首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AcSDKP抑制体外培养条件下人骨髓间充质干细胞的增殖   总被引:3,自引:0,他引:3  
Dai G  Huang C  Li Y  Pi YH  Wang BH 《生理学报》2006,58(2):110-115
N-乙酰基-丝氨酰-天冬氨酰-赖氨酰-脯氨酸(N-acetyl-seryl-aspartyl-lysyl-proline,AcSDKP)是一种具有生理调控活性的四肽因子,对造血干/祖细胞增殖具有抑制作用。本研究采用集落形成实验、甲基偶氮唑盐(MTT)比色法、细胞分裂指数测定等方法,考察了AcSDKP对体外培养的人骨髓间充质干细胞(mesenchymal stem cell,MSC)增殖的影响。结果显示,在AcSDKP浓度为1×10-12mol/L-1×10-9mol/L的培养体系中,人骨髓MSC集落生成率和大小、活力细胞数和分裂指数均降低,最大效应浓度为1×10-11mol/L。以上实验结果表明,在体外培养条件下,一定浓度的AcSDKP对人骨髓MSC 的增殖具有抑制作用。  相似文献   

2.
Objectives: For reasons of provision of highly‐specific surface area and three‐dimensional culture, microcarrier culture (MC) has garnered great interest for its potential to expand anchorage‐dependent stem cells. This study utilizes MC for in vitro expansion of human bone marrow mesenchymal stem cells (BMMSCs) and analyses its effects on BMMSC proliferation and differentiation. Materials and methods: Effects of semi‐continuous MC compared to control plate culture (PC) and serial bead‐to‐bead transfer MC (MC bead‐T) on human BMMSCs were investigated. Cell population growth kinetics, cell phenotypes and differentiation potential of cells were assayed. Results: Maximum cell density and overall fold increase in cell population growth were similar between PCs and MCs with similar starting conditions, but lag period of BMMSC growth differed substantially between the two; moreover, MC cells exhibited reduced granularity and higher CXCR4 expression. Differentiation of BMMSCs into osteogenic and adipogenic lineages was enhanced after 3 days in MC. However, MC bead‐T resulted in changes in cell granularity and lower osteogenic and adipogenic differentiation potential. Conclusions: In comparison to PC, MC supported expansion of BMMSCs in an up‐scalable three‐dimensional culture system using a semi‐continuous process, increasing potential for stem cell homing ability and osteogenic and adipogenic differentiation.  相似文献   

3.
4.
Bone marrow multipotent stromal cells (BMSCs) have the ability to transdifferentiate into various cell types, including: osteoblasts, chondrocytes, adipocytes, neurons, and cardiomyocytes. This study aimed to differentiate the BMSCs into cardiomyocyte. BMSCs were exposed to 5-azacytidine for 24 h. Seven days after the induction of cell differentiation by 5-azacytidine, the cardiomyogenic cells were stained by fushin and binucleated cells were counted and compared with the neonate cardiomyocyte as positive control. In addition, immunofluorescence analysis and western blot were performed using the antibodies against α-actinin, desmin, troponin T, and β-myosin heavy chain. Our results showed that there was no significant difference between the number of binucleated cells within the cardiomyogenic cell group and positive control group; however, a statistically significant difference was observed between both of these groups and undifferentiated cell group (P < 0.005). In addition, after 5-azacytidine treatment, BMSCs had a higher expression of cardiac-specific markers such as desmin, α-actinin, troponin T and β-myosin heavy chain compared with the untreated groups (P < 0.005). We concluded that 5-azacytidine is an effective inducer for the differentiation of BMSCs into cardiomyocytes and could produce a population of binucleated cells, which express α-actinin, desmin, troponin T, and β-myosin heavy chain, four markers of cardiomyocytes.  相似文献   

5.
6.
7.
The proliferation of human bone marrow mesenchymal stem cells (MSCs) employing xeno-free materials not containing fetal calf serum (FCS) and porcine trypsin was investigated for the regenerative medicine of cartilage using MSCs. Four sequential subcultivations of MSCs using a medium containing 10% FCS and recombinant trypsin (TrypLESelect™) resulted in cell growth comparable to that with porcine trypsin. There was no apparent difference in the cell growth and morphology between two kinds of MSC stored in liquid nitrogen using 10% FCS plus DMSO or serum-free TC protector™. MSCs were isolated from human bone marrow cells, stored in liquid nitrogen, and sequentially subcultivated four times employing conventional materials that included FCS, porcine trypsin, and DMSO, or xeno-free materials that included serum-free medium (MesenCult-XF™), TC protector™ and TrypLESelect™. Cells in the culture using the xeno-free materials maintained typical fibroblast-like morphology and grew more rapidly than the cells in the culture using the conventional materials, while the cell surface markers of MSCs (CD90 and CD166) were well maintained in both cultures. Chondrogenic pellet cultures were carried out using these subcultivated cells and a medium containing TGFβ3 and IGF1. The pellet culture using cells grown with the xeno-free materials showed an apparently higher gene expression of aggrecan, a chondrocyte marker, than the pellet culture using cells grown with the conventional materials. Consequently, MSCs that are isolated, stored, and grown using the xeno-free materials including the serum-free medium (MesenCult-XF™), TC protector™, and recombinant trypsin (TrypLESelect™) might be applicable for regenerative medicine of cartilage.  相似文献   

8.
As an essential cellular component of the bone marrow (BM) microenvironment mesenchymal stromal cells (MSC) play a pivotal role for the physiological regulation of hematopoiesis, in particular through the secretion of cytokines and chemokines. Mass spectrometry (MS) facilitates the identification and quantification of a large amount of secreted proteins (secretome), but can be hampered by the false-positive identification of contaminating proteins released from dead cells or derived from cell medium. To reduce the likelihood of contaminations we applied an approach combining secretome and proteome analysis to characterize the physiological secretome of BM derived human MSC. Our analysis revealed a secretome consisting of 315 proteins. Pathway analyses of these proteins revealed a high abundance of proteins related to cell growth and/or maintenance, signal transduction and cell communication thereby representing key biological functions of BM derived MSC on protein level. Within the MSC secretome we identified several cytokines and growth factors such as VEGFC, TGF-β1, TGF-β2 and GDF6 which are known to be involved in the physiological regulation of hematopoiesis. By comparing the peptide patterns of secretomes and cell lysates 17 proteins were identified as candidates for proteolytic processing. Taken together, our combined MS work-flow reduced the likelihood of contaminations and enabled us to carve out a specific overview about the composition of the secretome from human BM derived MSC. This methodological approach and the specific secretome signature of BM derived MSC may serve as basis for future comparative analyses of the interplay of MSC and HSPC in patients with hematological malignancies.  相似文献   

9.
Cellular populations with phenotypes similar to multipotent mesenchymal stromal cells were isolated from two different sources, including human bone marrow (BM) and subcutaneous adipose tissue (SAT). Comparative analysis of the efficiency of differentiation in the direction of osteogenesis has revealed morphological changes confirmed by staining with Alizarin red and von Kossa in bone marrow cells at the 14th day and in adipose tissue cells at the 28th day of cultivation in the medium with inductors. Analysis of expression of the osteopontin, osteocalcin, and bone sialoprotein genes in RT-PCR reactions has detected essential differences in the potential of these cells to differentiate into bone tissue cells. Cells isolated from BM of both the control and experimental groups were positive for octeopontin (OP) on the 14th day. Unlike these cells, in cells isolated from SAT in medium without an inductor, no product of OP gene expression was identified. In the cells subjected to differentiation, OP appeared at day 14. In the BM cells, octeocalcin (OC) was found at the 14th day, while the bone sialoprotein (BS) was found at the 21st day of cultivation in induction medium. In cells isolated from SAT, OC, and BS were not detected, even at the 28th day after the beginning of induction.  相似文献   

10.
11.
Bone marrow-derived mesenchymal stem cells (BMMSCs) from the patients suffering from age-related osteoporosis were found to have numerous degeneration, such as decreased growth rate, impaired capacity of differentiating into local tissue, and repressed telomerase activity. However, it is not clear whether post-menopausal osteoporotic bone is either subject to such decline in cellular function. In the present study, bone marrow cells were harvested from ovariectomized (OVX) and Sham rats and cultured in vitro at 3 months post-surgery. MTT assay indicated that the proliferation potential of OVXBMMSCs was always higher than that of ShamBMMSCs, no matter cultured in basic, osteoblastic or adipogenic medium. Alkaline phosphatase activity assay, Alizarin red S staining, Oil red O staining and real-time RT-PCR analysis further demonstrated that bilateral ovariectomization positively influenced the osteoblastic and adipogenic differentiation potential of BMMSCs, this action may be partly mediated through up-regulation of osteoblastic special markers core binding factor a1, collagen type I and low-density lipoprotein receptor-related protein 5, as well as adipogenic special markers peroxisome proliferators activated receptor gamma, CCAAT/enhancer binding protein alpha and adipocyte lipid-binding protein 2. These results may hold great promise for using post-menopausal osteoporotic bone as an attractive autologous marrow source for tissue engineering and cell-based therapies.  相似文献   

12.
Malondialdehyde(MDA)is a well known inducer of carbonyl stress in a variety of human cells,however,its effects on human bone marrow mesenchymal stem cells(hMSCs)have not been documented.In this study,the effects of MDA concentration on the growth rate and proliferation of hMSCs in vitro were assessed.Under high concentrations of MDA,the cell count was decreased and the population doubling time(PDT)was lengthened.Flow cytometry(FCM)demonstrated that MDA triggered cells to undergo apoptosis.in parallel with the findings in MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide]assay which showed that it can also impair cellular viability.Surprisingly,FCM also determined that the percentage of hMSCs in G2/M- and S-phases also increased in a dose-dependent manner with respect to MDA concentration.These results strongly suggest that even though hMSCs were severely impaired by high concentrations of MDA,they were still able to send signals that resulted in accelerated cellular proliferation process.This study provided important insights on how carbonyl stress affects cell cycle and proliferation of hMSCs.  相似文献   

13.
We investigate the effects mediated by glucocorticoid (GC) receptor (GR) blockage by using RU486, a GR antagonist and GR short interfering RNA (GR siRNA) on the proliferative and differentiation capabilities of human bone marrow mesenchymal stromal/stem cells (MSCs) and on their senescence and antioxidant levels during extended in vitro culture. Treatment with either RU486 or GR siRNA for a 7-day period significantly increased the proliferation of MSCs and their osteogenic capabilities, as reflected by an increase in alkaline phosphatase (ALP) levels after differentiation. Following 4 weeks of treatment, MSCs improved or maintained their proliferation rates, whereas control MSCs exhibited decreased proliferation. Although all MSCs exhibited reduced osteogenic potential after 4 weeks of in vitro culture, the MSCs treated with GR inhibitors showed higher ALP levels than untreated MSCs on being subjected to osteogenic differentiation. Such treatment also significantly down-regulated the adipogenic capabilities of MSCs. Telomere lengths and the activities of telomerase and superoxide dismutase of MSCs treated with either RU486 or GR siRNA appeared to be higher than those detected in controls. These results demonstrate that the blockage of effects mediated by the GCs normally found in fetal bovine serum might postpone senescence of these cells by up-regulating their antioxidant levels. Our data suggest that the blocking of the effects mediated by GCs might extend the lifespan of endogenous MSCs in patients who have elevated GC levels as a consequence of advancing age or estrogen depletion.  相似文献   

14.
Background aimsThe ability to expand and maintain bone marrow (BM)-derived mesenchymal stem cells (MSC) in vitro is an important aspect of their therapeutic potential. Despite this, the exact composition of stromal cell types within these cultures and the potential effects of non-stem cells on the maintenance of MSC are poorly understood.MethodsC57BL/6J BM stroma was investigated as a model to determine the relationship between MSC and non-multipotent cells in vitro. Whole BM and single-cell derived cultures were characterized using flow cytometry and cell sorting combined with multipotent differentiation. Proliferation of individual stromal populations was evaluated using BrdU.ResultsAt a single-cell level, MSC were distinguished from committed progenitors, and cells lacking differentiation ability, by the expression of CD105 (CD105+). A 3-fold reduction in the percentage of CD105+ cells was detected after prolonged culture and correlated with loss of MSC. Depletion of CD105+ cells coincided with a 10–20% increase in the frequency of proliferating CD105? cells. Removal of CD105? stroma caused increased proliferation in CD105+ cells, which could be diminished by conditioned media from parent cultures. Comparison of the multipotent differentiation potential in purified and non-purified CD105+ cells determined that MSC were detectable for at least 3 weeks longer when cultured in the absence of CD105? cells.ConclusionsThis work identifies a simple model for characterizing the different cellular components present in BM stromal cultures and demonstrates that stromal cells lacking multipotent differentiating capacity greatly reduce the longevity of MSC.  相似文献   

15.
Strontium ranelate (SrR) was an effective anti-osteoporotic drug to increase bone formation and decrease bone resorption. However, reports about the effect of SR on osteoblastic and adipocytic differentiation from bone marrow mesenchymal stem cells (BMMSCs) are limited. The purpose of this study is to evaluate whether SrR affects the ability of BMMSCs to differentiate into osteoblasts or adipocytes. Rat BMMSCs were identified by flow cytometry and exposed to SR (0.1 and 1.0mMSr(2+)) under osteogenic or adipogenic medium for 1 and 2weeks. The proliferation and differentiation of BMMSCs were analyzed by MTT, alkaline phosphatase (ALP), Oil red O staining, quantitative real-time RT-PCR and Western blot assays. SrR significantly inhibited the proliferation, increased osteoblastic but decreased adipocytic differentiation of rat BMMSCs dose-dependently. In osteogenic medium, SrR increased the expression of ALP, the mRNA levels of Cbfa1/Runx2, bone sialoprotein, and osteocalcin by RT-PCR, and the protein levels of Cbfa1/Runx2 by Western blot. In adipogenic medium, SrR decreased the mRNA levels of PPARγ2, adipocyte lipid-binding protein 2 (aP2/ALBP), and lipoprotein lipase (LPL) by RT-PCR, and the protein expression of PPARγ in Western blot analysis. These results indicated that the effects of SrR to promote osteoblastic but inhibit adipocytic differentiation of BMMSCs might contribute to its effect on osteoporosis treatment.  相似文献   

16.
Treatment of intact Swiss 3T3 cells with calyculin-A, an inhibitor of myosin light chain (MLC) phosphatase, induces tyrosine phosphorylation of p125(Fak) in a sharply concentration- and time-dependent manner. Maximal stimulation was 4.2 +/- 2.1-fold (n = 14). The stimulatory effect of calyculin-A was observed at low nanomolar concentrations (<10 nM); at higher concentrations (>10 nM) tyrosine phosphorylation of p125(Fak) was strikingly decreased. Calyculin-A induced tyrosine phosphorylation of p125(Fak) through a protein kinase C- and Ca(2+)-independent pathway. Exposure to either cytochalasin-D or latrunculin-A, which disrupt actin organization by different mechanisms, abolished tyrosine phosphorylation of p125(Fak) in response to calyculin-A. Treatment with high concentrations of platelet-derived growth factor (20 ng/ml) which also disrupt actin stress fibers, completely inhibited tyrosine phosphorylation of p125(Fak) in response to calyculin-A. This agent also induced tyrosine phosphorylation of the focal adhesion-associated proteins p130(Cas) and paxillin. These tyrosine phosphorylation events were associated with a striking increase in the assembly of focal adhesions. The Rho kinase (ROK) inhibitor HA1077 that blocked focal adhesion formation by bombesin, had no effect on the focal adhesion assembly induced by calyculin-A. Thus, calyculin-A induces transient focal adhesion assembly and tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin, acting downstream of ROK.  相似文献   

17.
In order to investigate the influence of calcium and strontium ion concentration on human bone marrow stromal cells and their differentiation to osteoblasts, different cell culture media have been used. Even though this study does not contain a bone substitute material, the reason for this study was the decrease of cation concentration by many biomaterials, due to induced apatite precipitation. As a consequence, the reduced calcium ion concentration is known to affect osteoblastic development. Therefore, the main focus was put on the question, whether an increased strontium concentration (in the range of mM) might be suitable to compensate the lack of calcium ions. The effect of solely strontium ions—with only calcium in the media resulting from fetal calf serum—was investigated. Commercially available calcium-free medium (modified α-MEM) was tested in comparison with media with varied calcium ion concentrations (0.9, 1.8, and 3.6 mM), or strontium ion concentration (0.4, 0.9, 1.8, and 3.6 mM). In case of calcium, higher concentrations cause increased proliferation, while differentiation was shifted to earlier points of time. Differentiation was increased by solely strontium ions only at 0.4–0.9 mM, while proliferation was highest for 0.9–1.8 mM. From these results, it can be concluded that strontium is able to compensate a lack of calcium to a certain degree. Thus, in contrast to calcium ion release, a strontium ion release from bone substitute materials might be applicable for stimulation of bone regeneration without influencing the media saturation.  相似文献   

18.
We developed and used real-time RT-PCR assays to investigate how the expression of typical osteoblast-related genes by human bone marrow stromal cells (BMSC) is regulated by (i) the culture time in medium inducing osteogenic differentiation and (ii) the previous expansion in medium enhancing cell osteogenic commitment. BMSC from six healthy donors were expanded in medium without (CTR) or with fibroblast growth factor-2 and dexamethasone (FGF/Dex; these factors are known to increase BMSC osteogenic commitment) and further cultivated for up to 20 days with ascorbic acid, beta-glycerophosphate and dexamethasone (these factors are typically used to induce BMSC osteogenic differentiation). Despite a high variability in the gene expression levels among different individuals, we identified the following statistically significant patterns. The mRNA levels of bone morphogenetic protein-2 (BMP-2), bone sialo protein-II (BSP), osteopontin (OP) and to a lower extent cbfa-1 increased with culture time in osteogenic medium (OM), both in CTR- and FGF/Dex-expanded BMSC, unlike levels of alkaline phosphatase, collagen type I, osteocalcin, and osteonectin. After 20 days culture in OM, BMP-2, BSP, and OP were more expressed in FGF/Dex than in CTR-expanded BMSC (mRNA levels were, respectively, 9.5-, 14.9-, and 5.8-fold higher), unlike all the other investigated genes. Analysis of single-colony-derived strains of BMSC further revealed that after 20 days culture in OM, only a subset of FGF/Dex-expanded clones expressed higher mRNA levels of BMP-2, BSP, and OP than CTR-expanded clones. In conclusion, we provide evidence that mRNA levels of BMP-2, BSP, and OP, quantified using real-time RT-PCR, can be used as markers to monitor the extent of BMSC osteogenic differentiation in vitro; using those markers, we further demonstrated that only a few subpopulations of BMSC display enhanced osteogenic differentiation following FGF/Dex expansion.  相似文献   

19.
This study addresses the role of bone morphogenetic protein‐7 (BMP‐7) in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. BM MSCs were expanded and differentiated in the presence or absence of BMP‐7 in monolayer and three‐dimensional cultures. After 3 days of stimulation, BMP‐7 significantly inhibited MSC growth in expansion cultures. When supplemented in commonly used induction media for 7–21 days, BMP‐7 facilitated both chondrogenic and osteogenic differentiation of MSCs. This was evident by specific gene and protein expression analyses using real‐time PCR, Western blot, histological, and immunohistochemical staining. BMP‐7 supplementation appeared to enhance upregulation of lineage‐specific markers, such as type II and type IX collagens (COL2A1, COL9A1) in chondrogenic and secreted phosphoprotein 1 (SPP1), osteocalcin (BGLAP), and osterix (SP7) in osteogenic differentiation. BMP‐7 in the presence of TGF‐β3 induced superior chondrocytic proteoglycan accumulation, type II collagen, and SOX9 protein expression in alginate and pellet cultures compared to either factor alone. BMP‐7 increased alkaline phosphatase activity and dose‐dependently accelerated calcium mineralization of osteogenic differentiated MSCs. The potential of BMP‐7 to promote adipogenesis of MSCs was restricted under osteogenic conditions, despite upregulation of adipocyte gene expression. These data suggest that BMP‐7 is not a singular lineage determinant, rather it promotes both chondrogenic and osteogenic differentiation of MSCs by co‐ordinating with initial lineage‐specific signals to accelerate cell fate determination. BMP‐7 may be a useful enhancer of in vitro differentiation of BM MSCs for cell‐based tissue repair. J. Cell. Biochem. 109: 406–416, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Pulsed electromagnetic fields (PEMFs) have been used clinically to slow down osteoporosis and accelerate the healing of bone fractures for many years. The aim of this study is to investigate the effect of PEMFs on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells (BMMSC). PEMF stimulus was administered to BMMSCs for 8 h per day during culture period. The PEMF applied consisted of 4.5 ms bursts repeating at 15 Hz, and each burst contained 20 pulses. Results showed that about 59% and 40% more viable BMMSC cells were obtained in the PEMF‐exposed cultures at 24 h after plating for the seeding density of 1000 and 3000 cells/cm2, respectively. Although, based on the kinetic analysis, the growth rates of BMMSC during the exponential growth phase were not significantly affected, 20–60% higher cell densities were achieved during the exponentially expanding stage. Many newly divided cells appeared from 12 to 16 h after the PEMF treatment as revealed by the cell cycle analysis. These results suggest that PEMF exposure could enhance the BMMSC cell proliferation during the exponential phase and it possibly resulted from the shortening of the lag phase. In addition, according to the cytochemical and immunofluorescence analysis performed, the PEMF‐exposed BMMSC showed multi‐lineage differentiation potential similar to the control group. Bioelectromagnetics 30:251–260, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号