首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
β-淀粉样前体蛋白APP(β-amyloidprecursorprotein)与阿尔茨海默氏症密切相关,它经分泌酶γ切割后生成的胞内端AID(APPintracellulardomain)能够诱导细胞凋亡。为了研究AID在阿尔茨海默氏症病理过程中的作用,我们以AID为诱饵蛋白用酵母双杂交系统筛选与之有相互作用的蛋白。我们发现人不均一核蛋白D类似蛋白JKTBP2的90-204位肽段可以结合AID。利用293T细胞表达蛋白后进行免疫共沉淀,结果证实二者间存在相互作用。这些结果指出JKTBP2可能在阿尔茨海默氏症形成中有重要作用。  相似文献   

2.
β淀粉样蛋白(βAP)在Alzheimer型老年痴呆的脑的病理改变机制中起着重要的作用。βAP不仅是老年斑的主要结构物质,而且还具有对神经元细胞毒性作用,因此它被认为是AD早期发生的触发因素。βAP是由β淀粉样蛋白前体蛋白(APP)上酶切下来的4kD的小肽片段。APP可通过不同的途径裂解,形成βAP的裂解途径是其中之一。因此寻找参与APP裂解酶,α、β、γ分泌酶成为AD研究领域的一个热点。近期这方面的研究有了较重要的进展,克隆了这些酶的基因。APP相关分泌酶的研究不仅有利于开发抑制βAP形成的药物,而且对进一步研究AD的病理机制也将产生影响。  相似文献   

3.
β-淀粉样蛋白前体蛋白胞内结构域(AICD)研究进展   总被引:1,自引:0,他引:1  
张弦  许华曦  张云武 《生命科学》2008,20(2):159-164
老年性痴呆症(Alzheimer’s disease,AD)一个重要的病理学特征,是在神经细胞外形成由β-淀粉样蛋白(β-amyloid,Aβ)组成的淀粉样斑(amyloidplaques)。β-淀粉样蛋白前体蛋白(β-amyloidprocursorprotein,APP)经β-分泌酶和γ-分泌酶依次水解后产生AB和APP胞内结构域(APP intrace Uulardomain,AICD)。现在已经知道AB在AD的发病机制中起着关键作用,但是关于AICD的生理及病理功能还不清楚。近年来研究发现AICD可以与细胞内多种蛋白相互作用,而且AICD在基因转录、细胞凋亡以及APP的加工和运输过程中均有调节功能。本文针对这一领域的研究进展,对AICD的生理及病理功能进行探讨。  相似文献   

4.
目的 通过胞内实验验证PML-C与GINS2蛋白之间的相互作用.方法 将诱饵蛋白质粒pGBKT7-PML-C和文库蛋白质粒pACT2-GINS2共转化AH109酵母菌,通过一对一的酵母双杂交技术验证两者在活细胞内的相互作用;构建pCMV-HA-PML-C及pCMV-Myc-GINS2真核表达载体并共转染人胚肾293细胞,利用免疫共沉淀技术验证二者之间的相互作用.结果 pGBKT7-PML-C诱饵蛋白质粒和pACT2-GINS2靶蛋白质粒共转化AH109酵母菌后,可见蓝色阳性克隆生长;pCMV-HA-PML-C及pCMV-Myc-GINS2真核表达载体构建成功,共转染293细胞,抗HA多克隆抗体沉淀与HA-PML-C相互作用的蛋白复合物后,用抗Myc单克隆抗体进行Western印迹检测,可以检测到Myc-GINS2蛋白.结论 利用酵母双杂交和免疫共沉淀技术在胞内验证了PML-C与GINS2间存在相互作用.  相似文献   

5.
阿尔茨海默病(Alzheimer disease’s, AD)是以老年斑(senile plaques, SPs)、神经原纤维缠结(neurofibrillary tangles, NFTs)等为主要病理特征的神经退行性疾病。β-淀粉样蛋白(β-amyloid protein, Aβ)在神经元胞外聚集形成老年斑,是引起AD的关键因素。过量Aβ的产生来源于β-淀粉样前体蛋白(β-amyloid precursor protein, APP)裂解途径的异常。因此,探究APP在AD的发病过程中裂解途径及Aβ的产生机制具有重要意义。目前,很多药物研究以减少和清除老年斑为目的,但是老年斑的形成是由全长Aβ和多种截断型Aβ共同作用的结果,并且其对SPs形成的影响作用机制尚未完全明确。本文就APP裂解途径及截断型Aβ的产生机制进行综述,以期为AD的研究提供理论依据。  相似文献   

6.
史岸冰  郑坚瑜 《生命科学》1999,11(5):235-237,229
Aβ在脑内的沉积是Alzheimer病的病理现象。对Alzheimer病的研究揭示Aβ的生成与早老蛋白和淀粉样沉淀前体蛋白相互作用密切相关。早老蛋白和淀粉样沉淀前体蛋白基因的突变均能改变淀粉样沉淀前体蛋白的正常切割,使得Aβ的生成量增加。  相似文献   

7.
 淀粉样前体蛋白 (APP)是阿尔茨海默氏病 (AD)发病过程中有重要作用的蛋白 .利用酵母双杂交的方法发现低密度脂蛋白受体相关蛋白 6(LRP6)羧基端可和 APP羧基端片段相互作用 .分别构建了 APP和 LRP6的原核表达载体 ,并利用大肠杆菌获得 GST- APP1 0 6、MBP- LRP6融合蛋白 .体外相互作用研究证实了 APP羧基端和 LRP6羧基端之间的结合 .这使与 AD相关的两个重要蛋白 apo E和 APP联系起来 ,并提示 LRP6可能在 APP代谢和 Aβ产生中起重要作用 .  相似文献   

8.
β-淀粉样肽前体蛋白的结构及生物活性   总被引:2,自引:0,他引:2  
Sheng JW  Hu YE  Xia ZQ 《生理科学进展》2000,31(2):166-168
β-淀粉样肽前体蛋白是AD患者脑内神经炎斑的主要成分--β-淀粉样肽的代谢前体。其基因定位于人第21号染色体,经可变剪接可产生10种转录物。β-淀粉样肽前体蛋折广泛表达于几乎所有的神经元和非神经元组织,具有一个较长的细胞外肽链、单一跨膜区及一个短的胞内区域。研究表明,它具有神经营养、调节细胞粘附及抑制丝氨酸蛋白酶等多种生物活性。现有资料还提示β-淀粉样肽前体蛋白可能是细胞因子(或其类似物)的受体。  相似文献   

9.
β淀粉样蛋白质前体(APP)有α-和β-裂解途径。细胞膜脂膜筏(或胆固醇)对APP代谢有调节作用,存在脂膜筏外的APP经α分泌酶发生α-裂解不产生Aβ,结合APP的脂膜筏与含有β分泌酶的脂膜筏经胞吞簇集化使APP发生β-裂解产生Aβ。  相似文献   

10.
淀粉样前体蛋白(amyloid precursor protein,APP)是一类与阿尔茨海默氏病(Alzheimer's disease,AD)的发生、发展密切相关的I型跨膜蛋白,具有膜受体样结构,但迄今人们对APP真正的生理功能仍知之甚少。近年来研究发现,APP分子间可以进行二聚化,并且反式的二聚化作用有促进细胞黏附的功能。而APP的降解产物β-淀粉样蛋白(β—amyloid protein,Aβ)反过来又可以加速APP的聚集,经过一系列反应,最终引发细胞凋亡。本文综述这一领域的研究进展,特别是APP的相互作用,以及这些相互作用对细胞状态和行为的影响。  相似文献   

11.
The beta-amyloid precursor protein (APP)-binding protein Fe65 is involved in APP nuclear signaling and several steps in APP proteolytic processing. In this study, we show that Fe65 stimulates gamma-secretase-mediated liberation of the APP intracellular domain (AICD). The mechanism of Fe65-mediated stimulation of AICD formation appears to be through enhanced production of the carboxyl-terminal fragment substrates of gamma-secretase and direct stimulation of processing by gamma-secretase. The stimulatory capacity of Fe65 is isoform-dependent, as the non-neuronal and a2 isoforms promote APP processing more effectively than the exon 9 inclusive neuronal form of Fe65. Intriguingly, Fe65 stimulation of AICD production appears to be inversely related to pathogenic beta-amyloid production as the Fe65 isoforms profoundly stimulate AICD production and simultaneously decrease Abeta42 production. Despite the capacity of Fe65 to stimulate gamma-secretase-mediated APP proteolysis, it does not rescue the loss of proteolytic function associated with the presenilin-1 familial Alzheimer disease mutations. These data suggest that Fe65 regulation of APP proteolysis may be integrally associated with its nuclear signaling function, as all antecedent proteolytic steps prior to release of Fe65 from the membrane are fostered by the APP-Fe65 interaction.  相似文献   

12.
The intramembranous gamma-secretase cleavage of the beta-amyloid precursor protein (APP) is dependent on biologically active presenilins (PS). Notch also undergoes a similar PS-dependent gamma-secretase-like cleavage, resulting in the liberation of the Notch intracellular domain (NICD), which is critically required for developmental signal transduction. gamma-Secretase processing of APP results in the production of a similar fragment called AICD (APP intracellular domain), which may function in nuclear signaling as well. AICD, like NICD, is rapidly removed. By using a battery of protease inhibitors we demonstrate that AICD, in contrast to NICD, is degraded by a cytoplasmic metalloprotease. In vitro degradation of AICD can be reconstituted with cytoplasmic fractions obtained from neuronal and non-neuronal cells. Taking into account the inhibition profile and the cytoplasmic localization, we identified three candidate enzymes (neurolysin, thimet oligopeptidase, and insulin-degrading enzyme (IDE), also known as insulysin), which all are involved in the degradation of bioactive peptides in the brain. When insulin, a well characterized substrate of IDE, was added to the in vitro degradation assay, removal of AICD was efficiently blocked. Moreover, overexpression of IDE resulted in enhanced degradation of AICD, whereas overexpression of the inactive IDE E111Q mutant did not affect AICD degradation. Finally, immunodepletion of IDE significantly reduced the AICD degrading activity. Therefore our data demonstrate that IDE, which is one of the proteases implicated in the removal of extracellular Abeta, also removes the cytoplasmic product of gamma-secretase cleaved APP.  相似文献   

13.
To elucidate the roles of the APP intracellular domain (AICD) in the development of Alzheimer's disease, a yeast two-hybrid system was used to screen for AICD-interacting proteins. Our result revealed that FKBP12, an immunophilin with a peptidyl-prolyl cis-trans isomerase (PPIase) activity, may interact with AICD. This interaction was confirmed by coimmunoprecipitation studies. FKBP12 has been shown to be expressed at a higher level in areas of pathology of patients with neurodegenerative diseases. In addition, Pin1, a member of another PPIase family, has been suggested to be involved in the amyloidogenic APP processing and Abeta production. The interaction between FKBP12 and AICD might hint at a possible role FKBP12 plays, probably in a fashion similar to Pin1, in the amyloidogenesis of APP. We also found that the interaction was interfered, in a dose-dependent manner, by FK506, whose neuroprotective effect has been suggested to be correlated with its PPIase inhibitory activity.  相似文献   

14.
beta-Amyloid precursor protein (APP) is a widely expressed transmembrane protein of unknown function that is involved in the pathogenesis of Alzheimer's disease. The cytoplasmic tail of APP interacts with phosphotyrosine binding (PTB) domain containing proteins (Fe65, X11, mDab-1, and JIP-1) and may modulate gene expression and apoptosis. We now identify Shc A and Shc C, PTB-containing adapter proteins that signal to cellular differentiation and survival pathways, as novel APP-interacting proteins. The APP cytoplasmic tail contains a PTB-binding motif (Y(682)ENPTY(687)) that, when phosphorylated on Tyr(682), precipitated the PTB domain of Shc A and Shc C, as well as endogenous full-length Shc A. APP and Shc C were physically associated in adult mouse brain homogenates. Increase in phosphorylation of APP by overexpression of the nerve growth factor receptor Trk A in 293T cells promoted the interaction of transfected APP and endogenous Shc A. Pervanadate treatment of N2a neuroblastoma cells resulted in tyrosine phosphorylation and association of endogenous APP and Shc A. Thus, APP and Shc proteins interact in vitro, in cells, and in the mouse brain. Tyrosine phosphorylation of APP may promote the interaction with Shc proteins.  相似文献   

15.
We have analysed the axonal sorting signals of amyloid precursor protein (APP). Wild-type and mutant versions of human APP were expressed in hippocampal neurons using the Semliki forest virus system. We show that wild-type APP and mutations implicated in Alzheimer's disease and another brain beta-amyloidosis are sorted to the axon. By analysis of deletion mutants we found that the membrane-inserted APP ectodomain but not the cytoplasmic tail is required for axonal sorting. Systematic deletions of the APP ectodomain identified two regions required for axonal delivery: one encoded by exons 11-15 in the carbohydrate domain, the other encoded by exons 16-17 in the juxtamembraneous beta-amyloid domain. Treatment of the cells with the N-glycosylation inhibitor tunicamycin induced missorting of wild-type APP, supporting the importance of glycosylation in axonal sorting of APP. The data revealed a hierarchy of sorting signals on APP: the beta-amyloid-dependent membrane proximal signal was the major contributor to axonal sorting, while N-glycosylation had a weaker effect. Furthermore, recessive somatodendritic signals, most likely in the cytoplasmic tail, directed the protein to the dendrites when the ectodomain was deleted. Analysis of detergent solubility of APP and another axonally delivered protein, hemagglutinin, demonstrated that only hemagglutinin formed CHAPS-insoluble complexes, suggesting distinct mechanisms of axonal sorting for these two proteins. This study is the first delineation of sorting requirements of an axonally targeted protein in polarized neurons and indicates that the beta-amyloid domain plays a major role in axonal delivery of APP.  相似文献   

16.
17.
Herein we investigated the processing of beta-secretase (BACE), implicated in Alzheimer's disease through processing of beta-amyloid precursor protein (betaAPP), into smaller metabolites. Four products of approximately 34, approximately 12, approximately 8, and approximately 5kDa were identified, none of which were generated autocatalytically. The approximately 34 and approximately 12kDa forms are held together by disulfide bridges. The approximately 34kDa form results from two cleavages: an N-terminal processing at RLPR(45) downward arrow by furin/PC5, and a C-terminal cleavage at SQDD(379) downward arrow by an unknown enzyme that also releases the C-terminal approximately 12kDa product. Microsequencing of the approximately 8 and approximately 5kDa fragments showed that they are the result of processing at VVFD(407) downward arrow and DMED(442) downward arrow, respectively. Mutagenesis of the identified cleavage sites revealed that the mutants D379A, D379L or D379E block the degradation of BACE into the approximately 12kDa product, confirming the importance of Asp(379). Notably, the D379E mutant results in higher betaAPP derived C99 levels. In contrast, D442A or D442E did not affect the production of the approximately 8 or approximately 5kDa products. The levels of the approximately 8 and approximately 5kDa products are significantly lower in the mutant D407A but less so D407E, likely due to the low efficacy of ER exit of the D407A mutant. Indeed, while co-expression of betaAPP with BACE results in enhanced production of Abeta(11-40), the D407A mutant produces mostly Abeta(40).  相似文献   

18.
Cleavage of the amyloid precursor protein (APP) is a crucial event in Alzheimer disease pathogenesis that creates the amyloid-beta peptide (Abeta) and liberates the carboxy-terminal APP intracellular domain (AICD) into the cytosol. The interaction of the APP C terminus with the adaptor protein Fe65 mediates APP trafficking and signalling, and is thought to regulate APP processing and Abeta generation. We determined the crystal structure of the AICD in complex with the C-terminal phosphotyrosine-binding (PTB) domain of Fe65. The unique interface involves the NPxY PTB-binding motif and two alpha helices. The amino-terminal helix of the AICD is capped by threonine T(668), an Alzheimer disease-relevant phosphorylation site involved in Fe65-binding regulation. The structure together with mutational studies, isothermal titration calorimetry and nuclear magnetic resonance experiments sets the stage for understanding T(668) phosphorylation-dependent complex regulation at a molecular level. A molecular switch model is proposed.  相似文献   

19.
J Schilling  Y Wang  K Lau  L Smith  B Cordell 《Gene》1991,98(2):225-230
To understand the pathological process by which amyloid is deposited in Alzheimer's disease, it is important to characterize the proteolytic processing events of the beta-amyloid precursor protein (beta-APP) from which the amyloid-forming fragment is excised. A potentially important component in beta-APP processing is the 57-amino acid (aa) Kunitz serine protease inhibitor (KPI) located within the extracellular domain of both the 751- and 770-aa isoforms of beta-APP. We have synthesized DNA encoding the 57-aa KPI domain as a necessary step in identifying the role of the protease inhibitor in beta-APP processing and amyloid formation. A bacterial secretion system directed by the alkaline phosphatase signal peptide of Escherichia coli linked to a synthetic gene encoding KPI was used to produce soluble, extracellular recombinant KPI (reKPI) protein. The reKPI protein was purified to homogeneity from bacterial supernatants and was biochemically and biologically characterized. Complete aa sequence analysis confirmed the fidelity of the reKPI, and fast-atom bombardment mass-spectral analysis was used to document that reKPI was of the predicted Mr. The reKPI is as active on a molar basis as the inhibitor-containing beta-APP when assayed for inhibition of trypsin activity. Together these data suggest that reKPI protein is properly folded and lacking in modified aa. Hence, this reKPI will be an important reagent in gaining a better understanding of the role of the KPI domain in beta-APP function and metabolism, as well as in the proteolytic events involved in beta-amyloid formation.  相似文献   

20.
Presenilins (PS1/PS2) play a critical role in proteolysis of beta-amyloid precursor protein (beta APP) to generate beta-amyloid, a peptide important in the pathogenesis of Alzheimer's disease. Nevertheless, several regulatory functions of PS1 have also been reported. Here we demonstrate, in neuroblastoma cells, that PS1 regulates the biogenesis of beta APP-containing vesicles from the trans-Golgi network and the endoplasmic reticulum. PS1 deficiency or the expression of loss-of-function variants leads to robust vesicle formation, concomitant with increased maturation and/or cell surface accumulation of beta APP. In contrast, release of vesicles containing beta APP is impaired in familial Alzheimer's disease (FAD)-linked PS1 mutant cells, resulting in reduced beta APP delivery to the cell surface. Moreover, diminution of surface beta APP is profound at axonal terminals in neurons expressing a PS1 FAD variant. These results suggest that PS1 regulation of beta APP trafficking may represent an alternative mechanism by which FAD-linked PS1 variants modulate beta APP processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号