首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Zhang Z  Liang P  Zheng X  Peng D  Yan F  Zhao R  Feng CL 《Biomacromolecules》2008,9(6):1613-1617
The present work describes the fabrication and characterization of the conducting polymer coatings prepared by the continuous wave plasma polymerization and the applications as adhesion layers for studying DNA immobilization/hybridization. The stability of plasma polymerized pyrrole (ppPY) in the aqueous solution was characterized by ellipsometry. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to investigate polymer matrix properties and oligonucleotide/DNA binding interaction. The successful DNA immobilization on ppPY surfaces was found to depend on the macromolecular architecture of plasma polymerized films. The plasma polymers with similar thickness deposited at different input powers showed various comparable immobilization properties. The plasma-polymerized films prepared at the low input power showed a lower sensitivity toward DNA binding than those films deposited at the high input power. This result will be important to study plasma polymerized films as potential DNA biosensors in the future.  相似文献   

2.
We demonstrate a novel protocol for sensitive in situ label-free electrochemical detection of DNA hybridization based on copper complex ([Cu(phen)2]2+, where phen = 1,10-phenanthroline) and graphene (GR) modified glassy carbon electrode. Here, [Cu(phen)2]2+ acted advantageously as both the electrochemical indicator and the anchor for probe DNA immobilization via intercalative interactions between the partial double helix structure of probe DNA and the vertical aromatic groups of phen. GR provided large density of docking site for probe DNA immobilization and increased the electrical conductivity ability of the electrode. The modification procedure was monitored by electrochemical impedance spectroscopy (EIS). Square-wave voltammetry (SWV) was used to explore the hybridization events. Under the optimal conditions, the designed electrochemical DNA biosensor could effectively distinguish different mismatch degrees of complementary DNA from one-base mismatch to noncomplementary, indicating that the biosensor had high selectivity. It also exhibited a reasonable linear relationship. The oxidation peak currents of [Cu(phen)2]2+ were linear with the logarithm of the concentrations of complementary target DNA ranging from 1 × 10−12 to 1 × 10−6 M with a detection limit of 1.99 × 10−13 M (signal/noise = 3). Moreover, the stability of the electrochemical DNA biosensor was also studied.  相似文献   

3.
A sensitive electrochemical method for DNA hybridization based on immobilization of DNA probe and [Ru(NH3)5Cl]PF6 complex onto nickel oxide nanomaterials (NiOxnp) modified glassy carbon electrode was developed. Due to strong affinity of NiOxnp for phosphate groups, oligonucleotides probe with a terminal 5′-phosphate group was attached to the surface of the modified electrode. DNA immobilization and hybridization were characterized by electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry using K3Fe(CN)6/K4Fe(CN)6 and [Ru(NH3)5Cl]PF6 as probe and indicator, respectively. The Ru-complex current response indicates only the complementary sequence showing an obvious current signal in comparison to non-complementary and three or single point mismatched sequences. The fabricated biosensor possessed good selectivity and sensitivity for complementary probe, taxon: 32630 tumor necrosis factor (TNF). The linear dynamic range, sensitivity and detection limit of the proposed biosensor were 4 × 10−10 M to 1 × 10−8 M, 34.32 nA nM−1 and 6.8 × 10−11 M, respectively. Excellent reproducibility and stability, quite simple and inexpensive preparation are the other advantages of proposed biosensor.  相似文献   

4.
The electrochemical impedance spectroscopy (EIS) technique has been used as a sensitive method to explore the effect of antibacterial molecules on immobilized bacteria and biofilm formation. In this work, we describe the electrochemical spectroscopy as a powerful method to monitor the effect of Chlorhexidine Digluconate (CHX-Dg) on polyelectrolyte immobilized Escherichia coli K12 MG1655 and the kinetics of cell adhesion on gold electrodes. The experimental impedance data were modelised with a Zview program to find the best equivalent electrical circuit and analyse its parameter's properties. Polyelectrolyte multilayer formation on the electrode surface and bacteria immobilization greatly increased the electron-transfer resistance (Ret) and reduced the constant phase element (CPEdl). The effect of CHX-Dg was studied in a 0.5 × 10−4 mmol l−1 to 0.5 mmol l−1 range. The relation between the evolution of Ret and CHX-Dg concentration was found to be negatively correlated. When CHX-Dg was added, the electrochemical monitoring of the bacterial kinetic adhesion showed that the electrode's capacity (CP) variation remained stable, demonstrating that the addition of CHX-Dg in the broth inhibited bacterial adhesion.  相似文献   

5.
Bioactive ultrathin films with the incorporation of amino-terminated G4 PAMAM dendrimers have been prepared via layer-by-layer self-assembly methods on a gold electrode and used for the DNA hybridization analysis. Surface plasmon resonance (SPR), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) are used to characterize the successful construction of the multicomponent film on the gold substrate. The dendrimer-modified surfaces improve the immobilization capacity of the probe DNA greatly, compared to the AET (2-aminoethanethiol) SAM sensor surfaces without dendrimer molecules. DNA hybridization analysis is monitored by EIS. The dendrimer-based electrochemical impedance DNA biosensor shows high sensitivity and selectivity for DNA hybridization assay. The multicomponent films also display a high stability during repeated regeneration and hybridization cycles.  相似文献   

6.
Electrochemical impedance spectroscopy (EIS) technique has proved to be an effective method for monitoring the immobilization of various bioactive species such as enzymes, DNA, whole cells, and so forth. In this work we describe the development of an electrochemical whole cell based biosensor. Biotinylated fluorescent E. coli are immobilized onto a cysteamine, Sulfo-NHS-LC-biotin, and avidin modified gold electrodes. Immobilized bacteria are clearly observed using confocal microscopy. Electrochemical measurements are based on the charge-transfer kinetics of [Fe (CN)6]3−/4− redox couple. The experimental impedance data were modelised with a computer. SAM assembly and the subsequent immobilization of bacteria on the gold bare electrodes greatly increased the electrontransfer resistance (R et ) and reduced the constant phase element (CPE). It’s interesting to note, the hard immobilization of bacteria on the surface of electrode and do not remove during measurements. The effect of glucose addition was studied in the range of 10−7 μM to 10 μM. The relation between the evolution of R et and D-glucose concentration was found to be linear for values ranging from 10−5 μM to 10−1 μM and reached saturation for higher concentrations. Such biosensor could be applied to a more fundamental study of cell metabolism and drugs effect.  相似文献   

7.
We have designed a simple and novel electrochemical biosensor based on glassy carbon electrode (GCE) for DNA detection. GCE was modified with reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) by the electrochemical method, which is helpful for immobilization of thiolated bioreceptors. The electrode modification processes were characterized by scanning electron microscopy (SEM) and electrochemical methods. Then a single-stranded DNA (ssDNA) probe for BRCA1 5382 insC mutation detection was immobilized on the modified electrode for a specific time. The experimental conditions, such as probe immobilization time and target DNA (complementary DNA) hybridization time and temperature with probe DNA, were optimized using electrochemical methods. The electrochemical response for DNA hybridization and synthesis was measured using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. The calibration graph contains two linear ranges; the first part is in the range of 3.0 × 10−20 to 1.0 × 10−12 M, and the second segment part is in the range of 1.0 × 10−12 to 1.0 × 10−7 M. The biosensor showed excellent selectivity for the detection of the complementary sequences from noncomplementary sequences, so it can be used for detection of breast cancer.  相似文献   

8.
The present study was designed to identify and functionally characterize potential cell surface extracellular matrix binding proteins in Hydra vulgaris. Using [3H]-laminin as a probe, radioreceptor analysis of a dissociated mixed hydra cell preparation indicated that the average number of laminin binding sites per cell was about 10,000 with a dissociation constant of 1.49 nM. These binding sites could be displaced with unlabelled laminin in a dose-dependent manner and with high concentrations (500 nM) of unlabelled fibronectin. No displacement with type-IV collagen and type-I collagen was observed. Immunoscreerting studies with a battery of antibodies raised to mammalian extracellular matrix (ECM) binding proteins indicated potential cell surface binding sites for the anti-β1 integrin monoclonal antibody, mAb JG22. Cell adhesion studies indicated that mAb JG22 blocked binding of hydra cells to laminin, but did not affect their binding to fibronectin, type-IV collagen, or type-I collagen. Light and electron microscopic immunocytochemical studies indicated that mAb JG22 localized to the basal plasma membrane of ectodermal and endodermal epithelial cells. Immunoprecipitation studies identified two major bands with masses of about 196 kDa and 150 kDa under reducing conditions, and two bands with masses of >200 kDa under non-reducing conditions. Functional studies indicated that mAb JG22 could reversibly block morphogenesis of hydra cell aggregates, and could block in vivo interstitial cell migration in hydra grafts. These observations indicate that hydra has cell surface binding sites for ECM components which are functionally important during development of this simple Cnidarian  相似文献   

9.
Bacterial adhesion is strongly dependent on the physico-chemical properties of materials and plays a fundamental role in the development of a growing biofilm. Selected materials were characterized with respect to their physico-chemical surface properties. The different materials, glass and several polymer foils, showed a stepwise range of surface tensions (γs) between 10.3 and 44.7 mN m?1. Measured zeta potential values were in the range between ?74.8 and ?28.3 mV. The initial bacterial adhesion parameter q max was found to vary between 6.6 × 106 and 28.1 × 106 cm?2. By correlation of the initial adhesions kinetic parameters with the surface tension data, the optimal conditions for the immobilization of Pseudomonas putida mt2 were found to be at a surface tension of 24.7 mN m?1. Both higher and lower surface tensions lead to a smaller number of adherent cells per unit surface area. Higher energy surfaces, commonly termed hydrophilic, could constrain bacterial adhesion because of their more highly ordered water structure (exclusion zone) close to the surface. At low energy surfaces, commonly referred to as hydrophobic, cell adhesion is inhibited due to a thin, less dense zone (depletion layer or clathrate structure) close to the surface. Correlation of q max with zeta potential results in a linear relationship. Since P. putida carries weak negative charges, a measurable repulsive effect can be assumed on negative surfaces.  相似文献   

10.
Oxanine having an O-acylisourea structure was explored to see if its reactivity with amino group is useful in DNA microarray fabrication. By the chemical synthesis, a nucleotide unit of oxanine (Oxa-N) was incorporated into the 5′-end of probe DNA with or without the -(CH2)n- spacers (n = 3 and 12) and found to immobilize the probe DNA covalently onto the NH2-functionalized glass slide by one-pot reaction, producing the high efficiency of the target hybridization. The methylene spacer, particularly the longer one, generated higher efficiency of the target recognition although there was little effect on the amount of the immobilized DNA oligomers. The post-spotting treatment was also carried out under the mild conditions (at 25 or 42°C) and the efficiencies of the immobilization and the target recognition were evaluated similarly, and analogous trends were obtained. It has also been determined under the mild conditions that the humidity and time of the post-spotting treatment, pH of the spotting solution and the synergistic effects with UV-irradiation largely contribute to the desired immobilization and resulting target recognition. Immobilization of DNA oligomer by use of Oxa-N on the NH2-functionalized surface without any activation step would be employed as one of the advanced methods for generating DNA-conjugated solid surface.  相似文献   

11.
Many bioprocesses depend on the effective formation of a biofilm on a solid support. In the present study, three different surface treatments (sandblasting, pure‐O2 plasma, and He–O2 plasma treatments) were conducted on polypropylene (PP) Pall rings used as a support in biotrickling filters for air pollution control. The intent was to modify the ring surface and/or electrochemical properties in order to possibly improve cell adhesion, wetting properties, and possibly reduce the start‐up time and increase the performance of the biotrickling filters. The surface treatments were found to generally increase the hydrophilicity and the zeta potential of the surfaces. However, the startup and performance of lab‐scale biotrickling filters packed with treated Pall rings were not significantly different than the control with untreated rings. Cell and colloid deposition experiments conducted in flow cells showed that the treated surfaces and the hydrodynamic conditions were not favorable for cell deposition indicating that there could be significant opportunities for improving packings used in environmental bioprocess applications. Biotechnol. Bioeng. 2009;103: 1060–1067. © 2009 Wiley Periodicals, Inc.  相似文献   

12.
The influence of N2 plasma on the antibacterial properties of polystyrene/fullerene (C60/PS) nanocomposite films with two concentrations is investigated. A comparison is made between the surface characteristics of the films before and after plasma irradiation for different time intervals. The alterations induced on the surface of the films after treatment are analyzed by contact angle and surface energy measurements, FTIR spectroscopy, and atomic force microscopy. The antibacterial properties, growth, biofilm formation, and adhesion of the nanocomposite films against two multidrug-resistant bacterial strains, Staphylococcus aureus KT337489 and Pseudomonas aeruginosa KT337488, are investigated before and after plasma irradiation. The results indicate that P. aeruginosa is more sensitive to treatment than S. aureus as well as an enhancement of the anti-adhesion of both strains to treated surfaces through exposure.  相似文献   

13.
The effect of surface probe density on DNA hybridization   总被引:25,自引:14,他引:11       下载免费PDF全文
The hybridization of complementary strands of DNA is the underlying principle of all microarray-based techniques for the analysis of DNA variation. In this paper, we study how probe immobilization at surfaces, specifically probe density, influences the kinetics of target capture using surface plasmon resonance (SPR) spectroscopy, an in situ label-free optical method. Probe density is controlled by varying immobilization conditions, including solution ionic strength, interfacial electrostatic potential and whether duplex or single stranded oligonucleotides are used. Independent of which probe immobilization strategy is used, we find that DNA films of equal probe density exhibit reproducible efficiencies and reproducible kinetics for probe/target hybridization. However, hybridization depends strongly on probe density in both the efficiency of duplex formation and the kinetics of target capture. We propose that probe density effects may account for the observed variation in target-capture rates, which have previously been attributed to thermodynamic effects.  相似文献   

14.
The present study was aimed at the development and evaluation of a DNA electrochemical biosensor for Mycobacterium sp. genomic DNA detection in a clinical specimen using a signal amplifier as dual-labeled AuNPs. The DNA electrochemical biosensors were fabricated using a sandwich detection strategy involving two kinds of DNA probes specific to Mycobacterium sp. genomic DNA. The probes of enzyme ALP and the detector probe both conjugated on the AuNPs and subsequently hybridized with target DNA immobilized in a SAM/ITO electrode followed by characterization with CV, EIS, and DPV analysis using the electroactive species para-nitrophenol generated by ALP through hydrolysis of para-nitrophenol phosphate. The effect of enhanced sensitivity was obtained due to the AuNPs carrying numerous ALPs per hybridization and a detection limit of 1.25 ng/ml genomic DNA was determined under optimized conditions. The dual-labeled AuNP-facilitated electrochemical sensor was also evaluated by clinical sputum samples, showing a higher sensitivity and specificity and the outcome was in agreement with the PCR analysis. In conclusion, the developed electrochemical sensor demonstrated unique sensitivity and specificity for both genomic DNA and sputum samples and can be employed as a regular diagnostics tool for Mycobacterium sp. monitoring in clinical samples.  相似文献   

15.
We have developed a simple and renewable electrochemical biosensor based on carbon paste electrode (CPE) for the detection of DNA synthesis and hybridization. CPE was modified with gold nanoparticles (AuNPs), which are helpful for immobilization of thiolated bioreceptors. AuNPs were characterized by scanning electron microscopy (SEM). Self-assembled monolayers (SAMs) of thiolated single-stranded DNA (SH–ssDNA) of the amelogenin gene was formed on CPE. The immobilization of the probe and its hybridization with the target DNA was optimized using different experimental conditions. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical response of ssDNA hybridization and DNA synthesis was measured using differential pulse voltammetry (DPV) with methylene blue (MB) as an electroactive indicator. The new biosensor can distinguish between complementary and non-complementary strands of amelogenin ssDNA. Genomic DNA was extracted from blood and was detected based on changes in the MB reduction signal. These results demonstrated that the new biosensor could be used for sex determination. The proposed biosensor in this study could be used for detection and discrimination of polymerase chain reaction (PCR) products of amelogenin DNA.  相似文献   

16.
Enzyme immobilization is extensively studied to improve enzyme properties in catalysis and analytical applications. Here, we introduce a simple and versatile enzyme immobilization platform based on adhesion-promoting peptides, namely Matter-tags. Matter-tags immobilize enzymes in an oriented way as a dense monolayer. The immobilization platform was established with three adhesion-promoting peptides; Cecropin A (CecA), liquid chromatography peak I (LCI), and Tachystatin A2 (TA2), that were genetically fused to enhanced green fluorescent protein and to two industrially important enzymes: a phytase (from Yersinia mollaretii) and a cellulase (CelA2 from a metagenomic library). Here, we report a universal and simple Matter-tag–based immobilization platform for enzymes on various materials including polymers (polystyrene, polypropylene, and polyethylene terephthalate), metals (stainless steel and gold), and silicon-based materials (silicon wafer). The Matter-tag–based enzyme immobilization is performed at ambient temperature within minutes (<10 min) in an aqueous solution harboring the phytase or cellulase by immersing the targeted material. The peptide LCI was identified as universal adhesion promoter; LCI immobilized both enzymes on all investigated materials. The attachment of phytase-LCI onto gold was characterized with surface plasmon resonance spectroscopy obtaining a dissociation constant value (KD) of 2.9·10−8 M and a maximal surface coverage of 504 ng/cm².  相似文献   

17.
For the first time, a very novel and simple immobilization method for fabrication of hydrogen peroxide biosensor was reported in this paper. The biocompatible composite HRP-ZrO(2) thin films were synthesized on gold electrode surface based on electro-deposition zirconia doped with horseradish peroxidase (HRP) by cyclic voltammetry scanning in KCl solution containing ZrO(2) and HRP. The fabricated process of biosensor was characterized by electrochemical impedance spectroscopy (EIS) and the surface topography of the prepared films was imaged by atomic force microscope (AFM). The HRP in HRP-ZrO(2) thin films kept its bioactivity and exhibited excellent electrocatalytical response to the reduction of H(2)O(2). Experimental conditions influencing the biosensor performance such as pH, potential were optimized. The resulting biosensor (HRP-ZrO(2)/Au electrode) showed a linear response to H(2)O(2) over a concentration range from 0.02 to 9.45mM with a detection limit of 2muM based on a signal-to-noise ratio of 3 under optimized conditions. The apparent Michaelis-Menten constant (K(M)(app)) was evaluated to be 8.01mM, which indicated the HRP in HRP-ZrO(2) thin films kept its native bioactivity and had high affinity for H(2)O(2). Moreover, the proposed biosensor showed high sensitivity, good reproducibility and long-term stability. What is more, this immobilization methodology widened biosensor application in biomolecules immobilization and could further develop for other protein and biomolecules immobilization.  相似文献   

18.
DNA functionalised semiconductor metallic oxide electrodes have been developed for the direct electrochemical detection of DNA hybridization, without labelling or the introduction of a redox couple. Conductive CdIn(2)O(4) thin films with controlled properties were deposited on glass substrates using an aerosol pyrolysis technique. The films exhibit a polycrystalline microstructure with a surface roughness of 1.5 nm (r.m.s.) and an electrical resistivity ranging between 1 and 3 x 10(-3) Omega cm. These electrodes were functionalised using hydroxylation and silanisation steps, to allow the binding of DNA probe sequences (20 bases). The electrical detection of DNA hybridization with complementary sequences has been performed using electrochemical impedance spectrometry (EIS) measuring the variation of impedance before and after hybridization. Two set-ups were used, a standard set-up including three electrodes and a set-up including two symmetrical electrodes. In both configurations, a significant increase of the impedance modulus, more particularly of the real part of the impedance (160-225% according to the electrochemical cell used) has been obtained over a frequency range of 10-10(5)Hz. DNA hybridization has also been systematically confirmed using the fluorescence spectrometry. This study emphasizes the high sensitivity of the CdIn(2)O(4) as a working electrode for the detection of biological events occurring at the electrode surface.  相似文献   

19.
An electrochemical DNA sensor based on the hybridization recognition of a single-stranded DNA (ssDNA) probe immobilized onto a gold electrode to its complementary ssDNA is presented. The DNA probe is bound on gold surface electrode by using self-assembled monolayer (SAM) technology. An optimized mixed SAM with a blocking molecule preventing the nonspecific adsorption on the electrode surface has been prepared. In this paper, a DNA biosensor is designed by means of the immobilization of a single stranded DNA probe on an electrochemical transducer surface to recognize specifically Escherichia coli (E. coli) 0157:H7 complementary target DNA sequence via cyclic voltammetry experiments. The 21 mer DNA probe including a C6 alkanethiol group at the 5' phosphate end has been synthesized to form the SAM onto the gold surface through the gold sulfur bond. The goal of this paper has been to design, characterise and optimise an electrochemical DNA sensor. In order to investigate the oligonucleotide probe immobilization and the hybridization detection, experiments with different concentration of DNA and mismatch sequences have been performed. This microdevice has demonstrated the suitability of oligonucleotide Self-assembled monolayers (SAMs) on gold as immobilization method. The DNA probes deposited on gold surface have been functional and able to detect changes in bases sequence in a 21-mer oligonucleotide.  相似文献   

20.
A cell-based in vitro exposure system was developed to determine whether oxidative stress plays a role in the cytotoxic effects of volatile organic compounds (VOCs) such as benzene, toluene, xylene, and chlorobenzene, using human epithelial HeLa cells. Thin films based on cysteine-terminated synthetic oligopeptides were fabricated for immobilization of the HeLa cells on a gold (Au) substrate. In addition, an immobilized cell-based sensor was applied to the electrochemical detection of the VOCs. Layer formation and immobilization of the cells were investigated with surface plasmon resonance (SPR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The adhered living cells were exposed to VOCs; this caused a change in the SPR angle and the VOC-specific electrochemical signal. In addition, VOC toxicity was found to correlate with the degree of nitric oxide (NO) generation and EIS. The primary reason for the marked increase in impedance was the change of aqueous electrolyte composition as a result of cell responses. The p53 and NF-kappaB downregulation were closely related to the magnitude of growth inhibition associated with increasing concentrations of each VOC. Therefore, the proposed cell immobilization method, using a self-assembly technique and VOC-specific electrochemical signals, can be applied to construct a cell microarray for onsite VOC monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号