首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Dyer’s woad, Isatis tinctoria, a plant of Eurasian origin is a problematic weed in western North America against which a classical biological weed control programme was initiated in 2004. Three European insect species were selected as candidate agents to control this invasive species, including the root‐mining weevil Aulacobaris fallax. To determine its suitability as an agent, the biology and host specificity of A. fallax were studied in outdoor plots and in the field between 2004 and 2006 in its native European range. Aulacobaris fallax is a univoltine species that lays its eggs from March to August into leaf stalks and roots of dyer’s woad. Larvae mine and pupate in the roots and adults emerge from August to October. Up to 62% of the dyer’s woad plants at the field sites investigated were attacked by this weevil. In no‐choice host‐specificity tests, A. fallax attacked 16 out of 39 species and varieties within the Family Brassicaceae. Twelve of these are native to North America. In subsequent multiple‐choice tests, seven species, all native to North America, suffered a similar level of attack as dyer’s woad, while none of the European species were attacked. Our results demonstrate the importance of including test plant species that have not co‐evolved with the respective candidate agent. In sum, we conclude that the risk of non‐target effects is too high for A. fallax to be considered as a biological control agent for dyer’s woad in the United States.  相似文献   

2.
Host specificity of foreign natural enemies are becoming more and more critical in classical biological control programs, as concerns about potential risk from introduced biocontrol agents have been increasing recently. Understanding the insect's fundamental and ecological host ranges is the first step in determining the potential for introduction of an insect to control invasive plants. Japanese knotweed, Fallopia japonica (Houttuyn) Ronse Decraene (Polygonaceae) is an invasive weed in the United States and Europe. A leaf beetle, Gallerucida bifasciata (Coleoptera: Chrysomelidae) is an important natural enemy attacking this plant in Asia. However, its host range records were ambiguous. This study examined the beetle's host specificity through a set of choice and no-choice tests in the laboratory and field in its native China. Gallerucida bifasciata larvae were able to complete development on seven of 87 plant species in larval development tests, while adults fed and oviposited on 10 plants in no-choice tests. Multiple choice tests showed adults strongly preferred Fallopia japonica, Persicaria perfoliata (L.) H. Gross and Polygonum multiflorum Thunb over all other plants. Open field tests and field surveys further revealed that these three species were in its ecological host range. The results of this study suggest that G. bifasciata is a potential promising agent for control of Japanese knotweed in the United States and Europe, although additional host specificity tests and risk assessment should be completed.  相似文献   

3.
Prickly acacia (Vachellia nilotica subsp. indica), a native of the Indian subcontinent, is a serious weed of the grazing areas of northern Australia and is a target for classical biological control. Native range surveys in India identified a leaf webber, Phycita sp. (Lepidoptera: Pyralidae) as a prospective biological control agent for prickly acacia. In this study, we report the life cycle and host‐specificity test results Phycita sp. and highlight the contradictory results between the no‐choice tests in India and Australia and the field host range in India. In no‐choice tests in India and Australia, Phycita sp. completed development on two of 11 and 16 of 27 non‐target test plant species, respectively. Although Phycita sp. fed and completed development on two non‐target test plant species (Vachellia planifrons and V. leucophloea) in no‐choice tests in India, there was no evidence of the insect on the two non‐target test plant species in the field. Our contention is that oviposition behaviour could be the key mechanism in host selection of Phycita sp., resulting in its incidence only on prickly acacia in India. This is supported by paired oviposition choice tests involving three test plant species (Acacia baileyana, A. mearnsii and A. deanei) in quarantine in Australia, where eggs were laid only on prickly acacia. However, in paired oviposition choice trials, only few eggs were laid, making the results unreliable. Although oviposition choice tests suggest that prickly acacia is the most preferred and natural host, difficulties in conducting choice oviposition tests with fully grown trees under quarantine conditions in Australia and the logistic difficulties of conducting open‐field tests with fully grown native Australian plants in India have led to rejection of Phycita sp. as a potential biological control agent for prickly acacia in Australia.  相似文献   

4.
Abstract:  Classical biological control of insect pests and weeds may lead to potential conflicts, where insect pests are closely related to weed biological control agents. Such a conflict may occur in the classical biological control of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) in North America, which belongs to the same subfamily, Ceutorhynchinae, as a number of agents introduced or proposed for introduction against non-indigenous invasive weed species. We propose a step-by-step procedure to select non-target species and thereby to develop a non-target species test list for screening candidate entomophagous biological control agents of a herbivore pest insect in a way that would simultaneously evaluate non-target potential on weed biological control agents and other non-target species. Using these recommendations, we developed a non-target test list for host specificity evaluations in the area of origin (Europe) and the area of introduction (North America) for cabbage seedpod weevil parasitoids. Scientifically based predictions on expected host–parasitoid interactions and ecological information about the ecological host range in the area of origin can help avoid conflicts, while still allowing the introduction of safe and effective agents against both insect pests and weeds.  相似文献   

5.
The safety of weed biological control depends upon the selection and utilization of the target weed by the agent while causing minimal harm to non-target species. Selection of weed species by biological control agents is determined by the presence of behavioral cues, generally host secondary plant compounds that elicit oviposition and feeding responses. Non-target species that possess the same behavioral cues as found in the target weed may be at risk of damage by classical biological control agents. Here we conducted host range tests and examined secondary plant compounds of several test plant species. We studied the specialist herbivore Nystalea ebalea (Lepidoptera: Notodontidae) a Neotropical species, present in Florida as a surrogate biological control agent of the weed, Brazilian peppertree Schinus terebinthifolia, invasive in Florida and Hawaii. We found that the larvae had the greatest survival when fed the target weed, the Neotropical species Spondias purpurea, the Florida native species Rhus copallinum, and the ornamental Pistacia chinensis. Reduced survival and general larval performance were found on the native species Metopium toxiferum and Toxicodendron radicans. Both the volatiles and the allergen urushiols were chemically characterized for all species but urushiol diversity and concentration best predicted host range of this herbivore species. These results provide insight into host selection and utilization by one oligophagous Schinus herbivore. Other potential biological control agents may also be sensitive to plants that contain urushiols and if so, they may pose minimal risk to these native species.  相似文献   

6.
T. Olckers 《BioControl》2000,45(3):373-388
The South American tree Solanummauritianum is a major environmental weed in thehigh-rainfall regions of South Africa and has beentargeted for biological control since 1984. Althoughhost ranges of imported agents determined duringquarantine tests have resulted in the rejection ofeight of the 11 candidate agents tested so far, theleaf-sucking lace bug Gargaphia decoris,imported from Argentina in 1995, displayed anacceptably narrow host range in captivity. No-choicetests showed that G. decoris is confined to Solanum species and cannot survive on solanaceouscrops outside that genus. Although these tests alsoindicated that G. decoris colonies could surviveand reproduce on cultivated eggplant (aubergine) andat least five native South African Solanumspecies, all but one native species proved to beinferior hosts in terms of adult survival andoviposition potential. During paired choice andmultichoice tests in small and larger cagesrespectively, G. decoris displayed very strongfeeding and oviposition preferences for S. mauritianum. Analyses of the risk of attack onnon-target Solanum plants revealed that, withone possible exception, none were likely to suffermore than incidental damage in the field. Host recordsfrom South America have also indicated that G. decoris has not been recorded on any Solanumspecies other than S. mauritianum, providingfurther evidence of its host specificity. The resultsof this study were accepted by the regulatoryauthorities and in February 1999, G. decorisbecame the first agent to be released in South Africafor the biological control of S. mauritianum.  相似文献   

7.
Host range expansion in insect herbivores is often thought to be mediated by several factors, principal among them are secondary plant metabolites. In weed biological control, the host range of a prospective agent is one of the most important considerations in its implementation. Extensive host testing tests seek to determine the behavioral acceptance and nutritional value of different test plant species to the potential agent. A list of test plants is compiled that comprises species that are close taxonomic relatives of the target weed plus other species of economic or ecologic importance. The host testing of the Melaleuca quinquenervia biological control agent Oxyops vitiosa indicated that larvae would accept and complete development on the Australian target weed M. quinquenervia, two Australian ornamental species, Callistemon citrina, Callistemon viminalis (all Myrtaceae). However, the larvae did not complete development when fed a North American species Myrica cerifera (Myricaceae). The study reported here confirms these results and examines the nutritional and performance differences in O. vitiosa larvae fed leaves of these species. The leaf quality factors, percent moisture, percent nitrogen, toughness, and terpenoid content were related to larval survival, performance and digestive indices. The results indicate that plant quality among the Myrtaceae species was generally similar and correspondingly larval survival, performance and digestive indices differed little when larvae were fed leaves of these species. However, significant differences occurred in the plant quality of the North American M. cerifera compared with the Australian species which had leaves with the lowest percent moisture, lowest leaf toughness, highest percent nitrogen. This species, however, is not a physiological host as none of the neonates survived to pupate. When third instars were switched to M. cerifera from their normal host M. quinquenervia reductions were found in survival, biomass gain, digestive efficiency, and conversion of digested food to insect biomass. The marginal acceptance of this North American native plant in laboratory bioassays appears related to the terpenoid chemistry that has similarities to the taxonomically unrelated host M. quinquenervia. However, the high larval mortality corresponds to several novel terpenoids that are not present in the host. For weed biological control host testing these results indicate that M. cerifera is a poor host for O. vitiosa. Additionally, future test plant lists should include plants with secondary metabolites similar to the target weed as these compounds may constitute behavioral cues that are relevant to these specialized herbivores.  相似文献   

8.
Pereskia aculeata Miller (Cactaceae) is an invasive alien species in South Africa that is native in Central and South America. In South Africa, P. aculeata outcompetes native plant species leading to a reduction in biodiversity at infested sites. Herbicidal and mechanical control of the plant is ineffective and unsustainable, so biological control is considered the only potential solution. Climatic matching and genotype matching indicated that the most appropriate regions in which to collect biological control agents were Santa Catarina and Rio de Janeiro provinces in Southern Brazil. Surveys throughout the native distribution resulted in 15 natural enemy species that were associated with the plant. Field host range data, as well as previous host plant records, were used to prioritise which of the species were most likely to be suitably host specific for release in South Africa. The mode of damage was used to determine which species were most likely to be damaging and effective if released. The most promising species prioritised for further study, including host specificity and impact studies, were the stem-wilter Catorhintha schaffneri Brailovsky & Garcia (Coreidae); the stem boring species Acanthodoxus machacalis Martins & Monné (Cerambycidae), Cryptorhynchus sp. (Curculionidae) and Maracayia chlorisalis (Walker) (Crambidae) and the fruit galler Asphondylia sp. (Cecidomyiidae). By prioritising the potential biological control agents that are most likely to be host-specific and damaging, the risk of conducting host specificity testing on unsuitable or ineffective biological control agents is reduced.  相似文献   

9.
Himalayan yellow raspberry, Rubus ellipticus is one of the world’s 100 worst invasive alien species. The plant has become a serious problematic weed in Hawaii, USA and is naturalized in many other countries. Screening of potential biological control agents is being conducted in its native region in Asia. In this paper, we report on the field distribution, abundance and host specificity of two leaf-rolling moth species, Epinotia ustulana and Epiblema tetragonana (Lepidoptera: Tortricidae). In larval non-choice tests both species only developed on plants in the genus Rubus. However, in adult choice oviposition tests, both leaf rollers showed a strong preference for R. ellipticus over other species. Furthermore, leaf-rolls by these two insects were only found on R. ellipticus in the field. These results indicate the moths have a narrow host range. Our field surveys also showed that both moth species are widely distributed in Yunnan Province, southeastern China, with up to 115 leaf rolls per plant, suggesting high levels of damage. These findings indicate that the two insects have considerable potential for biological control of R. ellipticus, though further host range tests should be conducted using more native plant species in Hawaii.  相似文献   

10.
During surveys for natural enemies that could be used as classical biological control agents of Schinus terebinthifolius Raddi (Brazilian pepper), the caterpillar, Tecmessa elegans Schaus (Lepidoptera: Notodontidae), was recorded feeding on the leaves of the shrub in South America. The biology and larval and adult host range of this species were examined to determine the insect's suitability for biological control of this invasive weed in North America and Hawaii. Biological observations indicate that the larvae have five instars. When disturbed, the late instar larvae emit formic acid from a prothoracic gland that may protect larvae from generalist predators. Larval host range tests conducted both in South and North America indicated that this species feeds and completes development primarily on members of the Anacardiaceae within the tribe Rhoeae. Oviposition tests indicated that when given a choice in large cages the adults will select the target weed over Pistacia spp. However, considering the many valued plant species in its host range, especially several North American natives, this species will not be considered further for biological control of S. terebinthifolius in North America.  相似文献   

11.
The tropical fruit tree, Ziziphus mauritiana (Rhamnaceae), a native of the Indian subcontinent, is a pasture and environmental weed in northern Australia and Fiji. In their native range, Ziziphus spp., including commercially cultivated Z. mauritiana and Z. jujuba, are subjected to a wide range of pests and diseases. The feasibility of classical biological control of this weed has not been explored to date. Effective biological control could reduce plant vigour and seed output, thereby limiting the spread of Z. mauritiana in Australia. Two Ziziphus species are native to Australia, hence, any prospective biological control agent should be specific to Z. mauritiana. Opportunistic field surveys and literature searches identified 133 species of phytophagous insects, 9 species of phytophagous mites and 12 plant pathogens on Ziziphus spp. Host records suggest the following are possibly specific to Z. mauritiana and hence are prospective biological control agents in Australia: the seed‐feeding weevil Aubeus himalayanus; the leaf‐feeding gracillariid moth Phyllonorycter iochrysis; the leaf‐mining chrysomelid beetle Platypria erinaceus; the leaf‐folding crambid moth Synclera univocalis; the leaf‐galling midge Phyllodiplosis jujubae; and the gall‐mites Aceria cernuus and Larvacarus transitans. Host range of the rust Phakopsora zizyphi‐vulgaris includes many Ziziphus species, including the native Z. oenoplia and hence would not be a suitable biological control agent in Australia. The powdery mildew Pseudoidium ziziphi, with a host range restricted to Ziziphus species, has not been reported on Z. oenoplia. All available information on the pests and diseases of Z. mauritiana are from cultivated varieties. Hence, future surveys should focus on wild Z. mauritiana in the Indian subcontinent in areas that are climatically similar to the regions of northern Australia, where it is currently most abundant.  相似文献   

12.
Rhamnus cathartica (common buckthorn) is a shrub (or small tree) of Eurasian origin, which has become invasive in North America. Internal feeders and sap suckers were prioritized for biological control from over 30 specialized insects identified from the target plant in its native European range. Five leaf‐feeding moths were also considered for further investigations. Field observations and preliminary host range tests with the stem‐boring beetle Oberea pedemontana, the root‐boring moth Synanthedon stomoxiformis, the shoot‐tip‐boring moth Sorhagenia janiszewskae and the leaf‐feeding moths Ancylis apicella, A. unculana, Triphosa dubitata, Philereme transversata and P. vetulata confirmed that all of these species were lacking host specificity in no‐choice conditions. Choice oviposition tests carried out with most of the prioritized species to assess their ecological host range yielded unreliable results. Three psyllids, Trichochermes walkeri, Cacopsylla rhamnicolla and Trioza rhamni are promising in terms of host specificity, but are infected with the plant disease ‘Candidatus Phytoplasma rhamni’. Fruit‐ or seed‐feeding insects may present the best potential for biological control of buckthorn in directly reducing seed set and thus seedling establishment. However, it was not possible to obtain adult fruiting trees of native North American Rhamnus species for testing. It is concluded that there are no promising arthropod agents based on what is known to date. Pathogens could offer new opportunities for biological control of R. cathartica in North America.  相似文献   

13.
Host specificity testing to predict host range is one of the key steps to predicting the risk a biological control agent will present to non-target organisms in the new environment. When host specificity testing data contain discrepancies, or unacceptable levels of uncertainty, it can be difficult for decision-makers to adequately address this uncertainty. To better understand the uncertainty in host specificity testing, we used a range of statistical tools to examine a data set associated with the leaf weevil Cleopus japonicus (Curculionidae), a biological control agent for the weed Buddleja davidii (Buddlejaceae) in New Zealand. Significant uncertainty arose during the early stages of host specificity testing when one C. japonicus larva reared to pupation on a culturally important native plant. Further trials were conducted to evaluate the suitability of C. japonicus as a biological control agent, and despite the uncertainty, C. japonicus was released in New Zealand in 2006, and has since established populations at each release site. However, the possibility of larvae completing their life cycle on the native plant initiated this evaluation of the statistics associated with testing biological control agents. We present results from analyses of the C. japonicus survival data using confidence intervals, equivalence testing, power analyses and survival curves to highlight the appropriateness of each of these tools for interpreting host specificity tests in biological control.  相似文献   

14.
ABSTRACT

Prickly acacia, Vachellia nilotica ssp. indica (Benth.) Kyal. & Boatwr, is a significant weed of northern Australia and has been a target of weed biological control in Australia since the 1980s. Following native range surveys in India, the scale insect Anomalococcus indicus Ayyar was identified as the most promising agent and was imported into Australia for further research. A. indicus is a major pest of prickly acacia on the Indian subcontinent, where it causes shoot tip dieback and plant death. Despite field observations suggesting the species was specific to V. nilotica, A. indicus completed development on 17 of the 84 non-target plant species tested during no-choice host specificity trials under quarantine conditions. Of these, Acacia falcata, V. bidwillii, V. sutherlandii and Neptunia major supported high numbers of mature females in all replicates. All of these species were utilised in choice trials. Combined risk scores indicate that V. sutherlandii, N. major and A. falcata may be attacked in the field. Due to the limited ability of scale insects to disperse, only those non-target species that occur on the Mitchell grass downs (i.e. V. sutherlandii) are considered to be at risk. Nevertheless, in view of the disparity between quarantine test results and the observed field host specificity of A. indicus in India, field trials are currently being conducted in India using Australian native species on which complete development has occurred. The future of A. indicus as a biological control agent for prickly acacia in Australia will be determined once results from these field trials are known.  相似文献   

15.
Aspects of the biology and host range of Sibinia fastigiata Clark (Coleoptera: Curculionidae) were studied to assess its safety for release in Australia as a biological control agent of the weed Mimosa pigra L . (Mimosaceae) . Larvae feed on the seeds and adults on open flowers of their host . Adults oviposit on to immature seeds 3 mm long or less and hence seeds of this length and maturity were used in the host range tests and for rearing . Females are shown to avoid previously attacked seeds enhancing their effectiveness as seed destroyers . Survival of adults was higher when provided with open flowers . The host range was determined using laboratory control - choice oviposition tests on excised plant material and , in the field in the native range , no - choice oviposition tests on living plants , surveys of adults on plants , and breeding of insects from pods of plants of various legume species . The control - choice oviposition tests employed a new design in which the control plant alone was offered to the insects followed by a choice of test plants species . Other than M. pigra, only one plant species was acceptable for oviposition , the closely related M. asperata. Larval development also occurs on M. asperata and this host is occasionally used in the field . This insect was approved for release in March 1997 .  相似文献   

16.
In its native range the invasive weed, Rhodomyrtus tomentosa is host to a suite of herbivores. One, Strepsicrates sp. (Lepidoptera: Tortricidae), was collected in China in 2014, introduced under quarantine in Florida, USA, and tested against related species to determine its host range and suitability for biological control. In no-choice tests, neonates fed and completed development to the pupal stage on several species of Myrtaceae, including the target weed R. tomentosa, the exotics Melaleuca quinquenervia, and Eucalyptus camaldulensis, and three native species, Eugenia axillaris, Mosiera longipes and Morella cerifera (Myricaceae). Due to the broad host range exhibited in quarantine testing, this species will not be pursued as a biological control agent of R. tomentosa.  相似文献   

17.
Strawberry guava, Psidium cattleianum Sabine, is a woody tree or shrub native to coastal southeastern Brazil. Strawberry guava was introduced into Florida in the late 1800s as an ornamental species. The plant escaped cultivation and is invading natural areas throughout the southern half of the state. In addition to negative effects on Florida’s native ecosystems, strawberry guava also is a preferred host of the Caribbean fruit fly, Anastrepha suspensa Loew (Diptera: Tephritidae). In total, 57 plant species representing 21 families were included in the host range tests. First instar nymphs of Tectococcus ovatus Hempel fed on two closely related guava species, Brazilian guava (Psidium friedrichsthalianum O. Berg), and Costa Rican guava (Psidium guineense Sw.). However, none of the nymphs completed their development on these two non-target species. The results of the host specificity tests suggest that T. ovatus is a suitable candidate for classical biological control of strawberry guava in Florida.  相似文献   

18.
Secusio extensa (Lepidoptera: Arctiidae) was evaluated as a potential biological control agent for Madagascar fireweed, Senecio madagascariensis (Asteraceae), which has invaded over 400 000 acres of rangeland in the Hawaiian Islands and is toxic to cattle and horses. The moth was introduced from southeastern Madagascar into containment facilities in Hawaii, and host specificity tests were conducted on 71 endemic and naturalized species (52 genera) in 12 tribes of Asteraceae and 17 species of non‐Asteraceae including six native shrubs and trees considered key components of Hawaiian ecosystems. No‐choice feeding tests indicated that plant species of the tribe Senecioneae were suitable hosts with first instars completing development to adult stage on S. madagascariensis (78.3%), Delairea odorata (66.1%), Senecio vulgaris (57.1%), Crassocephalum crepidioides (41.2%), and at significantly lower rates on Emilia fosbergii (1.8%) and Erechtites hieracifolia (1.3%). A low rate of complete larval development also was observed on sunflower, Helianthus annuus (11.6%), in the tribe Heliantheae. However, sunflower was rejected as a potential host in larval‐feeding and adult oviposition choice tests involving the primary host S. madagascariensis as control. Although larvae died as first instars on most test species, incomplete development and low levels of feeding were observed on nine species in the tribes Heliantheae, Cardueae and Lactuceae. Larvae did not feed on any non‐Asteraceae tested, including species with similar pyrrolizidene alkaloid chemistry, crops, and six ecologically prominent native species. Because all species of Senecioneae are non‐native and weedy in Hawaii, these results indicate that S. extensa is sufficiently host‐specific for introduction for biological control. High levels of feeding damage observed on potted plants indicate that S. extensa can severely impact the target fireweed as well as D. odorata, a noxious weed in native Hawaiian forests.  相似文献   

19.
Foreign surveys in China discovered a defoliating insect species feeding on the leaves of Chinese tallowtree (Triadica sebifera), an invasive weed of the southeastern U.S.A. The life history of this species, Sauris nr. purpurotincta (Lepidoptera: Geometridae), was examined and larval no-choice and adult multiple-choice host range tests were conducted in quarantine to evaluate their suitability for biological control of Chinese tallowtree. The results indicated that the larvae have five instars and require approximately 22 days to complete development to the adult stage. Host range tests indicated that the larvae could not feed and complete development on most species tested. However, 40% of the larvae survived when fed leaves of Hippomane mancinella, a state-listed endangered species in Florida, and all larvae survived when fed Morella cerifera, a common native species of the southeastern U.S.A. Multiple-choice oviposition tests indicated eggs were laid on leaves of both a south Florida native plant Gymnanthes lucida and Chinese tallowtree. Considering this broad host range, this species will not be considered further for biological control of Chinese tallowtree in the U.S.A.  相似文献   

20.
Prediction of the outcomes of natural enemy introductions remains the most fundamental challenge in biological control. Quantitative retrospective analyses of ongoing biocontrol projects provide a systematic strategy to evaluate and further develop ecological risk assessment. In this review, we highlight a crucial assumption underlying a continued reliance on the host specificity paradigm as a quantitative prediction of ecological risk, summarize the status of our retrospective analyses of nontarget effects of two weevils used against exotic thistles in North America, and discuss our prospective assessment of risk to a federally listed, threatened species (Cirsium pitcheri) based on those studies. Our analyses quantify the fact that host range and preference from host specificity tests are not sufficient to predict ecological impact if the introduced natural enemy is not strictly monophagous. The implicit assumption when such use is made of the host specificity data in risk assessment is that population impacts are proportional to relative preference and performance, the key components of host specificity. However, in concert with shifting awareness in the field, our studies demonstrate that the environment influences and can alter host use and population growth, leading to higher than expected direct impacts on the less preferred native host species at several spatial scales. Further, we have found that straightforward, easily anticipated indirect effects, on intraguild foragers as well as on the less preferred native host plant species, can be both widespread and significant. We conclude that intensive retrospective ecological studies provide some guidance for the quantitative prospective studies needed to assess candidate biological control agent dynamics and impacts and, so, contribute to improved rigor in the evaluation of total ecological risk to native species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号