurred following a 2–4 hour lag period. Further, effects of maximally stimulatory concentrations of these agents were nonadditive. Finally, indomethacin abolished the effects of both prolactin and arachidonic acid. A tenable hypothesis to explain these data is that the action of prolactin in the mammary gland may be mediated by an increased availability of arachidonic acid followed by a subsequent enhanced rate of formation of the prostaglandins. 相似文献
12.
James A. Rillema Ph.D. 《Prostaglandins & other lipid mediators》1975,10(2):307-312
Arachidonic acid stimulated 3H-uridine incorporation into RNA in mammary gland explants of mice in a manner similar to that of prolactin. The onset of the effects of both prolactin and arachidonic acid occurred following a 2–4 hour lag period. Further, effects of maximally stimulatory concentrations of these agents were nonadditive. Finally, indomethacin abolished the effects of both prolactin and arachidonic acid. A tenable hypothesis to explain these data is that the action of prolactin in the mammary gland may be mediated by an increased availability of arachidonic acid followed by a subsequent enhanced rate of formation of the prostaglandins. 相似文献
13.
Differential effects of 15-HPETE on arachidonic acid metabolism in collagen-stimulated human platelets 总被引:2,自引:0,他引:2
H R Vedelago V G Mahadevappa 《Biochemical and biophysical research communications》1988,150(1):177-184
The 15-hydroperoxyeicosatetraenoic acid (15-HPETE) has been shown to affect platelet aggregation induced by collagen, arachidonic acid (AA), and PGH2-analogue. Furthermore, it also inhibits the platelet cyclooxygenase and lipoxygenase enzymes, and prostacyclin synthase. The present study was designed to test the effect of 15-HPETE on the mobilization of endogenous AA in collagen-stimulated human platelets. For this purpose, human platelets pretreated with BW755C (a dual inhibitor of cyclooxygenase and lipoxygenase) were stimulated with collagen in the presence of varied concentrations of 15-HPETE. We observed a significant inhibition of oxygenases at all concentrations of 15-HPETE. In contrast, our results indicate that 15-HPETE at lower concentrations (10 microM and 30 microM) significantly stimulated the collagen-induced release of AA from phospholipid sources. Although higher concentrations of 15-HPETE (50 microM and 100 microM) caused some inhibition of AA accumulation in the free fatty acid fraction (25% and 60%), the degree of inhibition was significantly lower than the inhibition observed for the oxygenases (65% and 88% for cyclooxygenase and 77% and 94% for lipoxygenase respectively). These results provide support that hydroperoxides also regulate phospholipases presumably by a different mechanism, which may be important in the detoxification of phospholipid peroxides. 相似文献
14.
15.
Yukio Fujiki Kanji Okumoto Hidenori Otera Shigehiko Tamura 《Cell biochemistry and biophysics》2000,32(1-3):155-164
Peroxisome assembly in mammals requires more than 14 genes. So far, we have isolated seven complementation groups (CGs) of
peroxisome biogenesis-defective Chinese hamster ovary (CHO) cell mutants, Z65, Z24/ZP107, ZP92, ZP105/ZP139, ZP109, ZP110,
ZP114. Two peroxin cDNAs, PEX2 and PEX6, were first cloned by genetic phenotype-complementation assay using Z65 and ZP92, respectively, and were shown to be responsible
for peroxisome biogenesis disorders (PBD) such as Zellweger syndrome, of CG-F (the same as CG-X in U.S.A.) and CG-C (the same
as CG-IV), respectively. Pex2p is a RING zinc finger membrane protein of peroxisomes and Pex6p is a member of the AAA ATPase
family. We likewise isolated PEX12 encoding a peroxisomal integral membrane protein in the RING family, by functional complementation of ZP109, demonstrating
PEX12 to be responsible for CG-III PBD. We also cloned PEX1 by screening of human liver cDNA library, using ZP107. PEX1 mutation was delineated to be the genetic cause of PBD in the most highest incidence group, CG-E (the same a CG-I). Moreover,
we recently found that Pex5p, using PEX5-defective ZP105 and ZP139. Thus, CHO cell mutants defective in peroxisome biogenesis are indeed shown to be very useful for
the studies of peroxisome assembly and delineating pathogenic genes in PBD. Furthermore, we have isolated novel CGs of CHO
mutants, ZP119 and ZP126. 相似文献
16.
Comparison of the effects of inhibitors of cytochrome P-450-mediated reactions on human platelet aggregation and arachidonic acid metabolism 总被引:2,自引:0,他引:2
Metyrapone and SKF-525A, together with amphenone B, a structural analogue of metyrapone, which are all inhibitors of cytochrome P-450-mediated reactions, were shown to inhibit the arachidonic acid-induced aggregation of human platelets. Amphenone B, like metyrapone, exhibited a type II (ligand) binding spectrum with rat liver microsomal cytochrome P-450, in contrast to SKF 525A which is a type I (substrate) binding agent. Independently of their type of binding spectra and of their maximum spectral change, however, the affinity of the three compounds for rat liver cytochrome P-450 showed a close proportional correlation with their platelet aggregation inhibitory potency. All three compounds inhibited the formation of [1-14C]thromboxane B2 from [1-14C]arachidonic acid by human platelets aggregated with collagen. The effect of metyrapone on the remaining labelled products suggested that it is a selective thromboxane synthesis inhibitor, while amphenone B exhibited activity reminiscent of cyclo-oxygenase inhibitors. SKF 525A produced complex effects possibly attributable to cyclo-oxygenase inhibition and enhanced lipid peroxidation, since it also enhanced platelet malonaldehyde formation, which the other two compounds inhibited. These data provide further support for a role of cytochrome P-450 in thromboxane synthesis and platelet aggregation. 相似文献
17.
Takashi Osumi Atsushi Imamura Toshiro Tsukamoto Chiharu Fujivara Noriho Hashiguchi Nobuyuki Shimozawa Yasuyuki Suzuki Naomi Kondo 《Cell biochemistry and biophysics》2000,32(1-3):165-170
Peroxisome biogenesis disorders (PBDs) contain various clinical phenotypes; Zellweger syndrome (ZS), neonatal adrenoleukodystrophy
(NALD), and infantile Refsum disease (IRD), decreasing in the clinical severity in this order. We found that all IRD cell
lines and some NALD lines belonging to several different complementation groups are temperature-sensitive in peroxisome assembly;
that is, they lacked catalase-positive peroxisomes at 37°C, but do gain the peroxisomes at 30°C. We identified heterozygous
mutations E55K/R119Stop in the PEX2 gene of an IRD patient of complementation group F. The E55K mutation was the direct cause
of the temperature-sensitivity because similar phenotypes could be transferred to PEX2-defective CHO cells by transfecting
the mutant gene. Thus, temperature-sensitive peroxisome assembly is representative of milder forms of PBDs.
The main part of this study was published by Imamura et al. (1). 相似文献
18.
Estela Natacha Brandt Busanello Vannessa Gonçalves Araujo Lobato Ângela Zanatta Carolina Maso Viegas César Augusto João Ribeiro Moacir Wajner 《Life sciences》2014
Aims
Peroxisomal biogenesis disorders (PBD) are inherited disorders clinically manifested by neurological symptoms and brain abnormalities, in which the cerebellum is usually involved. Biochemically, patients affected by these neurodegenerative diseases accumulate branched-chain fatty acids, including pristanic acid (Prist) in the brain and other tissues.Main methods
In the present investigation we studied the in vitro influence of Prist, at doses found in PBD, on oxidative phosphorylation, by measuring the activities of the respiratory chain complexes I–IV and ATP production, as well as on creatine kinase and synaptic Na+, K+-ATPase activities in rat cerebellum.Key findings
Prist significantly decreased complexes I–III (65%), II (40%) and especially II–III (90%) activities, without altering the activities of complex IV of the respiratory chain and creatine kinase. Furthermore, ATP formation and synaptic Na+, K+-ATPase activity were markedly inhibited (80–90%) by Prist. We also observed that this fatty acid altered mitochondrial and synaptic membrane fluidity that may have contributed to its inhibitory effects on the activities of the respiratory chain complexes and Na+, K+-ATPase.Significance
Considering the importance of oxidative phosphorylation for mitochondrial homeostasis and of Na+, K+-ATPase for the maintenance of cell membrane potential, the present data indicate that Prist compromises brain bioenergetics and neurotransmission in cerebellum. We postulate that these pathomechanisms may contribute to the cerebellar alterations observed in patients affected by PBD in which Prist is accumulated. 相似文献19.
Sreekantha Babu Jonnalagadda Joern-Ullrich Becker E.E. Selkov Augustin Betz 《Bio Systems》1982,15(1):49-58
To localise the controlling point of the glycolytic system, the temporal changes of concentrations of glycolytic intermediates have been analysed after addition of glycogen to a substrate-depleted yeast extract. Three sequential metabolic states are clearly observable: a transition state at which there is continuous accumulation of the intermediates before the glyceraldehydephosphate dehydrogenase (GAPDH, EC 1.2.1.12) step; a stationary state with all glycolytic intermediates having concentrations oscillating at nearly stationary mean values; and a depletion state at which the intermediates before the GAPDH step are being depleted due to the exhaustion of glycogen. In all these states, the mean ethanol production rate and the concentration of ATP and the intermediates beyond the GAPDH-step are maintained fairly constant, while the glycogen consumption rate and intermediate concentrations of the upper part of the glycolytic system change considerably: the glycogen consumption rate varies 4-fold and fructose-bis-phosphate concentration more than 10-fold. Doubling of the initial glycogen concentration and the addition of a great excess of fructose-bis-phosphate do not affect the ethanol production rate and the mean glycerate-3-phosphate (3-PGA) and pyruvate levels. By contrast, ethanol production was accelerated by an increase of the net ATP consumption rate resulting from either the addition of apyrase or by substitution of trehalose for glycogen. Neither the mean absolute ATP level nor the adenylate energy charge were measurably affected, however all this data can be interpreted in terms of a very strong stoichiometric regulation and stabilization of the lower part of the glycolytic system. 相似文献
20.
T Hoffman E F Lizzio J Suissa D Rotrosen J A Sullivan G L Mandell E Bonvini 《Journal of immunology (Baltimore, Md. : 1950)》1988,140(11):3912-3918
Human peripheral blood monocytes, prelabeled with [3H]arachidonic acid (AA), release labeled eicosanoids in response to soluble or particulate stimuli. Treatment with 12-O-tetradecanoate phorbol-13 acetate (20 nM), calcium ionophores, A23187 (2 microM) or ionomycin (1 microM), or serum-treated zymosan (300 micrograms) resulted in production of cyclooxygenase (CO) metabolites, 6-keto-PG-F1 alpha, thromboxane-B2, PGE2, PGF2 alpha, PGD2, PGB2, 12-L-hydroxy-5,8,10-heptadecatrienoic acid; 15-lipoxygenase products, including 15-hydroxyeicosatetraenoic acid (HETE); and unmetabolized AA. Labeled 5-lipoxygenase (LO) products, 5-HETE, and leukotriene-B4 were detected only after exposure to ionophore or serum-treated zymosan. The calcium dependence of 5-LO activation was confirmed in experiments where calcium was omitted from the incubation medium, and EGTA (0.5 mM) was added, as well as by direct measurement of increased intracellular calcium in phagocytosing monocytes. Combined or sequential treatment with two stimuli increased the release of unmetabolized AA without a commensurate augmentation of labeled metabolites, indicating that release of CO and LO metabolites does not necessarily reflect the extent of phospholipase activation. Quantitation of individual eicosanoids by RIA confirmed results by using radionuclides. These studies show the following. Activation of human monocyte phospholipase may be regulated by at least two pathways, one "12-O-tetradecanoate phorbol-13 acetate-like," which is largely independent of calcium, and another which is mediated by increased intracellular Ca2+ ("ionophore-like"). "Physiologic" stimulation of monocyte arachidonate release, such as that seen accompanying phagocytosis of opsonized particles, may occur via either a calcium-sensitive or calcium-insensitive pathway or both. Calcium may regulate eicosanoid formation at the level of phospholipase or 5-LO. Free AA, CO products, and 12- or 15-LO products are ordinarily released after phagocytosis, but leukotriene-B4, 5-HETE, or other 5-LO metabolites are produced only under conditions where calcium concentrations are optimal. 相似文献