首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Gene》1996,172(2):207-209
A cDNA encoding farnesyl diphosphate (FPP) synthase (FPPS) has been cloned from a cDNA library of Artemisia annua. The sequence analysis showed that the cDNA encoded a protein of 343 amino acid (aa) residues with a calculated molecular weight of 39 420 kDa. The deduced aa sequence of the cDNA was highly similar to FPPS from other plants, yeast and mammals, and contained the two conserved domains found in polyprenyl synthases including FPPS, geranylgeranyl diphosphate synthases and hexaprenyl diphosphate synthases. The expression of the cDNA in Escherichia coli showed enzyme activity for FPPS in vitro.  相似文献   

2.
A cDNA clone encoding ascorbate peroxidase (AP, EC 1.11.1.11) was isolated from a phage gt11 library of cDNA fromArabidopsis thaliana by immunoscreening with monoclonal antibodies against the enzyme, and then sequenced. The cDNA insert hybridized to a 1.1 kb poly(A)+ RNA from leaves ofA thaliana. Genomic hybridization suggests that the cDNA obtained here corresponds to a single-copy gene. The N-terminal amino acid sequence ofArabidopsis AP was determined by protein sequencing of the immunochemically purified enzyme, and proved to be homologous to the N-terminal amino acid sequence of the chloroplastic AP of spinach. The predicted amino acid sequence of the mature AP ofA. thaliana, deduced from the nucleotide sequence, consists of 249 amino acid residues, which is 34% homologous with cytochromec peroxidase of yeast, but less homologous with other plant peroxidases. Amino acid residues at the active site of yeast cytochromec peroxidase are conserved in the amino acid sequence ofArabidopsis AP. The poly(dG-dT) sequence, which is a potential Z-DNA-forming sequence, was found in the 3 untranslated region of the cDNA.  相似文献   

3.
It is believed that phosphatidylinositol (PI) metabolism plays a central role in signalling pathways in both animals and higher plants. PI is synthesized from CDP-diacylglycerol (CDP-DG) and myo-inositol by phosphatidylinositol synthase (PI synthase, EC 2.7.8.11). Here we report the identification of a plant cDNA (AtPIS1) encoding a 26 kDa PI synthase from Arabidopsis thaliana. The plant enzyme as deduced from its cDNA sequence shares 35–41% identical amino acids with PI synthases from Saccharomyces cerevisiae and mammals. AtPIS1 functionally complements a mutant of S. cerevisiae with a lesion in PI synthase, and recombinant AtPIS1 protein present in yeast membranes strongly depends on the two principal substrates, myo-inositol and CDP-DG, and requires Mg2+ ions for full activity.  相似文献   

4.
A cDNA encoding farnesyl diphosphate synthase (FPS; EC2.5.1.1/EC2.5.1.10) was isolated from Centella asiacita (L.) Urban, using degenerate primers based on two highly conserved domains. A full-length cDNA clone was subsequently isolated by rapid amplification of cDNA ends (RACE) PCR. The sequence of the CaFPS (C. asiatica farnesyl diphosphate synthase) cDNA contains an open reading frame of 1029 nucleotides encoding 343 amino acids with a molecular mass of 39.6 kDa. The deduced CaFPS amino acid sequence exhibits 84, 79, and 72%, identity to the FPSs of Artemisia annua, Arabidopsis thaliana, and Oryza sativa, respectively. Southern blot analysis suggested that the C. asiatica genome contains only one FPS gene. An artificially expressed soluble form of the CaFPS was identified by SDS-PAGE. It had high specific activity and produced farnesyl diphosphate as the major isoprenoid.  相似文献   

5.
6.
We isolated a cDNA clone from Arabidopsis thaliana encoding the TCA cycle enzyme, citrate synthase. The plant enzyme displays 48% and 44% amino acid residue similarity with the pig, and yeast polypeptides, respectively. Many proteins, including citrate synthase, which are destined to reside in organelles such as mitochondria and chloroplasts, are the products of the nucleocytoplasmic protein synthesizing machinery and are imported post-translationally to the site of function. We present preliminary investigations toward the establishment of an in vitro plant mitochondrial import system allowing for future studies to dissect this process in plants where the cell must differentiate between mitochondria and chloroplast and direct their polypeptides appropriately.  相似文献   

7.
A cDNA encoding the NADPH-protochlorophyllide oxidoreductase (Pchlide reductase) of Arabidopsis thaliana has been isolated and sequenced. The cDNA contains the complete reading frame for the precursor of the Pchlide reductase. The deduced amino acid sequence of the Arabidopsis enzyme closely resembles the corresponding sequences of barley and oat. The cDNA has been used as a template for the synthesis of the enzyme protein in Escherichia coli. An antiserum was raised against this enzyme protein and both the antiserum and the cDNA were used as experimental tools to study the effects of light on the Pchlide reductase in A. thaliana.When etiolated seedlings of Arabidopsis were exposed to light the enzyme activity and the concentration of the enzyme protein rapidly declined. Similar light effects have been described previously for other angiosperms. In contrast to most of these species, however, in Arabidopsis only minor changes in Pchlide reductase mRNA content could be observed when etiolated seedlings were exposed to light.  相似文献   

8.
Glutathione is essential for protecting plants from a range of environmental stresses, including heavy metals where it acts as a precursor for the synthesis of phytochelatins. A 1658 bp cDNA clone for glutathione synthetase (gsh2) was isolated fromArabidopsis thaliana plants that were actively synthesizing glutathione upon exposure to cadmium. The sequence of the clone revealed a protein with an estimated molecular mass of 53858 Da that was very similar to the protein from higher eukaryotes, was less similar to the gene from the fission yeast,Schizosaccharomyces pombe, and shared only a small region of similarity with theEscherichia coli protein. A 4.3 kbSstI fragment containing the genomic clone for glutathione synthetase was also isolated and sequenced. A comparison of the cDNA and genomic sequences revealed that the gene was composed of twelve exons.When theArabidopsis cDNA cloned in a special shuttle vector was expressed in aS. pombe mutant deficient in glutathione synthetase activity, the plant cDNA was able to complement the yeast mutation. Glutathione synthetase activity was measurable in wild-type yeast cells, below detectable levels in thegsh2 - mutant, and restored to substantial levels by the expression of theArabidopsis cDNA. TheS. pombe mutant expressing the plant cDNA had near wild type levels of total cellular thiols,109Cd2+ binding activity, and cadmium resistance. Since theArabidopsis cDNA was under control of a thiamine-repressible promoter, growth of the transformed yeast on thiamine-free medium increased expression of the cDNA resulting in increases in cadmium resistance.  相似文献   

9.
Flavonol synthase (FLS) (EC-number 1.14.11.23), the enzyme that catalyses the conversion of flavonols into dihydroflavonols, is part of the flavonoid biosynthesis pathway. In Arabidopsis thaliana, this activity is thought to be encoded by several loci. In addition to the FLAVONOL SYNTHASE1 (FLS1) locus that has been confirmed by enzyme activity assays, loci displaying similarity of the deduced amino acid sequences to FLS1 have been identified. We studied the putative A. thaliana FLS gene family using a combination of genetic and metabolite analysis approaches. Although several of the FLS gene family members are expressed, only FLS1 appeared to influence flavonoid biosynthesis. Seedlings of an A. thaliana fls1 null mutant (fls1-2) show enhanced anthocyanin levels, drastic reduction in flavonol glycoside content and concomitant accumulation of glycosylated forms of dihydroflavonols, the substrate of the FLS reaction. By using a leucoanthocyanidin dioxygenase (ldox) fls1-2 double mutant, we present evidence that the remaining flavonol glycosides found in the fls1-2 mutant are synthesized in planta by the FLS-like side activity of the LDOX enzyme. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nucleotide sequence database accession numbers: GenBank accession EU287457 and EU287459.  相似文献   

10.
Cystathionine -lyase, the second enzyme involved in the methionine biosynthetic pathway in plants, catalyses the synthesis of homocysteine from cystathionine. A cDNA encoding cystathionine -lyase was cloned from an Arabidopsis thaliana expression library by complementation of an Escherichia coli mutant deficient in this enzyme. As deduced from the full-length nucleotide sequence (1.7 kb), the polypeptide contains 464 amino acids and presents a predicted M r of 50372. A. thaliana cystathionine -lyase exhibits 22% sequence identity with the E. coli corresponding enzyme and contains a 70 amino acid N-terminal additional sequence compared with the bacterial protein. Since the general features of chloroplast transit peptides could be observed in this amino-terminal extension, we propose a chloroplast localization for the cDNA-encoded enzyme. Southern blot analysis suggested that cystathionine -lyase is encoded by a single copy gene in A. thaliana.  相似文献   

11.
The sesquiterpenoid artemisinin, isolated from the plant Artemisia annua L., and its semi-synthetic derivatives are a new and very effective group of antimalarial drugs. A branch point in the biosynthesis of this compound is the cyclisation of the ubiquitous precursor farnesyl diphosphate into the first specific precursor of artemisinin, namely amorpha-4,11-diene. Here we describe the isolation of a cDNA clone encoding amorpha-4,11-diene synthase. The deduced amino acid sequence exhibits the highest identity (50%) with a putative sesquiterpene cyclase of A. annua. When expressed in Escherichia coli, the recombinant enzyme catalyses the formation of amorpha-4,11-diene from farnesyl diphosphate. Introduction of the gene into tobacco (Nicotiana tabacum L.) resulted in the expression of an active enzyme and the accumulation of amorpha-4,11-diene ranging from 0.2 to 1.7 ng per g fresh weight. Received: 8 June 2000 / Accepted: 21 August 2000  相似文献   

12.
Cao X  Yin T  Miao Q  Li C  Ju X  Sun Y  Jiang J 《Molecular biology reports》2012,39(2):1487-1492
The root of Euphorbia pekinensis as a traditional herbal medicine has been recorded in Chinese pharmacopoeias for the treatment of oedema, gonorrhea, migraine and wart cures. In this work, we reported on the cDNA cloning and characterization of a novel farnesyl diphosphate synthase (FPS) from E. pekinensis. The full-length cDNA named EpFPS (Genbank Accession Number FJ755465) contained 1431 bp with an open reading frame of 1029 bp encoding a polypeptie of 342 amino acids. The deduced amino acid sequence of the EpFPS named EpFPS exhibited a high homology with other plant FPSs, and contained five conserved domains. Phylogenetic analysis showed that EpFPS belonged to the plant FPS group. Southern blot analysis revealed that there exists a small FPS gene family in E. pekinensis. Expression pattern analysis revealed that EpFPS expressed strongly in root, weak in leaf and stem. In callus, expression of EpFPS gene and biosynthesis of triterpenoids were strongly induced by Methyl jasmonate and slightly induced by Salicylic acid. Functional complementation of EpFPS in an ergosterol auxotrophic yeast strain indicated that the cloned cDNA encoded a functional farnesyl diphosphate synthase.  相似文献   

13.
Farnesyl dlphosphate synthase (FPS; EC 2.5.1.10) catalyzes the production of 15-carbon farnesyl dlphosphate which Is a branch-point Intermediate for many terpenoids. This reaction Is considered to be a ratelimiting step In terpenold biosynthesis. Here we report for the first time the cloning of a new full-length cDNA encoding farnesyl dlphosphate synthase from a gymnosperm plant species, Taxus media Rehder, designated as TmFPS1. The full-length cDNA of TmFPS1 (GenBank accession number: AY461811) was 1 464 bp with a 1 056-bp open reading frame encoding a 351-amino acid polypeptlde with a calculated molecular weight of 40.3 kDa and a theoretical pl of 5.07. Biolnformatlc analysis revealed that TmFPS1 contained all five conserved domains of prenyltransferases, and showed homology to other FPSs of plant origin. Phylogenetlc analysis showed that farnesyl dlphosphate synthases can be divided Into two groups: one of prokaryotic origin and the other of eukaryotic origin. TmFPS1 was grouped with FPSs of plant origin. Homologybased structural modeling showed that TmFPS1 had the typical spatial structure of FPS, whose most prominent structural feature Is the arrangement of 13 core helices around a large central cavity In which the catalytic reaction takes place. Our blolnformatic analysis strongly suggests that TmFPS1 is a functional gene. Southern blot analysis revealed that TmFPS1 belongs to a small FPSgene family in T. media. Northern blot analysis indicated that TmFPS1 is expressed in all tested tissues, Including the needles, stems and roots of T. media. Subsequently, functional complementatlon with TmFPS1 in a FPS-deflclent mutant yeast demonstrated that TmFPS1 did encode farnesyl dlphosphate synthase, which rescued the yeast mutant. This study will be helpful In future Investigations aiming at understanding the detailed role of FPS In terpenold biosynthesis flux control at the molecular genetic level.  相似文献   

14.
15.
A 2225 bp cDNA, designated RPA1, was isolated from an Oryza sativa cDNA library. Analysis revealed a 1761 bp coding sequence with 15 non-identical repeat units. The ORF encoded the A regulatory subunit of protein phosphatase 2A (PP2A-A) as ascertained by complementation of the yeast tpd3 mutant defective in this gene. The corresponding genomic DNA from a rice genome BAC library revealed that the gene contains eleven introns. The rice genome contains only a single copy of this gene as judged by Southern blot analysis. The PP2A protein is highly conserved in nature; the rice protein shows 88% amino acid identity with its counterparts in Arabidopsis or Nicotiana tabacum.  相似文献   

16.
17.
The primary structure of acetohydroxy acid isomeroreductase from Arabidopsis thaliana was deduced from two overlapping cDNA. The full-length cDNA sequence predicts an amino acid sequence for the protein precursor of 591 residues including a putative transit peptide of 67 amino acids. Comparison of the A. thaliana and spinach acetohydroxy acid isomeroreductases reveals that the sequences are conserved in the mature protein regions, but divergent in the transit peptides and around their putative processing site.  相似文献   

18.
We investigated the substrate specificity of farnesyl diphosphate (FPP) synthase derived from Bacillus stearothermophilus and porcine liver by examining the reactivities of two cyclic substrate homologs, cyclohexylideneethyl diphosphate and cyclohexenylethyl diphosphate.Reaction of geranyl diphosphate with 2-cyclohexenylethyl diphosphate using bacterial or porcine liver FPP synthase produced (S)-geranylcyclohexylideneethyl diphosphate, with relative yields of 13.6% for the bacterial enzyme and 42.2% for the porcine liver enzyme. Reaction of cyclohexylideneethyl diphosphate with isopentenyl diphosphate produced 10-cyclohexyliden-3,7-dimethyldeca-2,6-dien-1-ol as a double condensation product, with relative yields of 23.1% (bacterial enzyme) and 3.0% (porcine liver enzyme). Reaction of cyclohexylideneethyl diphosphate with 2-cyclohexenylethyl diphosphate using bacterial enzyme produced (cyclohexylideneethyl)-cyclohexylideneethyl diphosphate (0.8% yield).  相似文献   

19.
Farnesyl diphosphate synthase (FPPS) catalyzes the consecutive condensation of two molecules of isopentenyl diphosphate with dimethylallyl diphosphate to form farnesyl diphosphate (FPP). In insects, FPP is used for the synthesis of ubiquinones, dolicols, protein prenyl groups, and juvenile hormone. A full‐length cDNA of FPPS was cloned from the cotton boll weevil, Anthonomus grandis (AgFPPS). AgFPPS cDNA consists of 1,835 nucleotides and encodes a protein of 438 amino acids. The deduced amino acid sequence has high similarity to previously isolated insect FPPSs and other known FPPSs. Recombinant AgFPPS expressed in E. coli converted labeled isopentenyl diphosphate in the presence of dimethylallyl diphosphate to FPP. Southern blot analysis indicated the presence of a single copy gene. Using molecular modeling, the three‐dimensional structure of coleopteran FPPS was determined and compared to the X‐ray crystal structure of avian FPPS. The α‐helical fold is conserved in AgFPPS and the size of the active site cavity is consistent with the enzyme being a FPPS. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
To investigate the role of mitochondrial farnesyl diphosphate synthase (FPS) in plant isoprenoid biosynthesis we characterized transgenic Arabidopsis thaliana plants overexpressing FPS1L isoform. This overexpressed protein was properly targeted to mitochondria yielding a mature and active form of the enzyme of 40 kDa. Leaves from transgenic plants grown under continuous light exhibited symptoms of chlorosis and cell death correlating to H2O2 accumulation, and leaves detached from the same plants displayed accelerated senescence. Overexpression of FPS in mitochondria also led to altered leaf cytokinin profile, with a reduction in the contents of physiologically active trans-zeatin- and isopentenyladenine-type cytokinins and their corresponding riboside monophosphates as well as enhanced levels of cis-zeatin 7-glucoside and storage cytokinin O-glucosides. Overexpression of 3-hydroxy-3-methylglutaryl coenzyme A reductase did not prevent chlorosis in plants overexpressing FPS1L, but did rescue accelerated senescence of detached leaves and restored wild-type levels of cytokinins. We propose that the overexpression of FPS1L leads to an enhanced uptake and metabolism of mevalonic acid-derived isopentenyl diphosphate and/or dimethylallyl diphosphate by mitochondria, thereby altering cytokinin homeostasis and causing a mitochondrial dysfunction that renders plants more sensitive to the oxidative stress induced by continuous light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号