首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Telomerase inhibition through G‐quadruplex stabilization by small molecules is of great interest as a novel anticancer therapeutic strategy. Here, we show that newly synthesized Cu‐complex binds to G‐quadruplex DNA and induces changes in its stability. This biophysical interaction was investigated in vitro using spectroscopic, voltammetric and computational techniques. The binding constant for this complex to G‐quadruplex using spectroscopic and electrochemical methods is in the order of 105. The binding stoichiometry was investigated using spectroscopic techniques and corresponded to a ratio of 1: 1. Fluorescence titration results reveal that Cu‐complex is quenched in the presence of G‐quadruplex DNA. Analysis of the fluorescence emission at different temperatures shows that ΔH° > 0, ΔS° > 0 and ΔG° < 0, and indicates that hydrophobic interactions played a major role in the binding processes. MD simulation results suggested that this ligand could stabilize the G‐quadruplex structure. An optimized docked model of the G‐quadruplex–ligand mixture confirmed the experimental results. Based on the results, we conclude that Cu‐complex as an anticancer candidate can bind and stabilize the G‐quadruplex DNA structure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The 22-mer c-kit promoter sequence folds into a parallel-stranded quadruplex with a unique structure, which has been elucidated by crystallographic and NMR methods and shows a high degree of structural conservation. We have carried out a series of extended (up to 10 μs long, ∼50 μs in total) molecular dynamics simulations to explore conformational stability and loop dynamics of this quadruplex. Unfolding no-salt simulations are consistent with a multi-pathway model of quadruplex folding and identify the single-nucleotide propeller loops as the most fragile part of the quadruplex. Thus, formation of propeller loops represents a peculiar atomistic aspect of quadruplex folding. Unbiased simulations reveal μs-scale transitions in the loops, which emphasizes the need for extended simulations in studies of quadruplex loops. We identify ion binding in the loops which may contribute to quadruplex stability. The long lateral-propeller loop is internally very stable but extensively fluctuates as a rigid entity. It creates a size-adaptable cleft between the loop and the stem, which can facilitate ligand binding. The stability gain by forming the internal network of GA base pairs and stacks of this loop may be dictating which of the many possible quadruplex topologies is observed in the ground state by this promoter quadruplex.  相似文献   

4.
G‐quadruplex forming sequences are widely distributed in human genome and serve as novel targets for regulating gene expression and chromosomal maintenance. They offer unique targets for anticancer drug development. Here, the interaction of berberine (BC) and two of its analogs bearing substitution at 9 and 13‐position with human telomeric G‐quadruplex DNA sequence has been investigated by biophysical techniques. Both the analogs exhibited several‐fold higher binding affinity than berberine. The Scatchard binding isotherms revealed non‐cooperative binding. 9‐ω‐amino hexyl ether analog (BC1) showed highest affinity (1.8 × 106 M?1) while the affinity of the 13‐phenylpropyl analog (BC2) was 1.09 × 106 M?1. Comparative fluorescence quenching and polarization anisotropy of the emission spectra gave evidence for a stronger stacking interaction of the analogs compared to berberine. The thiazole orange displacement assay has clearly established that the analogs were more effective in displacing the end stacked dye in comparison to berberine. However, the binding of the analogs did not induce any major structural perturbation in the G‐quadruplex structure, but led to higher thermal stability. Energetics of the binding indicated that the association of the analogs was exothermic and predominantly entropy driven phenomenon. Increasing the temperature resulted in weaker binding; the enthalpic contribution increased and the entropic contribution decreased. A small negative heat capacity change with significant enthalpy–entropy compensation established the involvement of multiple weak noncovalent interactions in the binding process. The 9‐ω‐amino hexyl ether analog stabilized the G‐quadruplex structure better than the 13‐phenyl alkyl analog. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Guanine‐rich DNA sequences that may form G‐quadruplexes are located in strategic DNA loci with the ability to regulate biological events. G‐quadruplexes have been under intensive scrutiny owing to their potential to serve as novel drug targets in emerging anticancer strategies. Thermodynamic characterization of G‐quadruplexes is an important and necessary step in developing predictive algorithms for evaluating the conformational preferences of G‐rich sequences in the presence or the absence of their complementary C‐rich strands. We use a combination of spectroscopic, calorimetric, and volumetric techniques to characterize the folding/unfolding transitions of the 26‐meric human telomeric sequence d[A3G3(T2AG3)3A2]. In the presence of K+ ions, the latter adopts the hybrid‐1 G‐quadruplex conformation, a tightly packed structure with an unusually small number of solvent‐exposed atomic groups. The K+‐induced folding of the G‐quadruplex at room temperature is a slow process that involves significant accumulation of an intermediate at the early stages of the transition. The G‐quadruplex state of the oligomeric sequence is characterized by a larger volume and compressibility and a smaller expansibility than the coil state. These results are in qualitative agreement with each other all suggesting significant dehydration to accompany the G‐quadruplex formation. Based on our volume data, 432 ± 19 water molecules become released to the bulk upon the G‐quadruplex formation. This large number is consistent with a picture in which DNA dehydration is not limited to water molecules in direct contact with the regions that become buried but involves a general decrease in solute–solvent interactions all over the surface of the folded structure. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 216–227, 2014.  相似文献   

6.
Guanine‐rich sequences are able to form quadruplexes consisting of G‐quartet structural units. Quadruplexes play an important role in the regulation of gene expression and have therapeutic and biotechnological potential. The HIV‐1 integrase inhibitor, (GGGT)4, and its variants demonstrate unusually high thermal stability. This property has been exploited in the use of quadruplex formation to drive various endergonic reactions of nucleic acids such as isothermal DNA amplification. Quadruplex stability is mainly determined by cations, which specifically bind into the inner core of the structure. In the present work, we report a systematic study of a variant of the HIV‐1 integrase inhibitor, GGGTGGGTGGGTGGG (G3T), in the presence of alkali and alkaline‐earth cations. We show that Sr2+‐G3T is characterized by the highest thermal stability and that quadruplex formation requires only one Sr2+ ion that binds with low micromolar affinity. These concentrations are sufficient to drive robust isothermal quadruplex priming DNA amplification reaction. The Sr2+‐quadruplexes are also able to form unusually stable dimers through end‐to‐end stacking. The multimerization can be induced by a combination of quadruplex forming cations (i.e., K+ or Sr2+) and non‐specific Mg2+.  相似文献   

7.
G-rich sequences can fold into a four-stranded structure called a G-quadruplex, and sequences with short loops are able to aggregate to form stable quadruplex multimers. Few studies have characterized the properties of this variety of quadruplex multimers. Using molecular modeling and molecular dynamics simulations, the present study investigated a dimeric G-quadruplex structure formed from a simple sequence of d(GGGTGGGTGGGTGGGT) (G1), and its interactions with a planar ligand of a perylene derivative (Tel03). A series of analytical methods, including free energy calculations and principal components analysis (PCA), was used. The results show that a dimer structure with stacked parallel monomer structures is maintained well during the entire simulation. Tel03 can bind to the dimer efficiently through end stacking, and the binding mode of the ligand stacked with the 3′-terminal thymine base is most favorable. PCA showed that the dominant motions in the free dimer occur on the loop regions, and the presence of the ligand reduces the flexibility of the loops. Our investigation will assist in understanding the geometric structure of stacked G-quadruplex multimers and may be helpful as a platform for rational drug design.  相似文献   

8.
Study on anticancer agents that act via stabilization of telomeric G‐quadruplex DNA has emerged as novel and exciting field for anticancer drug discovery. The interaction of carbohydrate containing anticancer alkaloid aristololactam‐β‐D‐glucoside (ADG) with human telomeric G‐quadruplex DNA sequence was characterized by different biophysical techniques. The binding parameters were compared with daunomycin (DAN), a well‐known chemotherapeutic drug. The Scatchard binding isotherms revealed noncooperative binding for both with the binding affinity values of (1.01 ± 0.05) × 106 and (1.78 ± 0.18) × 106 M−1 for ADG and DAN, respectively. Circular dichroism, ferrocyanide quenching study, anisotropy study, thiazole orange displacement, optical melting, differential scanning calorimetry study, and molecular docking study suggest significant stacking and stabilizing efficiency of ADG with comparison to DAN. The energetics of the interaction for ADG and DAN revealed that both reactions were predominantly entropy driven. Negative heat capacity values were obtained from the temperature dependence of the enthalpy change. The standard molar Gibbs energy change exhibited only marginal alterations with temperature suggesting the occurrence of enthalpy‐entropy compensation. These findings indicate that ADG can act as a stabilizer of telomeric G‐quadruplex DNA and thereby can be considered as a potential telomerase inhibitor.  相似文献   

9.
Aptamer-based drugs represent an attractive approach in pharmacological therapy. The most studied aptamer, thrombin binding aptamer (TBA), folds into a well-defined quadruplex structure and binds to its target with good specificity and affinity. Modified aptamers with improved biophysical properties could constitute a new class of therapeutic aptamers. In this study we show that the modified thrombin binding aptamer (mTBA), 3′GGT5′-5′TGGTGTGGTTGG3′, which also folds into a quadruplex structure, is more stable than its unmodified counterpart and shows a higher thrombin affinity. The stability of the modified aptamer was investigated using differential scanning calorimetry, and the energetics of mTBA and TBA binding to thrombin was characterized by means of isothermal titration calorimetry (ITC). ITC data revealed that TBA/thrombin and mTBA/thrombin binding stoichiometry is 1:2 for both interactions. Structural models of the two complexes of thrombin with TBA and with mTBA were also obtained and subjected to molecular dynamics simulations in explicit water. Analysis of the models led to an improvement of the understanding of the aptamer-thrombin recognition at a molecular level.  相似文献   

10.
11.
In the presence of hemin and under appropriate conditions, some modalities of G‐quadruplexes can form a peroxidase‐like DNAzyme that has been widely used in biology. Structure? function studies on the DNAzyme revealed that its catalytic ability may be dependent on the unimolecular parallel G‐quadruplex. In this report, we present the preliminary investigation on the relationship between the structure and function of DNAzymes through a terminal oligo modification in G‐quadruplex sequences by adding different lengths of oligo‐dT to the 3′‐ or 5′‐end of the aptamers. The results suggested that adding dTn to the 5′‐end of the DNA sequence of the enzyme improved the ability of hemin to bind with DNA, but the addition of dTn to the 3′‐end decreased the binding ability of hemin for DNA. The increased stability of the assembled DNAzyme would lead to more favorable binding between the enzyme and substrate (H2O2), facilitating higher peroxidase activity; on the contrary, with lower stability of the DNAzyme complex, we observed reduced peroxidase activity.  相似文献   

12.
Structural knowledge of telomeric DNA is critical for understanding telomere biology and for the utilization of telomeric DNA as a therapeutic target. Very little is known about the structure of long human DNA sequences that may form more than one quadruplex unit. Here, we report a combination of molecular dynamics simulations and experimental biophysical studies to explore the structural and dynamic properties of the human telomeric sequence (TTAGGG)8TT that folds into two contiguous quadruplexes. Five higher order quadruplex models were built combining known single human telomeric quadruplex structures as unique building blocks. The biophysical properties of this sequence in K+ solution were experimentally investigated by means of analytical ultracentrifugation and UV spectroscopy. Additionally, the environments of loop adenines were probed by fluorescence studies using systematic single‐substitutions of 2‐aminopurine for the adenine bases. The comparison of the experimentally determined properties with the corresponding quantities predicted from the models allowed us to test the validity of each of the structural models. One model emerged whose properties are most consistent with the predictions, and which therefore is the most probable structure in solution. This structure features contiguous quadruplex units in an alternating hybrid‐1‐hybrid‐2 conformation with a highly ordered interface composed of loop residues from both quadruplexes © 2010 Wiley Periodicals, Inc. Biopolymers 93:533–548, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

13.
The insulin‐linked polymorphic region (ILPR) is a VNTR region located upstream of the insulin (INS) gene consisting of the repeat 5′‐ACAGGGGTGTGGGG (repeat a) and several less abundant sequence repeats (b–n). Here, we have investigated the structural polymorphism of G‐quadruplexes formed from the most common repeat sequences (a–c) and their effect on insulin protein binding. We first established that the ILPR repeats “b” and “c” can form quadruplex structures. Insulin has previously been shown to bind a G‐quadruplex formed by a dimer of the repeat “a”. Our findings show that insulin binds preferentially to the repeat “a” G‐quadruplex (Kd = 0.17 ± 0.03 μM) over G‐quadruplexes formed from other ILPR repeats that were tested (Kds from 0.71 ± 0.15 to 1.07 ± 0.09 μM). Additionally, the Watson‐Crick complementary relationship between the loop regions of repeat “a” (ACA and TGT) seemingly play an important role in favoring a specific G‐quadruplex conformation, which based on our data is critical for insulin binding. Affinity for insulin is reduced in sequences lacking the putative WC complementarity, however upon engineered restoration of complementarity, insulin binding is recovered. A DMS footprinting assay on the repeat “a” G‐quadruplex in the presence of insulin, combined with binding affinities for ILPR mutants led to identification of a loop nucleotide critical for binding. Uniquely, insulin shows clear preference for binding to the G‐quadruplexes with the more antiparallel feature. Collectively, our results illustrate the specific nature of insulin binding to the ILPR G‐quadruplexes and begin to provide molecular details on such interactions. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 21–31, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

14.
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability caused by the CGG trinucleotide expansion in the 3′-untranslated region of the FMR1 gene on the X chromosome, that silences the expression of the Fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA which encodes for the postsynaptic density protein 95 (PSD-95), and together with the microRNA miR-125a, to play an important role in the reversible inhibition of the PSD-95 mRNA translation in neurons. The loss of FMRP in Fmr1 KO mice disables this translation control in the production of the PSD-95 protein. Interestingly, the miR-125a binding site on PSD-95 mRNA is embedded in the G-rich region bound by FMRP and postulated to adopt one or more G quadruplex structures. In this study, we have used different biophysical techniques to validate and characterize the formation of parallel G quadruplex structures and binding of miR-125a to its complementary sequence located within the 3′ UTR of PSD-95 mRNA. Our results indicate that the PSD-95 mRNA G-rich region folds into alternate G quadruplex conformations that coexist in equilibrium. miR-125a forms a stable complex with PSD-95 mRNA, as evident by characteristic Watson–Crick base-pairing that coexists with one of the G quadruplex forms, suggesting a novel mechanism for G quadruplex structures to regulate the access of miR-125a to its binding site.  相似文献   

15.
The modes of binding of 5′‐[4‐(aminoiminomethyl)phenyl]‐[2,2′‐Bifuran]‐5‐carboximidamide (DB832) to multi‐stranded DNAs: human telomere quadruplex, monomolecular R‐triplex, pyr/pur/pyr triplex consisting of 12 T*(T·A) triplets, and DNA double helical hairpin were studied. The optical adsorption of the ligand was used for monitoring the binding and for determination of the association constants and the numbers of binding sites. CD spectra of DB832 complexes with the oligonucleotides and the data on the energy transfer from DNA bases to the bound DB832 assisted in elucidating the binding modes. The affinity of DB832 to the studied multi‐stranded DNAs was found to be greater (Kass ≈ 107M?1) than to the duplex DNA (Kass ≈ 2 × 105M?1). A considerable stabilizing effect of DB832 binding on R‐triplex conformation was detected. The nature of the ligand tight binding differed for the studied multi‐stranded DNA depending on their specific conformational features: recombination‐type R‐triplex demonstrated the highest affinity for DB832 groove binding, while pyr/pur/pyr TTA triplex favored DB832 intercalation at the end stacking contacts and the human telomere quadruplex d[AG3(T2AG3)3] accommodated the ligand in a capping mode. Additionally, the pyr/pur/pyr TTA triplex and d[AG3(T2AG3)3] quadruplex bound DB832 into their grooves, though with a markedly lesser affinity. DB832 may be useful for discrimination of the multi‐sranded DNA conformations and for R‐triplex stabilization. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 8–20, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

16.
17.
Human epidermal growth factor receptor 2 (HER2) has become a well-established target for the treatment of HER2-positive lung cancer. However, a frequently observed in-frame mutation that inserts amino acid quadruplex Tyr776-Val777-Met778-Ala779 at G776 (G776YVMA) in HER2 kinase domain can cause drug resistance and sensitivity, largely limiting the application of reversible tyrosine kinase inhibitors in lung cancer therapy. A systematic investigation of the intermolecular interactions between the HER2YVMA mutant and clinical small-molecule inhibitors would help to establish a complete picture of drug response to HER2 G776YVMA insertion in lung cancer, and to design new tyrosine kinase inhibitors with high potency and selectivity to target the lung cancer-related HER2YVMA mutant. Here, we combined homology modeling, ligand grafting, structure minimization, molecular simulation and binding affinity analysis to profile a number of tyrosine kinase inhibitors against the G776YVMA insertion in HER2. It is found that the insertion is far away from HER2 active pocket and thus cannot contact inhibitor ligand directly. However, the insertion is expected to induce marked allosteric effect on some regions around the pocket, including A-loop and hinges connecting between the N- and C-lobes of HER2 kinase domain, which may exert indirect influence to inhibitor binding. Most investigated inhibitors exhibit weak binding strength to both wild-type and mutant HER2, which can be attributed to steric hindrance that impairs ligand compatibility with HER2 active pocket. However, the cognate inhibitor lapatinib and the non-cognate inhibitor bosutinib were predicted to have low affinity for wild-type HER2 but high affinity for HER2YVMA mutant, which was confirmed by subsequent kinase assay experiments; the inhibitory potencies of bosutinib against wild-type and mutant HER2 were determined to be IC50?>?1000 and =27?nM, respectively, suggesting that the bosutinib might be exploited as a selective inhibitor for mutant over wild-type HER2. Structural examination revealed that formation of additional non-bonded interactions such as hydrogen bonds and hydrophobic contacts with HER2 A-loop region due to G776YVMA insertion is the primary factor to improve bosutinib affinity upon the mutation.  相似文献   

18.
19.
Risitano A  Fox KR 《Biochemistry》2003,42(21):6507-6513
We have determined the stability of intramolecular quadruplexes that are formed by a variety of G-rich sequences, using oligonucleotides containing appropriately placed fluorophores and quenchers. The stability of these quadruplexes is compared with that of the DNA duplexes that are formed on addition of complementary C-rich oligonucleotides. We find that the linkers joining the G-tracts are not essential for folding and can be replaced with nonnucleosidic moieties, though their sequence composition profoundly affects quadruplex stability. Although the human telomere repeat sequence d[G(3)(TTAG(3))(3)] folds into a quadruplex structure, this forms a duplex in the presence of the complementary C-rich strand at physiological conditions. The Tetrahymena sequence d[G(4)(T(2)G(4))(3)], the sequence d[G(3)(T(2)G(3))(3)], and sequences related to regions of the c-myc promoter d(G(4)AG(4)T)(2) and d(G(4)AG(3)T)(2) preferentially adopt the quadruplex form in potassium-containing buffers, even in the presence of a 50-fold excess of their complementary C-rich strands, though the duplex predominates in the presence of sodium. The HIV integrase inhibitor d[G(3)(TG(3))(3)] forms an extremely stable quadruplex which is not affected by addition of a 50-fold excess of the complementary C-rich strand in both potassium- and sodium-containing buffers. Replacing the TTA loops of the human telomeric repeat with AAA causes a large decrease in quadruplex stability, though a sequence with AAA in the first loop and TTT in the second and third loops is slightly more stable.  相似文献   

20.
We previously developed a method, known as quadruplex priming amplification (QPA), which greatly simplifies DNA amplification and quantification assays. QPA employs specific primers based on GGGTGGGTGGGTGGG (G3T) sequence, which upon polymerase elongation spontaneously dissociates from the target and folds into a stable quadruplex. Fluorescent nucleotide analogs, when incorporated into these primers, emit light upon quadruplex formation and permit simple, specific, and sensitive quantification without the attachment of probe molecules. Here, we studied optical [fluorescence and circular dichroism (CD)] and thermodynamic properties of the G3T sequence and variants incorporating 3‐methylisoxanthopterin (3MI), a highly fluorescent nucleotide analog suitable for QPA. CD studies demonstrate that the incorporation of 3MI does not change the overall tertiary structure of G3T; however, thermal unfolding experiments revealed that it significantly destabilizes the quadruplex. Enzymatic studies revealed that Taq and Bst are practically unable to incorporate any nucleotides opposite to template 3MI. Based on this knowledge, we designed QPA assays with truncated targets that demonstrate efficient amplification around 55°C. Overall, these studies suggest that 3MI‐based QPA is a useful assay for DNA amplification and detection. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 583–590, 2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号