首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xenorhabdus and Photorhabdus spp. are bacterial symbionts of entomopathogenic nematodes (EPNs). In this study, we isolated and characterized Xenorhabdus and Photorhabdus spp. from across Thailand together with their associated nematode symbionts, and characterized their phylogenetic diversity. EPNs were isolated from soil samples using a Galleria-baiting technique. Bacteria from EPNs were cultured and genotyped based on recA sequence. The nematodes were identified based on sequences of 28S rDNA and internal transcribed spacer regions. A total of 795 soil samples were collected from 159 sites in 13 provinces across Thailand. A total of 126 EPNs isolated from samples taken from 10 provinces were positive for Xenorhabdus (n = 69) or Photorhabdus spp. (n = 57). Phylogenetic analysis separated the 69 Xenorhabdus isolates into 4 groups. Groups 1, 2 and 3 consisting of 52, 13 and 1 isolates related to X. stockiae, and group 4 consisting of 3 isolates related to X. miraniensis. The EPN host for isolates related to X. stockiae was S. websteri, and for X. miraniensis was S. khoisanae. The Photorhabdus species were identified as P. luminescens (n = 56) and P. asymbiotica (n = 1). Phylogenenic analysis divided P. luminescens into five groups. Groups 1 and 2 consisted of 45 and 8 isolates defined as subspecies hainanensis and akhurstii, respectively. One isolate was related to hainanensis and akhurstii, two isolates were related to laumondii, and one isolate was the pathogenic species P. asymbiotica subsp. australis. H. indica was the major EPN host for Photorhabdus. This study reveals the genetic diversity of Xenorhabdus and Photorhabdus spp. and describes new associations between EPNs and their bacterial symbionts in Thailand.  相似文献   

2.
In light of the challenges to control Aedes aegypti and the critical role that it plays as arbovirus vector, it is imperative to adopt strategies that provide fast, efficient and environmentally safe control of the insect population. In the present study, we synthesized six indole derivatives (C1‐C6) and examined their larvicidal activity and persistence against Ae. aegypti larvae, as well as their toxicity towards Raw 264.7 macrophages, Vero cells, Chlorella vulgaris BR017, Scenedesmus obliquus BR003, Caenorhabditis elegans N2 and Galleria mellonella. Among the bioactive compounds (C1, C2, C4 and C5), C2 exerted the strongest larvicidal activity against Ae. aegypti, with LC50 = 1.5 μg/ml (5.88 µM) and LC90 = 2.4 μg/ml (9.50 µM), indicating that the presence of chlorine or bromine groups in the aromatic ring improved the larvicidal activity of the indole derivatives. C1, C2, C4 and C5 did not reduce viability of RAW 264.7 macrophages, Vero cells, C. elegans N2 and G. mellonella. Compounds C1, C2 and C5 did not affect the growth of C. vulgaris BR017 and S. obliquus BR003. Analysis of larvicidal persistence under laboratory conditions revealed that the effect of compounds C1, C2, C4 and C5 lasted for 30 days and caused 100% of larvae mortality within few hours. Altogether, our findings demonstrate that the indole derivatives C1, C2, C4 and C5 effectively control Ae. aegypti larvae population, without clear signs of toxicity to mammalian cells, algae, C. elegans and G. mellonella.  相似文献   

3.
Entomopathogenic nematodes (EPNs) are small worms whose ecological behaviour consists to invade, kill insects and feed on their cadavers thanks to a species-specific symbiotic bacterium belonging to any of the genera Xenorhabdus or Photorhabdus hosted in the gastro-intestinal tract of EPNs. The symbiont provides a number of biological functions that are essential for its EPN host including the production of entomotoxins, of enzymes able to degrade the insect constitutive macromolecules and of antimicrobial compounds able to prevent the growth of competitors in the insect cadaver. The question addressed in this study was to investigate whether a mammalian pathogen taxonomically related to Xenorhabdus was able to substitute for or “hijack” the symbiotic relationship associating Xenorhabdus and Steinernema EPNs. To deal with this question, a laboratory experimental model was developed consisting in Galleria mellonella insect larvae, Steinernema EPNs with or without their natural Xenorhabdus symbiont and Yersinia pseudotuberculosis brought artificially either in the gut of EPNs or in the haemocoel of the insect larva prior to infection. The developed model demonstrated the capacity of EPNs to act as an efficient reservoir ensuring exponential multiplication, maintenance and dissemination of Y. pseudotuberculosis.  相似文献   

4.
The mosquito Aedes aegypti L. (Diptera: Culicidae) is a vector of arboviral diseases such as dengue fever. Currently, the main approach to mosquito control is the application of synthetic insecticides, which can lead to negative environmental impacts and insecticide resistance in mosquito populations. As such, there has been increased interest in developing alternative methods for control of vector populations such as utilizing plant compounds that act as larvicides. The aim of this work is to evaluate the effectiveness of Eucalyptus sp. (Myrtaceae) essential oils for control of Ae. aegypti larvae. The essential oils of seven Eucalyptus species and hybrids were extracted by hydrodistillation and analyzed by gas chromatography coupled to mass spectrometry. The essential oils were further diluted in water with acetone (0.40%) at the following concentrations: 100, 50, 25, and 10 μg ml−1. Mortality trials were conducted in plastic containers with a solution of ultrapure water and 200 μl of diluted oil for a total volume of 50 ml per treatment. The experiments for each Eucalyptus species/hybrid and concentration were performed in triplicate, using a control containing only water and acetone. Twenty larvae were added to each container and mortality was recorded at 1, 2, 4, and 24 h. The Eucalyptus essential oils showed larvicidal activity in most of the evaluated concentrations, mainly at 50 and 100 μg ml−1. Eucalyptus benthamii Maiden & Cambage and the hybrid Urograndis displayed the highest larvicidal potential (100% at 24 h) in the 100 μg ml−1 treatment. Larval mortality of Ae. aegypti showed a positive correlation with the compounds γ-, o-cymol, o-cymene, terpineol, 3-dodecylfuran-2,5-dione, α-pinene, globulol, and ledol. The most abundant compounds identified in the essential oils were 1,8-cineole and α-pinene. These results highlight the potential of using Eucalyptus essential oils for the isolation of natural larvicidal products.  相似文献   

5.
The virulence of different entomopathogenic nematode strains of the families Steinernematidae and Heterorhabditidae, isolates from Catalonia (NE Iberian Peninsula), and their symbiotic bacteria was assessed with regard to the larvae and adults of the hazelnut weevil, Curculio nucum L. (Coleoptera: Curculionidae). The nematode strains screened included one Steinernema affine, five Steinernema feltiae, one Steinernema carpocapsae, one Steinernema sp. (a new species not yet described) and one Heterorhabditis bacteriophora. The pathogenicity of all the strains of nematodes was tested on larvae and only four of them on adults of the hazelnut weevil. Larval mortality ranged from 10% with S. affine to 79% with Steinernema sp. Adult mortality was higher in S. carpocapsae, achieving 100% adult weevil mortality. The pathogenicity of the symbiotic bacteria Xenorhabdus bovienii, X. kozodoii, X. nematophila and Photorhabdus luminescens was studied in larvae and adults of C. nucum. In the larvae, X. kozodoii showed a LT50 of 22.7 h, and in the adults, it was 20.5 h. All nematodes species except S. affine tested against larvae showed great potential to control the insect, whereas S. carpocapsae was the most effective for controlling adults.  相似文献   

6.
Mosquitoes rely on their gut microbiota for development   总被引:1,自引:0,他引:1  
Field studies indicate adult mosquitoes (Culicidae) host low diversity communities of bacteria that vary greatly among individuals and species. In contrast, it remains unclear how adult mosquitoes acquire their microbiome, what influences community structure, and whether the microbiome is important for survival. Here, we used pyrosequencing of 16S rRNA to characterize the bacterial communities of three mosquito species reared under identical conditions. Two of these species, Aedes aegypti and Anopheles gambiae, are anautogenous and must blood‐feed to produce eggs, while one, Georgecraigius atropalpus, is autogenous and produces eggs without blood feeding. Each mosquito species contained a low diversity community comprised primarily of aerobic bacteria acquired from the aquatic habitat in which larvae developed. Our results suggested that the communities in Ae. aegypti and An. gambiae larvae share more similarities with one another than with G. atropalpus. Studies with Ae. aegypti also strongly suggested that adults transstadially acquired several members of the larval bacterial community, but only four genera of bacteria present in blood fed females were detected on eggs. Functional assays showed that axenic larvae of each species failed to develop beyond the first instar. Experiments with Ae. aegypti indicated several members of the microbial community and Escherichia coli successfully colonized axenic larvae and rescued development. Overall, our results provide new insights about the acquisition and structure of bacterial communities in mosquitoes. They also indicate that three mosquito species spanning the breadth of the Culicidae depend on their gut microbiome for development.  相似文献   

7.
Mosquito control with essential oils is a trending strategy using aqueous oil nano-emulsions to expand their performance. Sandalwood essential oil and its prepared nano-emulsion used to estimate their larvicidal activities against the 3rd instar larvae of Culex pipiens and Aedes aegypti and their effects on larval tissue detoxifying enzymes. Sandalwood nano-emulsion was characterized by homogeneous, stable, average particles size (195.7 nm), polydispersity index (0.342), and zeta potential (?20.1 mV). Morphologically showed a regular spherical shape in size ranged from 112 to 169 nm that confirmed via scanning electron microscopy. Oil analysis identified sesquiterpene alcohols, mainly santalols, terpenoids, aromatic compounds, fatty acid methyl esters, and phenolic compounds. Larvicidal activities of the oil and its nano-emulsion indicated dose, formulation, and exposure time-related mortality after 24 and 48 h in both species. After 24 h, 100% mortality was detected at 1000 ppm for the nano-emulsion with LC50 of 187.23 and 232.18 ppm and at 1500 ppm for the essential oil with an LC50 of 299.47 and 349.59 ppm against the 3rd larvae Cx. pipiens and Ae. aegypti, respectively. Meanwhile, an enhanced significant effect of the nano-emulsion was observed compared to oil exposure in decreasing total protein content and the activities of alkaline phosphatase and β-esterase enzymes, and increasing α-esterase and glutathione S-transferase activities in larval body tissues. Results demonstrated the enhanced larvicidal potential of sandalwood oil nano-emulsion over that of oil. The effect involved alterations in the detoxifying enzymes based on the existing natural active ingredients against Cx. pipiens and Ae. aegypti larvae.  相似文献   

8.
Considering the rapid transmission of the dengue virus, substantial efforts need to be conducted to ward-off the epidemics of dengue viruses. The control effort is depending on chemical insecticides and had aroused undesirable conflicts of insecticide resistance. Here, we study the entomopathogenic fungus, Metarhizium anisopliae as a promising new biological control agent for vector control. The pathogenicity effects of Metarhizium anisopliae against field and laboratory strains of Aedes albopictus and Aedes aegypti larvae were tested using the larvicidal bioassay technique. The results demonstrate that the treatments using M. anisopliae isolate MET-GRA4 were highly effective and able to kill 100% of both Ae. albopictus and Ae. aegypti mosquito larvae at a conidia concentration of 1 × 10?/ml within 7 days of the treatment period. The fungus displayed high larvicidal activity against laboratory and field strain of Ae. aegypti larvae with LC50 values (9.6 × 103/ml, 1.3 × 103/ml) and LC95 values (1.2 × 10?/ml, 5.5 × 105/ml) respectively. For Ae. albopictus, LC50 values for laboratory and field strains were (1.7 × 104/ml, 2.7 × 104/ml) and the LC95 values were (2.1 × 10?/ml, 7.0 × 105/ml) respectively. Interestingly, the susceptibility of field strain towards M. anisopliae was higher as compared to the laboratory strain Aedes larvae. In which, the causative agents of all the dead larvae were verified by the virulence of M. anisopliae and caused morphological deformities on larval body. The findings from this study identify this isolate could be an effective potential biocontrol agent for vector mosquitoes in Malaysia.  相似文献   

9.
Insect–symbiont interactions are known to play key roles in host functions and fitness. The common insect endosymbiont Wolbachia can reduce the ability of several human pathogens, including arboviruses and the malaria parasite, to replicate in insect hosts. Wolbachia does not naturally infect Aedes aegypti, the primary vector of dengue virus, but transinfected Ae. aegypti have antidengue virus properties and are currently being trialled as a dengue biocontrol strategy. Here, we assess the impact of Wolbachia infection of Ae. aegypti on the microbiome of wild mosquito populations (adults and larvae) collected from release sites in Cairns, Australia, by profiling the 16S rRNA gene using next‐generation sequencing. Our data indicate that Wolbachia reduces the relative abundance of a large proportion of bacterial taxa in Ae. aegypti adults, that is in accordance with the known pathogen‐blocking effects of Wolbachia on a variety of bacteria and viruses. In adults, several of the most abundant bacterial genera were found to undergo significant shifts in relative abundance. However, the genera showing the greatest changes in relative abundance in Wolbachia‐infected adults represented a low proportion of the total microbiome. In addition, there was little effect of Wolbachia infection on the relative abundance of bacterial taxa in larvae, or on species diversity (accounting for species richness and evenness together) detected in adults or larvae. These results offer insight into the effects of Wolbachia on the Ae. aegypti microbiome in a native setting, an important consideration for field releases of Wolbachia into the population.  相似文献   

10.
The larvicidal activity of an experimental formulation of Bacillus thuringiensis israelensis (Bti) against Aedes aegypti larvae was evaluated under laboratory and simulated field conditions (SFC). Samples of technical powder (TP) were assayed to establish the LC50 and the potency of the product. The larvicidal activity of the TP and the tablet (T) were evaluated under SFC to assess the efficacy and the residual activity, measured against Ae. aegypti larvae. Either a T or 250 mg of TP were added to 50 L of water in plastic containers. Containers were exposed to sunlight or kept in the shade. Results showed a LC50 of 0.26 mg/L and a potency of 750 ITU/mg. In spite of differences in the toxicity amongst TP and T samples, all of them killed 98–100% of the larvae and the mortality remained high for six months, in the shade. The replacement of 20% or 60% of the water volume did not affect the activity of the product. Seasonal differences influenced the persistence of the product in containers exposed to sunlight. Both formulations showed an excellent performance, especially when kept in the shade. The Bti tablet evaluated in this study is potentially very useful in programs to control dengue vectors.  相似文献   

11.
Using 16S rDNA gene sequencing technique, three different species of non-symbiotic bacteria of entomopatho-genic nematodes (EPNs) (Steinernema sp.and Heterorhabditis sp.) were isolated and identified from infected insect cadavers(Galleria mellonella larvae) after 48-hour post infections.Sequence similarity analysis revealed that the strains SRK3, SRK4 and SRK5 belong to Ochrobactrum cytisi,Schineria larvae and Ochrobactrum anthropi,respectively.The isolates O.anthropi and S.larvae were found to be associated with Heterorhabditis indica strains BDU-17 and Yer-136,respectively,whereas O.cytisi was associated with Steinernema siamkayai strain BDU-87. Phenotypically, temporal EPN bacteria were fairly related to symbiotic EPN bacteria (Photorhabdus and Xenorhabdus genera). The strains SRK3 and SRK5 were phylogeographically similar to several non-symbionts and contaminated EPN bacteria isolated in Germany(LMG3311T) and China (X-14),while the strain SRK4 was identical to the isolates of S.larvae (L1/57,L1/58, L1/68 and L2/11) from Wohlfahrtia magnifica in Hungary.The result was further confirmed by RNA secondary structure and minimum energy calculations of aligned sequences.This study suggested that the non-symbionts of these nematodes are phylogeographically diverged in some extent due to phase variation.Therefore,these strains are not host-dependent, but environment-specific isolates.  相似文献   

12.
Essential oils obtained from the flowers of Dendropanax morbifera were extracted and the chemical composition and larvicidal effects were studied. The analyses were conducted by gas chromatography and mass spectroscopy (GC–MS) revealed that the essential oil of D. morbifera contained 27 compounds. The major chemical components identified were γ-elemene (18.59%), tetramethyltricyclohydrocarbon (10.82%), β-selinene (10.41%), α-zingibirene (10.52%), 2-isopropyl-5-methylbicylodecen (4.2%), β-cubebene (4.19), and 2,6-bis(1,1-Dimethylethyl)-4-phenol (4.01%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L. with an LC50 value of 62.32 ppm and an LC90 value of 131.21 ppm. The results could be useful in search for newer, safer, and more effective natural larvicidal agents against A. aegypti.  相似文献   

13.
An Aedes aegypti larval toxicity bioassay was performed on compounds representing many classes of natural compounds including polyacetylenes, phytosterols, flavonoids, sesquiterpenoids, and triterpenoids. Among these compounds, two eudesmanolides, alantolactone, and isoalantolactone showed larvicidal activities against Ae. aegypti and, therefore, were chosen for further structure–activity relationship study. In this study, structural modifications were performed on both alantolactone and isoalantolactone in an effort to understand the functional groups necessary for maintaining and/or increasing its activity, and to possibly lead to more effective insect‐control agents. All parent compounds and synthetic modification reaction products were evaluated for their toxic activities against Ae. aegypti larvae and adults. Structure modifications included epoxidations, reductions, catalytic hydrogenations, and Michael additions to the α,β‐unsaturated lactones. None of the synthetic isomers synthesized and screened against Ae. aegypti larvae were more active than isoalantolactone itself which had an LC50 value of 10.0 μg/ml. This was not the case for analogs of alantolactone for which many of the analogs had larvicidal activities ranging from 12.4 to 69.9 μg/ml. In general, activity trends observed from Ae. aegypti larval screening were not consistent with observations from adulticidal screening. The propylamine Michael addition analog of alantolactone was the most active adulticide synthesized with an LC50 value of 1.07 μg/mosquito. In addition, the crystal structures of both alantolactone and isoalantolactone were determined using CuKα radiation, which allowed their absolute configurations to be determined based on resonant scattering of the light atoms.  相似文献   

14.
Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae) are highly anthropophilic mosquito species and potential vectors of dengue and yellow fever. The location of suitable sites for oviposition requires a set of visual, tactile, and olfactory cues that influence females before they lay their eggs. In this study, the effect of n‐heneicosane, a recognized oviposition pheromone of Ae. aegypti, on the olfactory receptors of the antennae of Ae. aegypti and Ae. albopictus was studied using electroantennographic detection coupled to gas chromatography (GC‐EAD). A significant electroantennographic response to n‐heneicosane in adult females of both mosquito species was observed. In addition, gravid Ae. albopictus females laid more eggs in substrate treated with n‐heneicosane at 0.1, 1, or 10 p.p.m. than in the control, denoting oviposition attractancy. Conversely, at 30, 50, 100, and 200 p.p.m., more eggs were laid in the control substrate, indicating oviposition repellency. Analysis of the larval cuticle by GC and mass spectrometry confirmed the presence of n‐heneicosane in the cuticles of Ae. albopictus larvae. The species‐specific role of n‐heneicosane as an oviposition pheromone in Ae. aegypti and its significance as a behaviour modifier of Ae. albopictus in breeding sites is discussed.  相似文献   

15.
The insecticidal activity of essential oils from 12 species of Eucalyptus (Myrtaceae) was evaluated on larvae of Aedes aegypti (L.) (Diptera: Culicidae), the most important vector of dengue and yellow fever in the Americas. Oils were obtained by hydrodistillation and their chemical composition was determined by gas chromatography coupled to mass spectrometry; yields ranged from 0.2 to 2.5%. Essential oils were mainly composed of 1,8‐cineole, α‐pinene, α‐phellandrene, β‐phellandrene, γ‐terpinene, 4‐terpineol, α‐terpineol, p‐cymene, and spathulenol. Larvicidal effects were tested on susceptible third or fourth stage Ae. aegypti larvae, determining median lethal concentration (LC50) and median effective concentration (EC50). Essential oils from Eucalyptus dunnii (Maiden), Eucalyptus gunnii (Hook), Eucalyptus tereticornis (Smith), Eucalyptus camaldulensis (Dehn), and Eucalyptus saligna (Smith) showed the best larvicidal activities with LC50 values of 25.2, 21.1, 22.1, 26.8, and 22.2, respectively. No significant differences were observed between LC50 and EC50 values of the same oil. Regression analysis revealed a significant relationship between total essential oil yields and 1,8‐cineole concentration. Significant relationships were also revealed between larval mortality and the concentration of 1,8‐cineole and p‐cymene. This indicated that Eucalyptus species with high oil yields have higher 1,8‐cineole concentrations and lower p‐cymene concentrations and have less effect on Ae. aegypti. Our results suggest the potential of controlled crossing methods to obtain Eucalyptus trees with chemical profiles having enhanced activity against this mosquito.  相似文献   

16.
Essential oils are very popular among organic growers because they are ecologically safe, do not have mammalian toxicity, and cannot be resistant to a variety of contaminants. Four essential oils, Lemon, Lavender, Peppermint, and Neem, were tested for larvicide efficacy against the dengue fever vector Aedes aegypti larvae under laboratory conditions using dipping bioassay techniques. Among the essential oils tested, lemon, peppermint, and lavender oils showed high larvicidal activity against larvae of Ae. aegypti. Lemon oil showed the highest effects (LC50 10.676 ppm), while Peppermint, Lavender and Neem oil showed the lowest effects (LC50 21.380, 29.818 and 38.058 ppm, respectively). As a result, the mixture of lemon oil (LC50) with Peppermint oil (LC25) showed the highest co-toxicity factor, whereas the mixture of Lemon oil (LC50) with Diesel oil (LC25) showed the lowest co-toxicity factor. Based on the results of this study, it appears that essential oils may be useful as larvicides against Ae. aegypti larvae. In search of new natural larvicides, these compounds may provide an alternative to Synthetic insecticides as these are environmentally safe insecticides.  相似文献   

17.
To identify larvicidal compounds from the ethanolic extracts of Curcuma longa root, the active compounds were isolated using activity‐guided fractionation with column chromatography and identified based on nuclear magnetic resonance (NMR) and mass spectrometry (MS) data. The dipping method was used to determine the larvicidal activities of each compound against 4th‐instar larvae of Culex pipiens pallens. Two compounds were isolated and identified, ar‐turmerone and 8‐hydroxyl‐ar‐turmerone. The two compounds exhibited larvicidal activities against the 4th‐instar larvae of C. pipiens pallens after 24 hr of treatment with LC50 values of 138.86 and 257.68 ppm, respectively. The larvicidal activities of ar‐turmerone and 8‐hydroxyl‐ar‐turmerone against C. pipiens pallens are reported herein for the first time. The elucidation of the structure of these phytochemicals and their insecticidal activities are important for assessing the potential of this plant as a botanical insecticide.  相似文献   

18.
The efficacy of three formulations (i.e., natural lavender crude, essential oil, and gel) extracted from Lavender angustifolia was tested against vectors of the epidemic dengue virus, Aedesaegypti, to evaluate their larvicidal activity effect. The ethanolic extract of the lavender crude was prepared using a rotary evaporator, while the other extracts, such as essential oil and gel, were obtained from iHerb, a supplier of medicinal herbs in the US. The mortality rate of larvae was evaluated 24 h after exposure. Larvicidal activity of the lavender crude was 91% mortality at 150 ppm, 94% for essential oil at a concentration of 3000 ppm, and 97% for lavender gel at a 1000 ppm. Natural lavender crude was one of the most promising extracts tested against Ae.aegypti larvae, with lethal concentrations at LC50 and LC90 of 76.4 and 174.5 ppm post-treatment. The essential oil had the least effect on mosquito larvae, with LC50 and LC90 reaching 1814.8 and 3381.9 ppm, respectively. The lavender gel was moderately effective against Ae. aegypti larvae, with LC50 and LC90 values reaching 416.3 and 987.7 ppm after exposure. The occurrence of morphological abnormalities in the larvae treated with the three compounds, in turn, resulted in an incomplete life cycle. Therefore, our results indicated that natural lavender crude displayed the highest larvicidal activity against larvae, followed by gel and essential oil. Thus, this study concluded that lavender crude is an effective, eco-friendly compound that can be used as an alternative to chemical products to control vector-borne epidemic diseases.  相似文献   

19.
The mosquitoes Aedes aegypti (L.) and Ae. albopictus Skuse are the major vectors of dengue, Zika, yellow fever, and chikungunya viruses worldwide. Wolbachia, an endosymbiotic bacterium present in many insects, is being utilized in novel vector control strategies to manipulate mosquito life history and vector competence to curb virus transmission. Earlier studies have found that Wolbachia is commonly detected in Ae. albopictus but rarely detected in Ae. aegypti. In this study, we used a two‐step PCR assay to detect Wolbachia in wild‐collected samples of Ae. aegypti. The PCR products were sequenced to validate amplicons and identify Wolbachia strains. A loop‐mediated isothermal amplification (LAMP) assay was developed and used for detecting Wolbachia in selected mosquito specimens as well. We found Wolbachia in 85/148 (57.4%) wild Ae. aegypti specimens from various cities in New Mexico, and in 2/46 (4.3%) from St. Augustine, Florida. Wolbachia was not detected in 94 samples of Ae. aegypti from Deer Park, Harris County, Texas. Wolbachia detected in Ae. aegypti from both New Mexico and Florida was the wAlbB strain of Wolbachia pipientis. A Wolbachia‐positive colony of Ae. aegypti was established from pupae collected in Las Cruces, New Mexico, in 2018. The infected females of this strain transmitted Wolbachia to their progeny when crossed with males of Rockefeller strain of Ae. aegypti, which does not carry Wolbachia. In contrast, none of the progeny of Las Cruces males mated to Rockefeller females were infected with Wolbachia.  相似文献   

20.
This study was conducted to isolate and identify lactobacilli from larval and adult midgut of wild Aedes aegypti (Ae. aegypti) to find candidate bacteria for paratransgenic control. Characterization of the bacterial symbionts was done using Gram staining, motility test, catalase test, and biochemical tests, among others, and the morphological features were confirmed using a standard scheme that simplifies the identification of lactic acid bacteria. A total of 174 strains were isolated and identified, 135 strains from larval midgut and 39 strains from adult midgut (mean ± SE, 4.00 ± 0.72; P = 0.00). The isolated species were confirmed to be Lactobacillus fermentum, L. casei, L. acidophilus, L. viridescens, L. brevis and L. gasseri. It can be concluded that Ae. aegypti has the potential of harboring the cultivable bacterial symbionts. In conclusion, the isolated species were nominated for paratransgenic control, particularly L. fermentum, being found in large numbers from both larval and adulxt midgut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号