首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Terry N 《Plant physiology》1980,65(1):114-120
The possibility of using Fe stress as an experimental tool in the study of limiting factors was explored. Results show that Fe stress decreased the chlorophyll (Chl) a, Chl b, carotene, and xanthophyll content of leaves of sugar beets (Beta vulgaris L.) and that the maximum rate of photosynthetic CO2 uptake (Pmax) per unit area was linearly related to Chl (a + b) per unit area. Measurements of noncyclic ATP formation by isolated chloroplasts at light saturation indicate that photosynthetic electron transport capacity decreased concomitantly with pigment content under Fe stress.  相似文献   

2.
In Chilean evergreen temperate forest, fern species of the genus Blechnum occur in diverse microhabitats in a light gradient. We hypothesized that differences in the habitat preferences of three co-occurring Blechnum species would be associated with differences in the magnitude of responses of light capture [chlorophyll (Chl) content] and use (photosynthetic capacity and performance) to light availability. We measured the abundance, chlorophyll content, photosynthetic capacity (A), and photosynthetic performance (chlorophyll fluorescence of photosystems I and II) of juvenile individuals of each species growing in different light levels in the field. While Blechnum magellanicum covers a broad light environments range, B. mochaenum is restricted to shade, and B. penna-marina occupies full sun sites. Despite significant interspecific differences in average total chlorophyll content, this trait did not differ among species along the light gradient. There was significant interspecific variation in both the mean value and the plasticity of Chl a:Chl b ratio and A to light availability. While B. penna-marina showed a flatter reaction norm (lower response) of Chl a:Chl b ratio to light availability than its two congeners, B. mochaenum showed a lower response of A to light availability. B. penna-marina and B. magellanicum individuals from open sites had higher light saturation points of the electron transport rate (ETR) of both photosystems (ETRLSP I and II) and photochemical quenching (qL and NA) than the shade restricted B. mochaenum. Additionally, non-photochemical quenching values for both photosystems (NPQ and ND) were higher in ferns species occurring in shaded sites. The adjustment of the photosynthetic capacity and performance to light availability appears to be an important mechanism of acclimation in these three Blechnum species that differ in their habitat preferences across a light gradient.  相似文献   

3.
The physiological photosynthetic characteristics and antioxidant enzyme system of the high-chlorophyll rice (Oryza sativa L.) mutant (Gc) and its wild type (Zhenshan 97B) were compared and analyzed. Resulting data showed that the total chlorophyll (Chl) and Chl b contents in the Gc mutant were significantly increased by 19.0 and 81.7%, respectively, while the increase in Chl a and thylakoid membrane protein contents was insignificant. The net photosynthetic rate (P N) was significantly higher in the mutant; stomatal conductance, intercellular CO2 concentration, and transpiration rate decreased significantly, and water-use efficiency increased significantly, indicating the higher photochemical efficiency of the mutant. The chlorophyll fluorescence parameters: electron transport rate and effective quantum yield of PSII photochemistry of the mutant were significantly higher than those of Zhenshan 97B. The nonphotochemical quenching of the mutant under light adaptation increased by 52.3%. The enzymatic activity of superoxide dismutase, peroxidas, and catalase in the mutant roots and leaves were all higher than those for the wild-type plants. It is believed that the higher activity of antioxidant enzymes in the mutant may be an important factor making difficult the photo-inactivation of Chl, and thus, increasing the content of Chl, especially Chl b.  相似文献   

4.
Agronomic traits, photosynthetic pigments, gas exchange, and chlorophyll (Chl) fluorescence parameters of red stem buckwheat (Fagopyrum dibotrys Hara) mutants induced by γ-radiation were compared with green control at seedling stage. Plant height, number of first-class branches, and rhizome biomass were inhibited significantly (p<0.01). Chl a, Chl b, and Chl a+b contents decreased with elevated dose of γ-rays, while increasing carotenoid content indicated that buckwheat was capable of adjusting to the radiation damage. Decrease in net photosynthetic rate was the result of both stomatal and non-stomatal limitations. Fluorescence parameters, such as F0, Fm, Fv/Fm, Fv/F0, ΦPS2, electron transport rate, and photochemical quenching declined significantly (p<0.01) as compared with control due to photoinhibition, while non-photochemical quenching increased to enhance thermal dissipation. Lower parameters implied that leaf tissue was damaged significantly by high dose of γ-radiation and therefore leaf senescence was accelerated.  相似文献   

5.
Long-term (30 d) effects of 100, 200, 300, and 400 mM NaCl on photosystem 2 (PS 2)-mediated electron transport activity and content of D1 protein in the thylakoid membranes of chrysanthemum (Dendranthema grandiflorum) cultured in vitro at low irradiance 20 μmol(photon) m−2 s−1 were investigated. 100 mM NaCl increased contents of chlorophylls (Chl) a and b, carotenoids (Car; xanthophylls + carotenes), and the ratio of Chl a/b, and Car/Chl a+b. However, further increase in NaCl concentration led to the significant reduction in the contents of Chl a, and Chl b, and increase in the ratio of Chl a/b and Car/Chl a+b. NaCl treatment decreased the PS 2-mediated electron transport activity and contents of various thylakoid membrane polypeptides including D1 protein.  相似文献   

6.
Barley (Hordeum vulgare L.) mutant chlorina 3613 is notable for a lack of chlorophyll b (Chl b), low content of chlorophyll a (Chl a) and carotenoids in the chloroplasts, as well as reduction in the majority of components of LHCI and LHCII. Incompletely developed photosynthetic machinery of chlorina 3613 results in suppressed growth, lower biomass, and the declined rate of photosynthesis (as compared with the wild-type cv. Donaria). The lack of Chl b and greater part of peripheral antenna suggests that this mutant will have difficulties during acclimation to long-term shading because the light-harvesting role of Chl b-containing antenna becomes more important under the shortage of light. Earlier, our experiments with the mature chlorina 3613 plants shaded for one week at PAR photon flux density of 60 and 40% of that in full sunlight showed a stimulating effect of shading on growth, biomass accumulation, and Chl a synthesis in chlorina 3613 when biosynthesis of Chl b did not occur [1]. In this work, we investigated in more detail the changes in the content of carotenoids in chlorina 3613. We found that in Donaria at both investigated levels of illumination (60 and 40% of full sunlight) and in chlorina 3613 at 60% illumination, moderate reversible changes typical of shade-enduring plants occur in the content of carotenoids. In chlorina 3613 at 40% illumination, the content of β-carotene increased considerably (by 3 times) with simultaneous accumulation of Chl a. When full illumination was restored, the content of β-carotene decreased and remained on the level, which exceeded its initial content in the plants without shading by 38%; this level, was maintained by the end of vegetation. The changes in the contents of β-carotene and Chl a in chlorina 3613 were not accompanied by any accumulation of xanthophylls or changes in the relative content of active violaxanthin. The obtained results suggest that a long-term shading of the leaves of mature chlorina 3613 plants induced the formation of certain components of photosynthetic apparatus: reactive centers and core parts of photosystems’ antennae as well as proteins CP26 and CP29 and in this way contributed to partial restoration of photosynthetic activity and production process in the mutant lacking Chl b.  相似文献   

7.
Kinetics of fluorescence at room temperature, electron transport and photooxidation of P700 and cytochrome f have been studied in chloroplasts isolated from active and winter stressed Pinus silvestris. The winter stress induced block in the electron transport chain between the two photosystems is close to the site of plastoquinone, since winter stress and DCMU caused the same type of inhibition of the reoxidation of the primary electron acceptor Q of photosystem II. No winter inhibition of the electron transport between cytochrome f and P700 was observed. Time course studies of P700 photooxidation in chloroplasts of active and winter stressed pine have shown that the photosynthetic unit size must be about equal in the two types of chloroplasts. An apparent increase of the photosynthetic unit size was induced by winter stress, as revealed by the high chlorophyll/P700 ratio of winter stressed pine. The phenomenon is explained by the formation of photosynthetically inactive chlorophyll. Low-temperature fluorescence emission spectra were recorded when either chlorophyll a (433 nm) or chlorophyll b (477 nm) were preferentially excited. Winter stress induced the formation of a chlorophyll a fraction emitting at 673 nm. This chlorophyll is most likely derived from the chlorophyll a antennae of the two photosystems, and it probably contributes to the photosynthetically inactive pool of chlorophyll in winter stressed pine. The light harvesting chlorophyll a/b complex is relatively resistant to winter stress.  相似文献   

8.
Abstract When dark grown leaves of wheat (Triticum aesivum L.) were given a brief irradiation, there was an immediate onset of chlorophyll (Chl) b synthesis in the dark. This synthesis led to a rather slow accumulation of Chl b, which ceased when the Chl b/Chl a ratio had reached a value of about 0.1. The Chl b synthesis occurred also when the seedlings were treated with the herbicide SAN 9789. Leaves grown under different intensities of red light accumulated Chl b and Chl a, resulting in a ratio Chl b/Chl a which depended on the light intensity. If the light intensity was low, Chl a accumulated to a level about ten times the level of PChlide of the dark grown leaves. This occurred without any increase in the Chl b/Chl a ratio. There was no difference between SAN 9789-treated seedlings and water controls in this respect. Above a certain threshold of irradiance, the Chl b/Chl a ratio in the control leaves increased rapidly with the irradiation intensity. The increase in Chl b/Chl a ratio coincided with formation of grana in the plastids. This increase was not found and grana formation was completely absent in the seedlings treated with SAN 9789. The possibility of two different stages in the Chl b synthesis is discussed.  相似文献   

9.
Lin  Zhi-Fang  Peng  Chang-Lian  Lin  Gui-Zhu  Ou  Zhi-Ying  Yang  Cheng-Wei  Zhang  Jing-Liu 《Photosynthetica》2003,41(1):61-67
Two yellow rice mutants VG28-1 and VG30-5 were obtained during the tissue culture process from a rice plant (cv. Zhonghua No.11 japonica) with inserted maize Ds transposon element. Absorption spectra and pigment composition showed that two mutants had no chlorophyll (Chl) b and lower Chl a content in comparison to the wild type (WT). Net photosynthetic rate (P N), total electron transport rate (JF), photochemical quenching (qp), quantum yield of PS2 dependent non-cyclic electron transport (PS2), fraction of Prate, and leaf area were lower but Fv/Fm and apparent quantum yield (AQY) remained at similar levels as in the WT plant. Xanthophyll cycle pool size (V+A+Z) on a Chl basis, and de-epoxidation state were enhanced in the mutants. The mutants had larger amounts of soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), especially the small subunit of RuBPCO, than WT. The characteristics of two rice mutants differed somewhat from the other common Chl b-less mutants originating from mutagenic agent treatments.  相似文献   

10.
Bertamini  M.  Nedunchezhian  N.  Borghi  B. 《Photosynthetica》2001,39(1):59-65
The effect of iron deficiency on photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase (RuBPC), and photosystem activities were investigated in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves. The contents of chlorophyll (Chl) (a+b) and carotenoids per unit fresh mass showed a progressive decrease upon increase in iron deficiency. Similar results were also observed in content of total soluble proteins and RuBPC activity. The marked loss of large (55 kDa) and small (15 kDa) subunits of RuBPC was also observed in severely chlorotic leaves. However, when various photosynthetic electron transport activities were analysed in isolated thylakoids, a major decrease in the rate of whole chain (H2O methyl viologen) electron transport was observed in iron deficient leaves. Such reduction was mainly due to the loss of photosystem 2 (PS2) activity. The same results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements in leaves. Smaller inhibition of photosystem 1 (PS1) activity was also observed in both mild and severely chlorotic leaves. The artificial electron donors, diphenyl carbazide and NH2OH, markedly restored the loss of PS2 activity in severely chlorotic leaves. The marked loss of PS2 activity was evidently due to the loss of 33, 23, 28-25, and 17 kDa polypeptides in iron deficient leaves.  相似文献   

11.
Field experiments with Glycine max (L.) Merr. cv. Ludou 11 and Ludou 4 were conducted to evaluate changes in photosynthetic rate, antioxidative enzyme activity, soluble protein, chlorophyll (Chl) and carotenoid (Car) contents in relation to leaf senescence during seed filling period. Photosynthetic rate, soluble protein content, catalase and peroxidase activities were the highest at 25 days after flowering (DAF). Chl a, Chl b and Car contents reached the maximum at 15 DAF and rapidly decreased after 33 DAF.  相似文献   

12.
Composition of microelements and photosynthetic pigment content (chlorophylls (Chl) a and b) were monitored in growing needles of spruce (Picea abies (L.) Karst.) and Siberian fir (Abies sibirica Ledeb.) during spring-autumn vegetation period. The dynamics of fresh weight and needle length for the first-year needles of spruce and fir revealed a number of shared and species-specific features in growth patterns of photosynthetic organs. In the beginning of growth period (in May), the needles elongated rapidly, while June–July were marked by the increase in needle weight. In P. abies the needle weight accumulated rapidly (specific growth rates μmax up to 0.20 day−1) over a short period (14 days), while in A. sibirica the needle weight increased slower (μmax ≤ 0.11 day−1) but over a longer period (≥30 days). The dynamics of Chl a and Chl b content and their ratio were identical in needles of both species over the growth period, although changes in Chl a were pronounced stronger than those in Chl b. In spring (May), a relatively high total Chl content per needle dry weight was noted. In summer (June–August), the total Chl content declined appreciably. In autumn (September–November), the total chlorophyll content in first-year needles increased slightly. Microelements were classified into two groups according to seasonal dynamics of their relative content in first-year needles. The first group includes Ba, Mn, Zn, B, Cu, Co, Cr, Pb, and Mo, whose relative content had a distinctive maximum in July, coincident with the peak in Chl content. The second group comprises Ni, V, Ag, Be, Cd, and As, whose relative content was minimal at this period. Seasonal changes in microelement composition were similar for the two conifer species examined, which is likely due to different physiological values of various microelements for photosynthetic organs.  相似文献   

13.
This study explores adaptive strategies of epiphytic bryophytes in the understorey by investigating the photosynthetic characteristics, pigment concentrations and nutrient stoichiometry, as well as other functional traits of three trunk-dwelling bryophytes in a subtropical montane cloud forest in SW China. The results showed that their light-saturated net photosynthetic rate (Anmax?L), light saturation point (Isat), light compensation point (Ic) and dark respiration rate (Rd) were ca 0.55, 106.72, 4.17 and 0.25?μmol?m?2?s?1, respectively. Furthermore, the samples demonstrated photosynthetic down-regulation under high irradiance. These photosynthetic characteristics can be explained by higher total chlorophyll concentrations, specific leaf area, chlorophyll per unit leaf N (Chl/N), lower ratio of chlorophyll a to chlorophyll b (Chl a/b) and photosynthetic nitrogen-use efficiency. We suggest that the bryophytes adapted to the shaded understorey microhabitats through a series of correlations and trade-offs between functional traits.  相似文献   

14.
A comparative study of reciprocal conversions of chlorophylls a and b (Chl aand Chl b) in etiolated and post-etiolated rye seedlings (Secale cereale L.) was performed. The production of these pigments was initiated by infiltration of exogenous chlorophyllides a and b (Chlide a and b). It was shown that Chlide b, when infiltrated into etiolated rye seedlings, was esterified, producing Chl b. A major portion of Chl b (more than 80%) was transformed into Chl aduring long-term seedling dark exposure. The high rate of Chl b conversion into Chl a in the pool of pigments of exogenous origin was also observed during the lag-phase when there was no chlorophyll formation from endogenous precursors. The infiltration of Chlide a resulted in Chl a formation. The efficiency of its conversion into Chl b was low (about 1%) in the etiolated seedlings but increased during their greening. In the post-etiolated seedlings infiltrated with Chlide b, which were preliminary illuminated for 6–12 h, the Chl /Chl a ratio was almost similar in the pools of pigments synthesized from both exogenous and endogenous precursors. The rates of direct and reverse reactions responsible for the interconversion of Chl aand Chl b depended on the stage of the formation of the photosynthetic apparatus during greening of etiolated seedlings, when the particular structural components are formed in a definite sequence.  相似文献   

15.
The accumulation of photosynthetic pigments in underflag and flag leaves as well as the process of microsporogenesis in lines of tetraploid Secale, hexaploid Triticale, and hexaploid Secalotriticum were studied. Significant positive correlations were found between the amounts of chlorophyll a (Chl a), carotenoids (Car), Chl a/b ratio, and the normal proceeding of meiosis. High probability of paternal type of inheritance of specifities of meiosis of pollen mother cells and variation in photosynthetic pigments during plant transition from the stalk-shooting to heading stage were demonstrated.  相似文献   

16.
Yu  Hua  Ong  Bee-Lian 《Photosynthetica》2001,38(3):477-479
The photosynthetic and growth responses of A. mangium to different photosynthetic photon flux density (PPFD) during early seedling establishment (36 d after sowing) were investigated. Shade-grown A. mangium seedlings exhibited lower chlorophyll (Chl) a/b ratio, higher Chl and carotenoid (Car) contents, and higher total Chl/Car ratio than sun-grown seedlings. Sun-grown seedlings showed significantly higher photosynthetic capacity and total plant dry mass. High PPFD was crucial for the successful early establishment and robust growth of A. mangium seedlings.  相似文献   

17.
The light dependent chloroplast development of dark grown seedlings of Pinus silvestris L. was followed by analyses of chlorophyll content, chlorophyll a/b ratios, chlorophyll/P700 ratios, chlorophyll-protein complexes and structural changes. Low-temperature fluorescence emission spectra of isolated chloroplasts and separation of sodium dodecyl sulphate solubilized chlorophyll-protein complexes by gel electrophoresis showed that the chlorophyll-protein complexes of photosystem 1 (P700-CPa), photosystem II (PS II-CPa) and the light-harvesting complex LH–CPa/b were present in dark grown seedlings. The low-temperature fuoorescence emission maxima of isolated P700–CPa and PS II–CPa shifted towards longer wavelengths during greening in light, indicating a light induced change of the chlorophyll organisation in the two photosystems. Illumination caused LH–CPa/b to increase relative to P700–CPa, whereas the ratio between LH–CPa/b and PS II–CPa remained essentially constant. Analyses of low-temperature fluorescence spectra with or without 0.01 M Mg2+ showed that the Mg2+ controlled distribution of excitation energy into PS I was activated upon illumination of the seedlings. The photosynthetic unit size, as defined by the chlorophyll/P700 ratio, did not change over a 96 h illumination period, although the chlorophyll content increased about 6–fold during that time. This result and the constant electron transport rate per unit chlorophyll and time during chlorophyll accumulation provided evidence for a sequential development of the photosynthetic units when illuminating dark grown pine cotyledons. Electron micrographs showed that exposure of dark grown seedlings to light for 2 h caused the prolamellar body to disappear and grana to form. These changes occurred prior to substantial accumulation of chlorophyll or change in the ratio between LH–CPa/b and P700–CPa. However, both the water-splitting system of photosystem II and the Mg2+ controlled redistribution of excitation energy was activated during this period.  相似文献   

18.
Polle JE  Benemann JR  Tanaka A  Melis A 《Planta》2000,211(3):335-344
 The assembly, organization and function of the photosynthetic apparatus was investigated in the wild type and a chlorophyll (Chl) b-less mutant of the unicellular green alga Chlamydomonas reinhardtii, generated via DNA insertional mutagenesis. Comparative analyses were undertaken with cells grown photoheterotrophically (acetate), photomixotrophically (acetate and HCO 3) or photoautotrophically (HCO 3). It is shown that lack of Chl b diminished the photosystem-II (PSII) functional Chl antenna size from 320 Chl (a and b) to about 95 Chl a molecules. However, the functional Chl antenna size of PSI remained fairly constant at about 290 Chl molecules, independent of the presence of Chl b. Western blot and kinetic analyses suggested the presence of inner subunits of the Chl a-b light-harvesting complex of PSII (LHCII) and the entire complement of the Chl a-b light-harvesting complex of PSI (LHCI) in the mutant. It is concluded that Chl a can replace Chl b in the inner subunits of the LHCII and in the entire complement of the LHCI. Growth of cells on acetate as the sole carbon source imposes limitations in the photon-use efficiency and capacity of photosynthesis. These are manifested as a lower quantum yield and lower light-saturated rate of photosynthesis, and as lower variable to maximal (Fv/Fmax) chlorophyll fluorescence yield ratios. This adverse effect probably originates because acetate shifts the oxidation-reduction state of the plastoquinone pool, and also because it causes a decrease in the amount and/or activity of Rubisco in the chloroplast. Such limitations are fully alleviated upon inclusion of an inorganic carbon source (e.g. bicarbonate) in the cell growth medium. Further, the work provides evidence to show that transformation of green algae can be used as a tool by which to generate mutants exhibiting a permanently truncated Chl antenna size and a higher (per Chl) photosynthetic productivity of the cells. Received: 10 November 1999 / Accepted: 22 December 1999  相似文献   

19.
Diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem 2 (PS2) as well as Chl content were analyzed in Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub during dehydration and rehydration. The net photosynthetic rate (P N), maximum photochemical efficiency of PS2 (variable to maximum fluorescence ratio, Fv/Fm), quantum efficiency of non-cyclic electron transport of PS2, and Chl content decreased, but non-photochemical quenching of fluorescence and carotenoid content increased in stems with the increasing of drought stress. 6 d after re-hydration, new leaves budded from stems. In the re-watered plants, the chloroplast function was restored and Chl a fluorescence returned to a similar level as in the control plants. This improved hydraulic adjustment in plant triggered a positive effect on ion flow in the tissues and increased shoot electrical admittance. Thus R. soongorica plants are able to sustain drought stress through leaf abscission and keep part of Chl content in stems.  相似文献   

20.
Seedlings of winter rape were cultured in vitro on media containing 24-epibrassinolide, EBR (100 nM) and cadmium (300 µM). After 14 d of growth, fast fluorescence kinetics of chlorophyll (Chl) a and contents of photosynthetic pigments and Cd in cotyledons were measured. Cd was strongly accumulated but its content in cotyledons was 14.7 % smaller in the presence of EBR. Neither Cd nor EBR influenced the contents of Chl a and b and carotenoids. Cd lowered the specific energy fluxes per excited cross section (CS) of cotyledon. The number of active reaction centres (RC) of photosystem 2 (RC/CS) decreased by about 21.0 % and the transport of photosynthetic electrons (ET0/CS) by about 17.1 %. Simultaneously, under the influence of Cd, the activity of O2 evolving centres (OEC) diminished by about 19.5 % and energy dissipation (DI0/CS) increased by about 14.6 %. In the cotyledons of seedlings grown on media without Cd, EBR induced only a small increase in the activity of most photochemical reactions per CS. However, EBR strongly affected seedlings cultured with cadmium. Specific energy fluxes TR0/CS and ET0/CS of the cotyledons of plants Cd+EBR media were about 10.9 and 20.9 % higher, respectively, than values obtained for plants grown with Cd only. EBR also limited the increase of DI0/CS induced by Cd and simultaneously protected the complex of OEC against a decrease of activity. Hence EBR reduces the toxic effect of Cd on photochemical processes by diminishing the damage of photochemical RCs and OECs as well as maintaining efficient photosynthetic electron transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号