首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The N-terminal amino acid sequences of two chloroform/methanol soluble globulins from barley and one form wheat are reported. They are homologous with N-terminal sequences previously reported for α-amylase and trypsin inhibitors from cereals and 2 S storage proteins from castor bean and rape. Three albumins were also purified from Aegilops squarrosa and Triticum monococcum. These had N-terminal amino acid sequences most closely related to the α-amylase and trypsin inhibitors. The relationships of this superfamily of seed proteins are discussed.  相似文献   

3.
Cystine knot α-amylase inhibitors are cysteine-rich, proline-rich peptides found in the Amaranthaceae and Apocynaceae plant species. They are characterized by a pseudocyclic backbone with two to four prolines and three disulfides arranged in a knotted motif. Similar to other knottins, cystine knot α-amylase inhibitors are highly resistant to degradation by heat and protease treatments. Thus far, only the α-amylase inhibition activity has been described for members of this family. Here, we show that cystine knot α-amylase inhibitors named alstotides discovered from the Alstonia scholaris plant of the Apocynaceae family display antiviral activity. The alstotides (As1–As4) were characterized by both proteomic and genomic methods. All four alsotides are novel, heat-stable and enzyme-stable and contain 30 residues. NMR determination of As1 and As4 structures reveals their conserved structural fold and the presence of one or more cis-proline bonds, characteristics shared by other cystine knot α-amylase inhibitors. Genomic analysis showed that they contain a three-domain precursor, an arrangement common to other knottins. We also showed that alstotides are antiviral and cell-permeable to inhibit the early phase of infectious bronchitis virus and Dengue infection, in addition to their ability to inhibit α-amylase. Taken together, our results expand membership of cystine knot α-amylase inhibitors in the Apocynaceae family and their bioactivity, functional promiscuity that could be exploited as leads in developing therapeutics.  相似文献   

4.
Complete (Ba-L) and truncated (Ba-S) forms of α-amylases from Bacillus subtilis X-23 were purified, and the amino- and carboxyl-terminal amino acid sequences of Ba-L and Ba-S were determined. The amino acid sequence deduced from the nucleotide sequence of the α-amylase gene indicated that Ba-S was produced from Ba-L by truncation of the 186 amino acid residues at the carboxyl-terminal region. The results of genomic Southern analysis and Western analysis suggested that the two enzymes originated from the same α-amylase gene and that truncation of Ba-L to Ba-S occurred during the cultivation of B. subtilis X-23 cells. Although the primary structure of Ba-S was approximately 28% shorter than that of Ba-L, the two enzyme forms had the same enzymatic characteristics (molar catalytic activity, amylolytic pattern, transglycosylation ability, effect of pH on stability and activity, optimum temperature, and raw starch-binding ability), except that the thermal stability of Ba-S was higher than that of Ba-L. An analysis of the secondary structure as well as the predicted three-dimensional structure of Ba-S showed that Ba-S retained all of the necessary domains (domains A, B, and C) which were most likely to be required for functionality as α-amylase.  相似文献   

5.
α-Amylase from wheat aleurone (Triticum aestivum) was synthesized in a S-150 wheat germ readout system using polysomes, and a messenger RNA-dependent reticulocyte lysate system using polyadenylic acid [poly(A)]-enriched RNA. The product was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, precipitation by specific λ-globulin for α-amylase, and proteolysis. Two immunoprecipitated products were synthesized from the readout system, the predominant species migrating coincidentally with authentic α-amylase on sodium dodecyl sulfate-polyacrylamide gels. A putative precursor, 1,500 daltons larger, was evident but was less abundant. The relationship between the two polypeptides was established by proteolytic analysis using Staphylococcus aureus V8 protease. At least nine fragments were generated and were identical in both species. The poly(A)-enriched RNA synthesized only the putative precursor in the reticulocyte lysate system. Attempts to process the precursor to the mature size of α-amylase failed. These findings are discussed in connection with the signal hypothesis (proposed for the transport of proteins across membranes) and the mode of secretion of α-amylase in aleurone cells.  相似文献   

6.
Two cDNA clones, PKpα and PKpβ, for the leucoplast isozyme of pyruvate kinase have been isolated and characterized. A Southern blot of castor (Ricinus communis) DNA probed with PKpα indicates the presence of a single gene for PKp. Most (1610 base pairs) of the sequence of both cDNAs is identical. These 1610 base pairs begin with an ATG translation initiation codon, and have 248 base pairs of 3′-untranslated and 1362 base pairs of coding sequence. The sequences of the two clones 5′- to the identical regions are different but both encode peptides with a high percentage of hydrophobic amino acids. The derived sequence of PKpα encodes eight amino acid residues which have been identified as the amino-terminus of one subunit of PKp from castor seed leucoplasts when the enzyme is purified in the absence of cysteine endopeptidase inhibitors. The sequence upstream of these amino acids is possibly the transit peptide for this protein. When PKp is extracted under conditions that eliminate its proteolytic degradation, its α-subunit has a relative molecular weight equal to the full-length coding sequence of PKpα. The data indicate that the transit peptide for the subunit of leucoplast pyruvate kinase encoded by PKpα is not cleaved until the protein is released from the plastid. The derived amino acid sequences of PKpα and PKpβ are most closely related to Escherichia coli pyruvate kinase. Although the residues involved in substrate binding are conserved in leucoplast pyruvate kinase, there is no phosphorylation site and only 5 of 15 amino acids in the E. coli fructose-1,6-bisphosphate binding site are conserved.  相似文献   

7.
Wheat (Triticum aestivum) RNA was used to program synthesis of the α-amylase protein by Xenopus laevis oocytes. A 41,500-dalton protein was made which was identified as α-amylase by immunoprecipitation with rabbit anti-α-amylase antiserum raised against the purified wheat protein and by its co-migration with authentic α-amylase on sodium dodecyl sulfate polyacrylamide gels. Synthesis of α-amylase was dependent upon injection of RNA extracted from gibberellic acid-induced aleurone layers from wheat. The amount of α-amylase produced was proportional to the amount of RNA injected and reached a plateau within 4 hours after injection. When the same RNA was translated in a wheat germ cell-free translation system, a 43,000-dalton protein was produced. Addition of dog pancreas microsomal membranes to the wheat germ translation system resulted in processing of the α-amylase protein to a form which co-migrated with authentic α-amylase purified from malted wheat and with the protein synthesized in oocytes.  相似文献   

8.
The effect of seed coat removal on the synthesis of α-amylase isoenzymes in wheat was investigated. The immature wheat endosperm-aleurone (seed coat and embryo detached) produced considerably less α-amylase activity than immature whole or de-embryonated wheat kernels, when incubated under identical conditions of 18.5 C and 99% humidity, in the presence or absence of gibberellic acid (GA3). The incubated endosperm-aleurone also exhibited unique α-amylase isoenzyme composition when compared to the isoenzyme compositions of incubated whole and de-embryonated immature and mature wheat kernels both in the presence or absence of GA3. Subsequent studies indicated that the seed coat may contain factor(s) required for normal α-amylase isoenzyme synthesis.  相似文献   

9.
A new wheat dimeric alpha-amylase inhibitor, designated WDAI-3, has been characterized. WDAI-3 is a homodimeric protein active against alpha-amylase from human saliva and from the insect Tenebrio molitor, but inactive against that from pig pancreas or against trypsin. Its N-terminal amino acid sequence is closer to those of the wheat dimeric inhibitors 0.19 and 0.53 (89-91% identical positions in 44 residues) than to that of the monomeric 0.28 inhibitor (69% identical positions). Iha-B1-2, the gene encoding the new inhibitor, is located in the short arm of chromosome 3B, where it is part of an intrachromosomal gene duplication that also codes for the 0.53 inhibitor.  相似文献   

10.
Summary Three -amylase inhibitors, designated Inh. I, II and III have been purified from the 70% ethanol extract of hexaploid wheat (Triticum aestivum L.) and characterized by amino acid analysis, N-terminal amino acid sequencing and enzyme inhibition tests. Inhibitors I and III have identical N-terminal sequences and inhibitory properties to those of the previously described 0.19/0.53 group of dimeric inhibitors. Inhibitor II has an N-terminal sequence which is identical to that of the previously described 0.28 monomeric inhibitor, but differs from it in that in addition to being active against -amylase from Tenebrio molitor, it is also active against mammalian salivary and pancreatic -amylases. Compensating nulli-tetrasomic and ditelosomic lines of wheat cv. Chinese Spring have been analysed by two-dimensional electrophoresis, under conditions in which there is no overlap of the inhibitors with other proteins, and the chromosomal locations of the genes encoding these inhibitors have been established: genes for Inh. I and Inh. III are in the short arms of chromosomes 3B and 3D, respectively, and that for Inh. II in the short arm of chromosome 6D.  相似文献   

11.
An inhibitor of malted barley (Hordeum vulgare cv Conquest) α-amylase II was purified 125-fold from a crude extract of barley kernels by (NH4)2SO4 fractionation, ion exchange chromatography on DEAE-Sephacel, and gel filtration on Bio-Gel P 60. The inhibitor was a protein with an approximate molecular weight of 20,000 daltons and an isoelectric point of 7.3. The protein was homogeneous, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Amino acid analysis indicated the presence of about 9 half-cystine residues per mole. The neutral isoelectric point of the inhibitor suggested that some of the apparently acidic residues (glutamic and aspartic) existed in the amide form. The first twenty N-terminal amino acids were sequenced. Some homology appeared to exist between the α-amylase II inhibitor and trypsin inhibitor from barley. Complex formation between α-amylase II and the inhibitor was detected by the appearance of a new molecular weight species after gel filtration on Bio-Gel P 100. Enzyme and inhibitor had to be preincubated for 5 min, prior to assaying for enzyme activity before maximum inhibition was attained. Inhibition increased at higher pH values. At pH 5.5, an approximately 1100 molar excess of inhibitor over α-amylase II produced 40% inhibition, whereas, at pH 8.0, a 1:1 molar ratio of inhibitor to enzyme produced the same degree of inhibition.  相似文献   

12.
13.
Aspergillus nidulans possessed an α-glucosidase with strong transglycosylation activity. The enzyme, designated α-glucosidase B (AgdB), was purified and characterized. AgdB was a heterodimeric protein comprising 74- and 55-kDa subunits and catalyzed hydrolysis of maltose along with formation of isomaltose and panose. Approximately 50% of maltose was converted to isomaltose, panose, and other minor transglycosylation products by AgdB, even at low maltose concentrations. The agdB gene was cloned and sequenced. The gene comprised 3,055 bp, interrupted by three short introns, and encoded a polypeptide of 955 amino acids. The deduced amino acid sequence contained the chemically determined N-terminal and internal amino acid sequences of the 74- and 55-kDa subunits. This implies that AgdB is synthesized as a single polypeptide precursor. AgdB showed low but overall sequence homology to α-glucosidases of glycosyl hydrolase family 31. However, AgdB was phylogenetically distinct from any other α-glucosidases. We propose here that AgdB is a novel α-glucosidase with unusually strong transglycosylation activity.  相似文献   

14.
The sbeIIa and sbeIIb genes, encoding starch-branching enzyme (SBE) IIa and SBEIIb in barley (Hordeum vulgare L.), have been isolated. The 5′ portions of the two genes are strongly divergent, primarily due to the 2064-nucleotide-long intron 2 in sbeIIb. The sequence of this intron shows that it contains a retro-transposon-like element. Expression of sbeIIb but not sbeIIa was found to be endosperm specific. The temporal expression patterns for sbeIIa and sbeIIb were similar and peaked around 12 d after pollination. DNA gel-blot analysis demonstrated that sbeIIa and sbeIIb are both single-copy genes in the barley genome. By fluorescence in situ hybridization, the sbeIIa and sbeIIb genes were mapped to chromosomes 2 and 5, respectively. The cDNA clones for SBEIIa and SBEIIb were isolated and sequenced. The amino acid sequences of SBEIIa and SBEIIb were almost 80% identical. The major structural difference between the two enzymes was the presence of a 94-amino acid N-terminal extension in the SBEIIb precursor. The (β/α)8-barrel topology of the α-amylase superfamily and the catalytic residues implicated in branching enzymes are conserved in both barley enzymes.  相似文献   

15.
The cDNA coding for Penicillium purpurogenum α-galactosidase (αGal) was cloned and sequenced. The deduced amino acid sequence of the α-Gal cDNA showed that the mature enzyme consisted of 419 amino acid residues with a molecular mass of 46,334 Da. The derived amino acid sequence of the enzyme showed similarity to eukaryotic αGals from plants, animals, yeasts, and filamentous fungi. The highest similarity observed (57% identity) was to Trichoderma reesei AGLI. The cDNA was expressed in Saccharomyces cerevisiae under the control of the yeast GAL10 promoter. Almost all of the enzyme produced was secreted into the culture medium, and the expression level reached was approximately 0.2 g/liter. The recombinant enzyme purified to homogeneity was highly glycosylated, showed slightly higher specific activity, and exhibited properties almost identical to those of the native enzyme from P. purpurogenum in terms of the N-terminal amino acid sequence, thermoactivity, pH profile, and mode of action on galacto-oligosaccharides.  相似文献   

16.
The gene for a novel α-amylase, designated AmyC, from the hyperthermophilic bacterium Thermotoga maritima was cloned and heterologously overexpressed in Escherichia coli. The putative intracellular enzyme had no amino acid sequence similarity to glycoside hydrolase family (GHF) 13 α-amylases, yet the range of substrate hydrolysis and the product profile clearly define the protein as an α-amylase. Based on sequence similarity AmyC belongs to a subgroup within GHF 57. On the basis of amino acid sequence similarity, Glu185 and Asp349 could be identified as the catalytic residues of AmyC. Using a 60-min assay, the maximum hydrolytic activity of the purified enzyme, which was dithiothreitol dependent, was found to be at 90°C. AmyC displayed a remarkably high pH optimum of pH 8.5 and an unusual sensitivity towards both ATP and EDTA.  相似文献   

17.
Lactobacillus reuteri strain 121 produces a unique, highly branched, soluble glucan in which the majority of the linkages are of the α-(1→4) glucosidic type. The glucan also contains α-(1→6)-linked glucosyl units and 4,6-disubstituted α-glucosyl units at the branching points. Using degenerate primers, based on the amino acid sequences of conserved regions from known glucosyltransferase (gtf) genes from lactic acid bacteria, the L. reuteri strain 121 glucosyltransferase gene (gtfA) was isolated. The gtfA open reading frame (ORF) was 5,343 bp, and it encodes a protein of 1,781 amino acids with a deduced Mr of 198,637. The deduced amino acid sequence of GTFA revealed clear similarities with other glucosyltransferases. GTFA has a relatively large variable N-terminal domain (702 amino acids) with five unique repeats and a relatively short C-terminal domain (267 amino acids). The gtfA gene was expressed in Escherichia coli, yielding an active GTFA enzyme. With respect to binding type and size distribution, the recombinant GTFA enzyme and the L. reuteri strain 121 culture supernatants synthesized identical glucan polymers. Furthermore, the deduced amino acid sequence of the gtfA ORF and the N-terminal amino acid sequence of the glucosyltransferase isolated from culture supernatants of L. reuteri strain 121 were the same. GTFA is thus responsible for the synthesis of the unique glucan polymer in L. reuteri strain 121. This is the first report on the molecular characterization of a glucosyltransferase from a Lactobacillus strain.  相似文献   

18.
Response of barley aleurone layers to abscisic Acid   总被引:3,自引:0,他引:3       下载免费PDF全文
Ho DT 《Plant physiology》1976,58(2):175-178
Cordycepin, an inhibitor of RNA synthesis in barley (Hordeum vulgare L.) aleurone cells, does not inhibit the gibberellic acid-enhanced α-amylase (EC 3.2.1.1.) synthesis in barley aleurone layers if it is added 12 hours or more after the addition of the hormone. However, the accumulation of α-amylase activity after 12 hours of gibberellic acid can be decreased by abscisic acid. The accumulation of α-amylase activity is sustained or quickly restored when cordycepin is added simultaneously or some time after abscisic acid, indicating that the response of aleurone layers to abscisic acid depends on the continuous synthesis of a short lived RNA. By analysis of the newly synthesized proteins by gel electrophoresis with sodium dodecylsulfate, we observed that the synthesis of α-amylase is decreased in the presence of abscisic acid while the synthesis of most of the other proteins remains unchanged. From the rate of resumption of α-amylase production in the presence of cordycepin and abscisic acid, it appears that abscisic acid does not have a measurable effect on the stability of α-amylase mRNA.  相似文献   

19.
Clostridium thermosulfurogenes EM1 formed blebs, i.e., protrusions still in contact with the cytoplasmic membrane, that originated from the cytoplasmic membrane during growth in batch culture and continuous culture. They could be observed squeezed between the cell wall and cytoplasmic membrane in cells with seemingly intact wall layers (surface layer and peptidoglycan layer) as well as in cells with wall layers in different states of degradation caused by phosphate limitation or high dilution rates. Blebs were found to turn into membrane vesicles by constriction in cases when the cell wall was heavily degraded. Bleb and vesicle formation was also observed in the absence of substrates that induce α-amylase and pullulanase synthesis. No correlations existed between bleb formation and the presence of active enzyme. Similar blebs could also be observed in a number of other gram-positive bacteria not producing these enzymes, but they were not observed in gram-negative bacteria. For immunoelectron-microscopic localization of α-amylase and pullulanase in C. thermosulfurogenes EM1, two different antisera were applied. One was raised against the enzymes isolated from the culture fluid; the other was produced against a peptide synthesized, as a defined epitope, in analogy to the N-terminal amino acid sequence (21 amino acids) of the native extracellular α-amylase. By using these antisera, α-amylase and pullulanase were localized at the cell periphery in samples taken from continuous culture or batch culture. In samples prepared for electron microscopy by freeze substitution followed by ultrathin sectioning, blebs could be seen, and the immunolabel pinpointing α-amylase enzyme particles was seen not only randomly distributed in the cell periphery, but also lining the surface of the cytoplasmic membrane and the blebs. Cells exhibiting high or virtually no enzyme activity were labeled similarly with both antisera. This finding strongly suggests that α-amylase and pullulanase may occur in both active and inactive forms, depending on growth conditions.  相似文献   

20.
Lipopurothionins are complexes of basic polypeptides and polar lipids found in petroleum ether extracts of wheat endosperm. Location of the structural genes for the protein moiety and of genes probably controlling the lipid moiety has been achieved by analysis of compensated nulli-tetrasomic and ditelosomic lines of Triticum aestivum L. cv. Chinese Spring, as well as of other genetic stocks. There are two electrophoretic variants of the apoprotein designated α and β purothionins. Structural genes for α purothionins are located in the long arm of chromosomes 1B and 1D, and for the β variant in the long arm of 1A. These genes have been tentatively designated Pur-A1, Pur-B1, and Pur-D1. The aminoacid composition of purified α and β purothionins from Triticum aestivum (genomes AABBDD) and T. durum (AABB), and of β purothionin from T. monococcum (AA) is also consistent with this conclusion and suggests that the α purothionin encoded by gene Pur-B1 probably differs from that encoded by gene Pur-D1 in at least three positions of the aminoacid sequence. A gene (or genes) located in the short arm of chromosome 5D markedly affects the level of lipopurothionin but does not affect apoprotein synthesis. It is concluded that they control the lipid moiety which is required for solubility in petroleum ether.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号