首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
 Visual censusing was used to characterize fish assemblages on artificial and natural reefs located within the boundaries of the Flower Garden Banks National Marine Sanctuary (FGBNMS) in the northwestern Gulf of Mexico. Emphasis was placed on determining spatial and temporal patterns in habitat utilization by fishes on an offshore artificial reef (Mobil Platform HI-A389A). Overall, 43 species were observed during diurnal surveys in the upper 24 m of the artificial reef. Midwater pelagic fishes (i.e., carangids and scombrids) accounted for over 50% of all taxa enumerated on the artificial reef; however, these taxa were transient members of the assemblage and were observed infrequently. Labrids, pomacentrids, and serranids were the dominant reef-dependent taxa. Distinct trends in vertical, diel, and seasonal abundances were observed for juvenile and adult fishes. Of the three designated depth zones (upper 1.5–9.0, middle 9.0–16.5; lower 16.5–24.0 m), abundance and species diversity were lowest in the upper zone. Nocturnal counts were characterized by a marked reduction or complete absence of most species, due in part to twilight cover-seeking and movement activities. Seasonal variation in community composition and species abundance (May versus September) was primarily due to recruitment of juveniles (0-age fishes) to the artificial reef in late summer. Increases in total fish abundance (all taxa combined) coincided with both increasing habitat rugosity and degree of fouling. Species richness on natural coral reefs in the FGBNMS was higher than on the artificial reef. Unlike the artificial reef, fish assemblages on the natural reefs were dominated by a single family (Pomacentridae) which accounted for over 50% of all individuals observed. Accepted: 1 August 1996  相似文献   

2.
Synopsis A number of factors can influence the accuracy and precision of underwater visual transect techniques. Among these are observer swimming speed and, during multispecies surveys, the effect of counting all fishes on estimates of particular species. This paper examines the effect of these factors on population estimates of inconspicuous fishes (defined as Type 1) in a temperate reef fish assemblage near Sydney, Australia. Counting Type 1 fishes with all others yielded significantly lower estimates of species richness and abundance than when counted alone. This suggests that multispecies surveys should be split into 2 or more counts, using a census procedure that is appropriate to the group of species cencused. Further, the effect of counting all other fishes on estimates of Type 1 fishes varied according to the relative abundance of the former: their effect was lowest when abundance of other fishes was lowest. There was a negative relationship between observer speed and estimated abundance for Type 1 fishes. Survey precision of Type 1 fishes was generally improved by surveying at slower observer speeds.  相似文献   

3.
Predators have important effects on coral reef fish populations, but their effects on community structure have only recently been investigated and are not yet well understood. Here, the effect of predation on the diversity and abundance of young coral reef fishes was experimentally examined in Moorea, French Polynesia. Effects of predators were quantified by monitoring recruitment of fishes onto standardized patch reefs in predator-exclosure cages or uncaged reefs. At the end of the 54-day experiment, recruits were 74% less abundant on reefs exposed to predators than on caged ones, and species richness was 42% lower on reefs exposed to predators. Effects of predators varied somewhat among families, however, rarefaction analysis indicated that predators foraged non-selectively among species. These results indicate that predation can alter diversity of reef fish communities by indiscriminately reducing the abundance of fishes soon after settlement, thereby reducing the number of species present on reefs.  相似文献   

4.
Habitat perturbations play a major role in shaping community structure; however, the elements of disturbance-related habitat change that affect diversity are not always apparent. This study examined the effects of habitat disturbances on species richness of coral reef fish assemblages using annual surveys of habitat and 210 fish species from 10 reefs on the Great Barrier Reef (GBR). Over a period of 11 years, major disturbances, including localised outbreaks of crown-of-thorns sea star (Acanthaster planci), severe storms or coral bleaching, resulted in coral decline of 46–96% in all the 10 reefs. Despite declines in coral cover, structural complexity of the reef framework was retained on five and species richness of coral reef fishes maintained on nine of the disturbed reefs. Extensive loss of coral resulted in localised declines of highly specialised coral-dependent species, but this loss of diversity was more than compensated for by increases in the number of species that feed on the epilithic algal matrix (EAM). A unimodal relationship between areal coral cover and species richness indicated species richness was greatest at approximately 20% coral cover declining by 3–4 species (6–8% of average richness) at higher and lower coral cover. Results revealed that declines in coral cover on reefs may have limited short-term impact on the diversity of coral reef fishes, though there may be fundamental changes in the community structure of fishes.  相似文献   

5.
Consumers and prey diversity, their interactions, and subsequent effects on ecosystem function are important for ecological processes but not well understood in high diversity ecosystems such as coral reefs. Consequently, we tested the potential for diversity-effects with a series of surveys and experiments evaluating the influence of browsing herbivores on macroalgae in Kenya’s fringing reef ecosystem. We surveyed sites and undertook experiments in reefs subject to three levels of human fishing influence: open access fished reefs, small and recently established community-managed marine reserves, and larger, older government-managed marine reserves. Older marine reserves had a greater overall diversity of herbivores and browsers but this was not clearly associated with reduced macroalgal diversity or abundance. Experiments studying succession on hard substrata also found no effects of consumer diversity. Instead, overall browser abundance of either sea urchins or fishes was correlated with declines in macroalgal cover. An exception was that the absence of a key fish browser genus, Naso, which was correlated with the persistence of Sargassum in a marine reserve. Algal selectivity assays showed that macroalgae were consumed at variable rates, a product of strong species-specific feeding and low overlap in the selectivity of browsing fishes. We conclude that the effects of browser and herbivore diversity are less than the influences of key species, whose impacts emerge in different contexts that are influenced by fisheries management. Consequently, identifying key herbivore species and managing to protect them may assist protecting reef functions.  相似文献   

6.
Changes in reef assemblages of corals and fishes following a tropical cyclone were assessed using data sets from (1) manta tow surveys of entire reef perimeters and (2) intensive surveys of specific sites, across 11 reefs lying close to the cyclone's track. Only one of the reefs experienced an obvious and immediate decline in mean coral cover (from 24 to 8%) due to the cyclone. The abundance and species richness of adult damselfish assemblages on intensive survey sites at this reef were not affected in the short term (6-8 weeks), despite the removal of 48% of living hard coral. Assemblages of adult fishes showed a similar lack of response at three other reefs where no significant habitat changes had occurred. Eleven to twelve months later, the total abundance of damselfishes had decreased substantially at eight of the sampled reefs, while the abundance of larger mobile fishes remained stable. We infer that the effects on coral assemblages reflect the short duration and orientation of the cyclone, the history of exposure to wave energy (influencing life-form structure and therefore degree of fragility), and the degree of consolidation of the reef matrix. The lack of short-term effects of the cyclone on adult fishes shows that these fishes can endure periods of intense underwater turbulence. The lack of change in damselfish assemblages weeks after loss of coral cover implies that this resource was not limiting adult fish densities. The reasons for widespread decreases in damselfish numbers 11-12 months after the cyclone are unknown.  相似文献   

7.
Synopsis Fish assemblages at an artificial reef site, a natural reef site and a sandy-mud bottom site, on the shelf (depth 130 m) off Iwate Prefecture, northern Japan, were surveyed by using a bottom trammel net from May 1987 to March 1993. A total of 12 173 fishes of 48 species were recorded. Physiculus maximowiczi was dominant and comprised 69% of the total numerical abundance. Total fish number was lowest in March at all the 3 sites when P. maximowiczi migrated to deeper and warmer waters. Assemblage equitability and species diversity also varied seasonally in accordance with the abundance fluctuation of P. maximowiczi. P. maximowiczi, Alcichthys alcicornis and Hexagrammos otakii were more abundant at the artificial reef and natural reef sites, while Dexistes rikuzenius and Hemitripterus villosus were more abundant at the sandy-mud bottom site; total fish abundance was largest at the artificial reef site mainly due to the large number of P. maximowiczi. Species richness was similar among sites, but equitability, and consequently species diversity, was lowest at the artificial reef site. The main effect of the artificial reef seemed the attraction of P. maximowiczi from nearby bottoms, especially from natural rocky reefs; its large abundance determined the structure of the artificial reef fish community.  相似文献   

8.
I evaluated a standard monitoring unit for the recruitment of reef fishes (SMURF) as a tool for ascertaining spatial and temporal patterns of reef fish recruitment in central California, USA. SMURFs consisted of a 1.0×0.35 m dia. cylinder of fine mesh plastic grid that contained a folded section of larger mesh plastic grid. SMURFs collected new recruits of 20 species of fish with 92% of the individuals collected from 10 species, mostly rockfish (genus Sebastes). An experiment varying depth of SMURFs in the water column (surface, mid-depth, or bottom) showed that surface SMURFs collected the greatest diversity of species and significantly greater abundance for eight species, with two species having significantly greater abundance on mid-depth SMURFs and three species having significantly greater abundance on bottom SMURFs. A comparison of cumulated recruitment from SMURFs that varied in sampling frequency (removal of new recruits every 1-3, 7, or 28 days) suggested that increasing the time between sampling caused a significant decrease in recruitment estimates for some species but not for others. To determine how well temporal patterns of recruitment to SMURFs reflected patterns to nearby reefs, I compared within season temporal patterns of recruitment to SMURFs with that at nearby reefs, estimated by visual transect surveys conducted on scuba. Temporal patterns of recruitment to SMURFs were significantly and positively related to early recruitment on reefs for one group of benthic-algal associated rockfish species when diver surveys were lagged by 30 days (r=0.87) and for another group of canopy-algal associated rockfish species when lagged by 5 days (r=0.72). SMURFs appeared to be an effective and efficient method for indexing relative rates of delivery of competent juveniles for many temperate nearshore reef fishes.  相似文献   

9.
The southeastern coast of Florida, USA supports a substantial recreational fishery, yet little is known of the coral reef ecosystem or fisheries resources past 50 m depth. Fish assemblages associated with low‐relief substrate and three vessel reefs between 50 and 120 m depth off southeast Florida were surveyed by remotely operated vehicles providing the first characterization of the mesophotic fish assemblages in the region. Two distinct assemblages were observed on low‐relief substrate and high‐relief vessel reefs. A total of 560 fishes of 42 species was recorded on 27 dives on low‐relief substrate, and 50 152 fishes of 65 species were recorded on 24 dives on three vessel reefs. Small planktivorous Anthiinae fishes and several economically valuable species were common on vessel reefs but rare on low‐relief substrate. Fish assemblages on vessel reefs more closely resembled those found at similar depths in high‐relief natural areas off east‐central Florida and the Gulf of Mexico than those associated with adjacent low‐relief habitat or nearby coral reef tracts. From a fisheries perspective, these results provide limited support to the hypothesis that in deep‐water regions with limited relief, vessel reefs may provide an opportunity to increase fish diversity and abundance by creating high‐relief habitat without compromising adjacent fish assemblages.  相似文献   

10.
The composition and trophic structure of reef fish communities in two natural and two artificial reefs along the coast of Paraíba State in north‐eastern Brazil were investigated. A total of 114 species of fish belonging to 47 families were recorded during 120 stationary visual surveys, slightly less than half (46·55%) of which were recorded at all four surveyed localities. Most species are widely distributed on the western Atlantic coast, but several are endemic to Brazil. The greatest diversity and equitability indexes were recorded at the reefs of Sapatas and Cabeço dos Cangulos, whereas the greatest richness and abundance were found at the Queimado shipwreck. The Alvarenga shipwreck reef had the least richness, diversity and equitability. The four localities studied had very similar ichthyofaunas, especially in relation to species composition. The reefs along the Paraíba coast are considered priority conservation areas by the Brazilian Ministry of the Environment, and the information generated by this study will be useful for comparison with other reefs in the region and can be directly applied to programmes seeking to protect and manage these environments.  相似文献   

11.
The distribution and abundance of reef fishes in relation to habitat structure were studied within Bar Reef Marine Sanctuary (BRMS) and on an adjacent reef, disturbed by destructive fishing techniques, in north-western Sri Lanka, by visually censusing 135 species groups using fifty metre belt-transects. Two types of continental shelf patch-reefs are found in the study area: coral reefs and sandstone reefs, which are divided into distinct habitats, four for the coral reef (shallow reef flat, shallow patch reef, deep reef flat and Porites domes) and two for the sandstone reef (structured sandstone-reef and flat sandstone-reef). Fish assemblages varied in structure between reef types and among habitats within reef types. Functional aspects of habitat structure and composition, such as available food and shelter, seemed to be important factors influencing distribution patterns. The strongest separation in the organisation of fish assemblages in BRMS was between reef types: 19% of all species were confined to the coral-reef patches while 22% were restricted to the sandstone reef patches and 59% were represented on both reef types. In terms of distribution among habitats, 21% of all species were restricted to one habitat while only 1.5% were present in all. The highest density of fish was in the coral reef habitats while highest species diversity was found in the most structurally complex habitat: the structured sandstone-reef. This habitat also had the highest proportion of species with restricted distribution. Planktivores were the most abundant trophic group in BRMS, and the species composition of the group varied among habitats. The comparison of the disturbed reef with BRMS suggested that habitat alteration caused by destructive fishing methods has strongly influenced the fish community. Within the fished area the structure of the fish assemblages was more heterogeneous, fish abundance was lower by an order of magnitude and species numbers were lower than in BRMS.  相似文献   

12.
Shore fish community structure off the Jordanian Red Sea coast was determined on fringing coral reefs and in a seagrass-dominated bay at 6 m and 12 m depths. A total of 198 fish species belonging to 121 genera and 43 families was recorded. Labridae and Pomacentridae dominated the ichthyofauna in terms of species richness and Pomacentridae were most abundant. Neither diversity nor species richness was correlated to depth. The abundance of fishes was higher at the deep reef slope, due to schooling planktivorous fishes. At 12 m depth abundance of fishes at the seagrass-dominated site was higher than on the coral reefs. Multivariate analysis demonstrated a strong influence on the fish assemblages by depth and benthic habitat. Fish species richness was positively correlated with hard substrate cover and habitat diversity. Abundance of corallivores was positively linked with live hard coral cover. The assemblages of fishes were different on the shallow reef slope, deep reef slope and seagrass meadows. An analysis of the fish fauna showed that the Gulf of Aqaba harbours a higher species richness than previously reported. The comparison with fish communities on other reefs around the Arabian Peninsula and Indian Ocean supported the recognition of an Arabian subprovince within the Indian Ocean. The affinity of the Arabian Gulf ichthyofauna to the Red Sea is not clear. Received in revised form: 2 November 2001 Electronic Publication  相似文献   

13.
The health of the coral reefs of the Abrolhos Bank (Southwestern Atlantic) was characterized with a holistic approach using measurements of four ecosystem components: (i) inorganic and organic nutrient concentrations, [1] fish biomass, [1] macroalgal and coral cover and (iv) microbial community composition and abundance. The possible benefits of protection from fishing were particularly evaluated by comparing sites with varying levels of protection. Two reefs within the well-enforced no-take area of the National Marine Park of Abrolhos (Parcel dos Abrolhos and California) were compared with two unprotected coastal reefs (Sebasti?o Gomes and Pedra de Leste) and one legally protected but poorly enforced coastal reef (the "paper park" of Timbebas Reef). The fish biomass was lower and the fleshy macroalgal cover was higher in the unprotected reefs compared with the protected areas. The unprotected and protected reefs had similar seawater chemistry. Lower vibrio CFU counts were observed in the fully protected area of California Reef. Metagenome analysis showed that the unprotected reefs had a higher abundance of archaeal and viral sequences and more bacterial pathogens, while the protected reefs had a higher abundance of genes related to photosynthesis. Similar to other reef systems in the world, there was evidence that reductions in the biomass of herbivorous fishes and the consequent increase in macroalgal cover in the Abrolhos Bank may be affecting microbial diversity and abundance. Through the integration of different types of ecological data, the present study showed that protection from fishing may lead to greater reef health. The data presented herein suggest that protected coral reefs have higher microbial diversity, with the most degraded reef (Sebasti?o Gomes) showing a marked reduction in microbial species richness. It is concluded that ecological conditions in unprotected reefs may promote the growth and rapid evolution of opportunistic microbial pathogens.  相似文献   

14.
Derelict ships are commonly deployed as artificial reefs in the United States, mainly for recreational fishers and divers. Despite their popularity, few studies have rigorously examined fish assemblages on these structures and compared them to natural reefs. Six vessel-reefs off the coast of southeast Florida were censused quarterly (two ships per month) to characterize their associated fish assemblages. SCUBA divers used a non-destructive point-count method to visually assess the fish assemblages over 13- and 12-month intervals (March 2000 to March 2001 and March 2002 to February 2003). During the same intervals, fish assemblages at neighboring natural reefs were also censused. A total of 114,252 fishes of 177 species was counted on natural and vessel-reefs combined. Mean fish abundance and biomass were significantly greater on vessel-reefs in comparison to surrounding natural reef areas. Haemulidae was the most abundant family on vessel-reefs, where it represented 46% of total fish abundance. The most abundant family on natural reefs was Labridae, where it accounted for 24% of total fish abundance. Mean species richness was significantly greater on vessel-reefs than neighboring natural reefs and also differed among vessel-reefs. Both mean fish abundance and mean species richness were not significantly different between natural reefs neighboring vessel-reefs and natural reefs with no artificial structures nearby. This suggests the vessel-reefs are not, in general, attracting fish away from neighboring natural reefs in our area. Additionally, economically important fish species seem to prefer vessel-reefs, as there was a greater abundance of these species on vessel-reefs than surrounding natural reef areas. Fish assemblage structure on natural versus artificial reefs exhibited a low similarity (25.8%). Although no one species was responsible for more than 6% of the total dissimilarity, fish assemblage trophic structure differed strikingly between the two reef types. Planktivores dominated on vessel-reefs, accounting for 54% of the total abundance. Conversely, planktivores only made up 27% of total abundance on natural reefs. The results of this study indicate vessel-reef fish assemblages are unique and that these fishes may be utilizing food resources and habitat characteristics not accessible from or found at natural reefs in our area. Production may also be occurring at vessel-reefs as the attraction of fish species from nearby natural reefs seems to be minimal. Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users  相似文献   

15.
In this study, fishes and habitat attributes were quantified, four times over 1 year, on three reefs within four regions encompassing a c. 6° latitudinal gradient across south-western Australia. The variability observed was partitioned at these spatio-temporal scales in relation to reef fish variables and the influence of environmental drivers quantified at local scales, i.e. at the scale of reefs (the number of small and large topographic elements, the cover of kelp, fucalean and red algae, depth and wave exposure) and at the scale of regions (mean and maximum nutrient concentrations and mean seawater temperature) with regard to the total abundance, species density, species diversity and the multivariate structure of reef fishes. Variation in reef fish species density and diversity was significant at the regional scale, whereas variation in the total abundance and assemblage structure of fishes was also significant at local scales. Spatial variation was greater than temporal variation in all cases. A systematic and gradual species turnover in assemblage structure was observed between adjacent regions across the latitudinal gradient. The cover of red algae within larger patches of brown macroalgae (a biological attribute of the reef) and the number of large topographic elements (a structural attribute of the reef) were correlated with variation observed at local scales, while seawater temperature correlated with variation at the scale of regions. In conclusion, conservation efforts on reef fishes need to incorporate processes operating at regional scales with processes that shape local reef fish communities at local scales.  相似文献   

16.
17.
Climate change is resulting in rapid poleward shifts in the geographical distribution of tropical and subtropical fish species. We can expect that such range shifts are likely to be limited by species-specific resource requirements, with temperate rocky reefs potentially lacking a range of settlement substrates or specific dietary components important in structuring the settlement and success of tropical and subtropical fish species. We examined the importance of resource use in structuring the distribution patterns of range shifting tropical and subtropical fishes, comparing this with resident temperate fish species within western Japan (Tosa Bay); the abundance, diversity, size class, functional structure and latitudinal range of reef fishes utilizing both coral reef and adjacent rocky reef habitat were quantified over a 2 year period (2008–2010). This region has undergone rapid poleward expansion of reef-building corals in response to increasing coastal water temperatures, and forms one of the global hotspots for rapid coastal changes. Despite the temperate latitude surveyed (33°N, 133°E) the fish assemblage was both numerically, and in terms of richness, dominated by tropical fishes. Such tropical faunal dominance was apparent within both coral, and rocky reef habitats. The size structure of the assemblage suggested that a relatively large number of tropical species are overwintering within both coral and rocky habitats, with a subset of these species being potentially reproductively active. The relatively high abundance and richness of tropical species with obligate associations with live coral resources (i.e., obligate corallivores) shows that this region holds the most well developed temperate-located tropical fish fauna globally. We argue that future tropicalisation of the fish fauna in western Japan, associated with increasing coral habitat development and reported increasing shifts in coastal water temperatures, may have considerable positive economic impacts to the local tourism industry and bring qualitative changes to both local and regional fisheries resources.  相似文献   

18.
Increased habitat complexity is supposed to promote increased diversity, abundance and biomass. This study tested the effect of the macroalgal cover on temperate reef fishes by mimicking macroalgae on artificial reefs in NW Sicily (Mediterranean Sea). Macroalgal cover affected reef fishes in different ways and independently of intrinsic temporal trends. The fish assemblages of manipulated and control artificial reef units differed in the relative abundances of the associated species, but little in species composition. In line with studies in seagrass habitats, fishes were most abundant in reefs covered by artificial macroalgae. Three species (Boops boops, Serranus scriba and Symphodus ocellatus) exhibited consistently greater abundance on vegetated reef units than on control reef units. The total number of species and the abundance of three particular species (S. scriba, S. ocellatus and Thalassoma pavo) displayed temporal trends which were independent on short and large temporal scales. Only fish total biomass and one species (Spicara flexuosa) displayed strong effects of interaction among the experimental factors. Mechanisms to explain these findings are discussed from observational evidence on habitat use and interactions among multiple species. This study highlights that manipulative experiments involving repeated sampling of fish in artificial habitats appear to be a valid approach to study fish-habitat relationships in fluctuating environments. It is also concluded that macroalgae mimics may serve as a tool for restoring lost marine vegetated habitats when current human-induced conditions prevent the recovery of pristine macroalgal stands.  相似文献   

19.

The southern Persian/Arabian Gulf experiences extreme seasonal temperature variation (> 20 °C) making it among the most hostile reef environments on Earth. Previous anecdotal evidence has suggested that seasonal temperature changes may influence regional reef fish assemblages, but to date research has been limited. To examine the influence of temperature on reef fish abundance and composition, we performed visual surveys in summer and in winter over three years at three reefs in the southern Gulf (Dhabiya, Saadiyat and Ras Ghanada). Overall abundance of fishes was 40% higher in summer than in winter, and multivariate analyses showed strong and significant differences in overall seasonal community structure, consistent at all sites and across all years. Seasonal differences were largely driven by nine of the 30 observed species, which together accounted for 70% of the divergence in community structure between summer and winter. Of these nine species, Lutjanus ehrenbergii, Lutjanus fulviflamma, Plectorhinchus sordidus and Abudefduf vaigiensis were significantly more abundant in summer, Parupeneus margaritatus and Acanthopagrus bifasciatus, were significantly more common on reefs in winter. We discuss these changes in terms of seasonal physiological and ecological constraints, and explore the implications of these changes on the functional ecology of reef fishes in this thermally variable and extreme environment.

  相似文献   

20.
Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号