首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent laboratory studies have demonstrated that Prunus necrotic ringspot virus (PNRSV) (family Bromoviridae) can be readily transmitted when thrips and virus‐bearing pollen are placed together on to test plants. For this transmission mechanism to result in stonefruit tree infection in the field, PNRSVbearing pollen must be deposited onto surfaces of stonefruit trees on which thrips also occur. In a previous paper, we demonstrated that almost all pollen in a PNRSV‐infected Japanese plum orchard in southeastern Queensland was deposited onto flowers, whereas few grains occurred on leaves and none on stems. Here, we present results of our investigation of thrips species composition, distribution and abundance on stonefruit trees in the same study area as our previous pollen deposition study. We collected a total of 2010 adult thrips from 13 orchards during the 1989, 1991 and 1992 flowering seasons of which all but 14 were in the suborder Terebrantia. Most (97.4%) terebrantian thrips were of three species, Thrips imaginis, Thrips australis and Thrips tabaci. Thrips tabaci as well as species mixtures that included T. imaginis, T. australis and T. tabaci have been shown to transmit PNRSV via infected pollen in laboratory tests. Adult thrips were frequently collected from flowers but rarely from leaves and never from stems. Large and significant differences in numbers of T. imaginis, T. australis and T. tabaci adults in flowers occurred among orchards and between seasons. No factor was conclusively related to thrips numbers but flowers of late‐flowering stonefruit varieties tended to hold more thrips than those of early‐flowering varieties. Our results indicate that the common thrips species present on stonefruit trees in the Granite Belt are also ones previously shown to transmit PNRSV via infected pollen in the laboratory and that these thrips are concentrated in tonefruit flowers where most stonefruit pollen is deposited. These results contribute to mounting circumstantial evidence that stonefruit flowers may be inoculated with PNRSV via an interaction of thrips with virus‐bearing pollen and that this transmission mechanism may be an important cause of new tree infections in the field  相似文献   

2.
When pollen of sowbane mosaic sobemovirus (SoMV)-infected Chenopodium amaranticolor was dusted onto C. amaranticolor and C. quinoa test seedlings which were then infested with 5–10 adult Thrips tabaci, SoMV was transmitted to 25%C. amaranticolor and 88% of C. quinoa plants. Five hours access of T. tabaci to pollen-contaminated C. quinoa seedlings was sufficient for SoMV transmission, but 1 h was not. SoMV was also transmitted when T. tabaci was mixed with pollen of C. amaranticolor and then placed on C. quinoa test seedlings. Further, plant-to-plant transmission of SoMV occurred in the absence of virus-carrying pollen when T. tabaci was caged on infected non-flowering C. amaranticolor or C. quinoa for 1–8 days and then adults transferred to C. quinoa test seedlings. This is the first time that thrips have been shown to be a vector of SoMV, and that a virus outside the ilarvirus group is reported to be transmitted using pollen and thrips.  相似文献   

3.
Prunus necrotic ringspot virus (PNRSV) is borne in stonefruit pollen. Previous work has shown that virus particles can enter cucumber seedlings when virus-bearing pollen grains contact puncture holes made in plant cells by thrips feeding. Stonefruit plant parts on which pollen is deposited and thrips spend considerable time feeding, are likely sites of PNRSV inoculation. The principal agents of pollen deposition may therefore play a key role in PNRSV epidemiology. We determined the principal sites of pollen deposition on Japanese plum trees and the major pollen depositing agents in a PNRSV-infected orchard in southeastern Queensland. Plum pollen was deposited mostly onto flowers, with few grains being found on leaves or stems. Within the flowers, pollen grains were distributed mostly on the petals, but some were found on the sepals, filaments and carpels. Honey bees were the most frequent visitors to plum flowers and they deposited more than any other insects. Flies visited flowers at low frequencies and also deposited pollen. Significant amounts of pollen were deposited onto flowers by unidentified nocturnal agents. Thrips were not observed during the study period, although they were present in the orchard. Previous studies have assumed that thrips carry virus-bearing pollen as well as bring it into proximity of feeding wounds. Our results suggest that, although thrips carriage of pollen may occur, it is not necessary for PNRSV spread in stonefruit orchards.  相似文献   

4.
When cucumber seedlings were dusted with tobacco streak ilarvirus (TSV)-infected pollen and infested with 5–10 thrips (adults and larvae mixed), Thrips tabaci transmitted all three Australian strains of TSV. In similar work, Microcephalothrips abdominalis transmitted both and Frankliniella schultzei one strain, respectively, of two TSV strains tested. Transmission of the Ageratum strain (TSV-Ag) infecting pollen of Ageratum houstonianum was very efficient (100%) by all three thrips species. However, transmission rates of only 0–28% were achieved using the Ajuga strain (TSV-A) and the strawberry strain (TSVS) in pollen of other hosts. A fourth thrips species, T. parvispinus , transmitted TSV-Ag from infected tomato pollen to Chenopodium amaranticolor seedlings. There was, therefore, little or no vector specificity in the thrips transmission of the three strains of TSV, but factors associated with the virus-infected pollen affected the efficiency of transmission. This is the first report of F. schultzei and T. parvispinus as vectors of TSV.  相似文献   

5.
The objectives of this study were to determine the depth of penetration into the soil by Frankliniella occidentalis (Pergande) and Thrips tabaci Lindeman (Thysan., Thripidae) in cucumber and tomato crops in greenhouses. A metal sampling apparatus sampled for the two species of thrips at five levels of soil depth (0–10 cm), over seven dates of sampling, each in eight replications. In general, thrips were found to be in greater numbers in the first 2 cm of soil, with the number of insects decreasing with depth increasing. In the depth of 8–10 cm, no insects were found. Number of thrips found in the soil under cucumber plants was greater in comparison with the tomato samplings. Frankliniella occidentalis was found in greater numbers in comparison with T. tabaci. The date of sampling showed a significant interaction with soil depth, with the number of insects found increasing from the first to the last date of sampling.  相似文献   

6.
This study documents the behavioural repertoire of Thrips tabaci. Seventeen behavioural elements shown by adult females were videotaped, described and classified into seven behavioural categories. The comparison of thrips behaviour on leek and cucumber over 24 h (L:D = 16:8) revealed that on cucumber thrips spent significantly less time being inactive, but significantly more time with feeding resulting in significantly higher feeding damage compared to leek. Oviposition behaviour incidence and oviposition rate were somewhat, but not significantly lower on cucumber compared to leek. Sequences of leaf surface exploration lasted significantly longer on cucumber than on leek. Thrips females were as active during light as during dark periods. Our results show that T. tabaci females spend different amounts of time with resting, feeding and explorative behaviours on leek and cucumber, thus indicating differences in host use on these two crops.  相似文献   

7.
The objectives of this work were to estimate the capability of local populations of thrips as vectors of groundnut ringspot virus (GRSV) and tomato spotted wilt virus (TSWV), and to determine the species composition of vectors in tomato crops. Transmission assays were performed. Incidence of tospoviruses was estimated in commercial crops. Random samples of flowers were taken from tomato for identification of thrips. Of the five species of thrips tested, Frankliniella gemina (first record), F. occidentalis and F. schultzei transmitted GRSV and TSWV. F. schultzei was a significantly more efficient vector of GRSV than F. occidentalis under controlled assay conditions. The thrips were identified on flowers from six surveyed tomato crops. F. occidentalis was the most frequently identified species (43.0%), followed by F. schultzei (35.6%) and Thrips tabaci (10.1%). The incidence of tospoviruses was low (1.1–2.8%) in crops planted during August–September and greater (9.5–61.1%) in crops planted in December. GRSV was prevalent (85%) over TSWV (11%).  相似文献   

8.
The development time, fecundity, longevity, and resultant intrinsic growth rate of the western flower thrips Frankliniella occidentalis (Pergande) [Thysanoptera: Thripidae] encaged on a cucumber leaf were compared among seven types of food supplied: six pollen species and a mixture of milk powder and yeast. The rationale was to find a food source that offers the least benefit for thrips and could therefore be considered as a food source for the preventative introduction of thrips predators. With the exception of the mixture of milk powder and yeast, all the food sources tested offered a nutritional benefit for the thrips. The addition of pollen increased fecundity and reduced development time, mainly during the larval stage. Betula pubescens and Corylus avellana pollen also increased adult longevity. The nutritional benefit of Pinus sylvestris pollen was greater than that of the other five pollen species, as manifested by its significantly greater positive effect on fecundity. The other pollen species could not be ranked in terms of nutritional benefit to F. occidentalis. The negative effect of the milk powder plus yeast mix on the life‐table parameters of F. occidentalis probably only occurs in an encaged situation where thrips cannot escape from the unfavorable environment. The crude estimate of the intrinsic growth rate of F. occidentalis increased from 0.163 on the plain cucumber leaf to 0.240 when P. sylvestris pollen was added to the leaf. The differences in intrinsic growth rate mainly reflect the differences in fecundity among the food sources. Thus, the peak oviposition rate may be used as a measure of the nutritional benefit F. occidentalis can obtain by feeding on supplemental food sources. The positive effect of a supplemental food source on thrips does not necessarily mean it is unsuitable for the preventative introduction of thrips predators, because the supplemental food can also affect the population dynamics of the predator and the predator–prey interaction and, hence, the outcome of biological control.  相似文献   

9.
Microsatellite analysis was used to characterize the patterns of pollen flow in a 150 m × 70 m quadrat containing 18 flowering trees of Rhododendron metternichii Sieb. et Zucc. var. hondoense Nakai. Using six microsatellite genetic markers and exclusion analysis, we determined the paternal trees of 216 seedlings germinated from five fruits produced by four adults. Each fruit was pollinated by a small number of largely adjacent trees, but 20–30% of pollen came from outside the quadrat. Adult trees that produced many flowers had a high self-pollination rate. A directional flow of pollen from late-blooming trees to early ones was observed.  相似文献   

10.
Rabbit immunoglobulin G (R‐IgG) was used successfully as an external mark for thrips. Females of both Thrips tabaci Lindeman and Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) were marked with 1 mg ml?1 R‐IgG solution with 1%‘Tween 20’ by the contact exposure method. Determining the retention of the mark was by running the rinsing solution of individual thrips in an enzyme‐linked immunosorbent assay (ELISA). The sandwich ELISA method was used with an additional biotin–avidin step. The threshold for a positive marking score was defined as three times the mean optical density readings of the negative control thrips. Under laboratory conditions, on bean pods, all marked thrips scored positive up to 6 days after marking (DAM). When marked thrips were kept in the laboratory on marigold flowers for 2 days, they all scored positive. When marked and unmarked thrips were placed together on these flowers, the mark was transferred to 10–20% of the unmarked thrips and they became positive. Under field conditions, on sticky traps covered with water‐base glue, 100, 80, and 20% of the marked T. tabaci scored positive by the 3rd, 6th, and 9th DAM, respectively. Under the same conditions 100, 90, and 10% of the marked F. occidentalis scored positive by the 3rd, 6th, and 9th DAM, respectively. The retention of the R‐IgG decreased significantly under conditions of wetness and high humidity. After 6 days on chive plants kept at 80–100% r.h., all marked thrips scored negative while on plants kept at 40–60% r.h., 85% of the marked thrips scored positive. Rabbit IgG can be used as an external marker for thrips. The suitability of this marking method for dispersal studies of these important pests needs to be evaluated.  相似文献   

11.
Two field experiments examined the distance over which an attractant odour of a volatile chemical could influence thrips capture in proximal traps that were without the odour. In each experiment a star‐shaped array of water traps consisted of a centre trap with or without an odour surrounded by odourless traps at 0.5, 1, 2, 5, and 10 m in eight equally spaced radial arms 45° apart. Experiments ran for 47 h (centre trap: ethyl nicotinate) or 7 h (centre trap: ethyl isonicotinate). Each had four replicates. With ethyl nicotinate, more thrips were trapped in the centre‐baited traps than in the unbaited centre traps (63×, 7×, 98× and 200× for total thrips, Thrips tabaci Lindeman ♀, and Thrips obscuratus Crawford ♀and ♂, respectively) (Thysanoptera: Thripidae). More total thrips and T. tabaci♀ were trapped in the centre traps baited with ethyl isonicotinate than in unbaited centre traps (21× for both). For ethyl nicotinate, numbers of T. obscuratus in unbaited traps downwind from the baited centre trap declined by 50% within 0.4 m (♀) and 2 m (♂) and by 95% within 3 m (both ♀ and ♂) based on model predictions. For ethyl isonicotinate, numbers of T. tabaci in unbaited traps downwind from the baited centre trap declined by 50% within 1.3 m and by 95% within 10 m based on model predictions. Wind direction was an important factor in the degree and direction of thrips capture with the highest thrips capture downwind from the centre trap with odour. There was no increase in numbers of T. tabaci in any traps without odour in the ethyl nicotinate‐centred array. Differences in trapping patterns between thrips species and odours indicated that there were thrips species–odour specific interactions. Experiments examining differences between traps with and without a thrips attractant odour need to be designed very carefully to ensure meaningful results especially in enclosed and/or low‐wind indoor situations.  相似文献   

12.
This paper reports thrips (Thysanoptera) cross-pollination in the primitive angiosperm, Popowia pisocarpa (Annonaceae), in lowland rain forest of Sarawak, Malaysia. Flowers of P. pisocarpa have a tiny pollination chamber (3–4 mm in depth) with the entrance almost closed by the disk-shaped stigmatic heads, allowing only small insects to enter. Experiments showed that thrips were effective pollinators and flowers ofP. pisocarpa were self-incompatible. Seed set was limited by pollen. Clumped adult trees had higher seed-set than more distant individuals (>5 m from nearest flowering neighbor), indicating limited inter-tree movement by thrips.  相似文献   

13.
Field experiments were done to determine whether drenching plants with two systemically active neonicotinoid insecticides, thiamethoxam and imidacloprid, suppresses spread of Tomato spotted wilt virus (TSWV) by thrips vectors. Separate treatments to TSWV ‘infector’ tomato (source) and healthy lettuce (recipient) plants provided information on the relative importance of targeting control at virus acquisition by nymphs versus virus transmission to healthy plants by adults. Drenches were applied either to seedlings just before transplanting or to soil around plants. The thrips vectors recorded were Frankliniella occidentalis, F. schultzei and Thrips tabaci, but F. schultzei and T. tabaci predominated. Overall ratios of external to internal TSWV spread into and within plots without insecticide ranged from 1 : 2.3 to 1 : 2.8 between field experiments. Applying thiamethoxam as a soil drench to both young source plants and recipient seedling transplants suppressed TSWV incidence by 86%, while such application to either young source or recipient seedlings diminished incidence by 67–70%. When thiamethoxam was applied either as a soil drench to old source plants and concurrently as a seedling drench to recipient plants or as a seedling drench to recipient plants alone, incidence was suppressed by 65–73% and 54–73%, respectively. Thiamethoxam applied as a soil drench to old source plants diminished incidence by only 33% or not significantly. Imidacloprid applied either as a soil drench to old source plants and concurently as a seedling drench or as a seedling drench alone, suppressed TSWV incidence by 90–92% and 80% respectively. Although adult vector thrips and nymph numbers were low, fewer adults and/or nymphs were sometimes recorded due to insecticide application. Drenching healthy seedlings with neonicotinoid insecticides just before transplanting can be an effective chemical control measure to include in integrated disease management strategies to suppress TSWV epidemics in short‐duration crops like lettuce.  相似文献   

14.
Stratiolaelaos scimitus Berlese (Acari: Laelapidae) is an important soil-dwelling predatory mite used to control thrips and it is necessary to explore its potential predation capacity. In the present study, the functional response for S. scimitus on the pupae of Frankliniella occidentalis Pergande was examined. In addition, the effects of released S. scimitus for the control of Thrips tabaci Lindeman and F. occidentalis on greenhouse cucumber were evaluated, and compared with that of the common predator Neoseiulus barkeri Hughes (Acari: Phytoseiidae). The results showed that S. scimitus exhibited a Holling type II functional response on thrips pupae. The greenhouse study indicated that the release of N. barkeri and S. scimitus separately at the density of 250 mites/m2 suppressed the population growth of thrips. In comparison with control plots, N. barkeri and S. scimitus reduced the population of T. tabaci by 76% and 64% in six weeks, respectively. Releases of N. barkeri and S. scimitus led to a reduction in F. occidentalis by 41% and 43%, respectively. Significantly lower densities of both thrips species per leaf were recorded in treatments of individual releases of N. barkeri or S. scimitus than that in the control plots. The findings highlight the potential for utilising N. barkeri and S. scimitus as biological control agents of T. tabaci and F. occidentalis, respectively.  相似文献   

15.
Bemisia tabaci Genn. (Hemiptera: Aleyrodidae) and Frankliniella occidentalis (Thysanoptera: Thripidae) are major pests in greenhouse grown cucumber crops. Recently, Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) was shown an effective biological control agent of both pests. Hence, perhaps both pests can be controlled simultaneously by this predator. However, with simultaneous infestation of both pests, synergistic effects, or interference could affect biological control and perhaps require changes in release rates of the predator. Thus, the aim of the present study was to evaluate different release rates of A. swirskii to control both pests under a worst case scenario of rapid immigration into a cucumber greenhouse. Two experiments were conducted, one simulating the influx of whiteflies alone (whitefly experiment) and the other immigration of whiteflies and thrips together (whitefly plus thrips experiment). Three treatments were compared in the whitefly experiment: (1) B. tabaci alone, (2) B. tabaci + 25 A. swirskii m−2 and (3) B. tabaci + 75 A. swirskii m−2. The high release rate was more effective than the low rate in controlling B. tabaci alone. The high rate was subsequently tested against B. tabaci and F. occidentalis for the whitefly and thrips experiment in which five treatments were compared: (1) B. tabaci alone, (2) F. occidentalis alone, (3) B. tabaci + 75 A. swirskii m−2, (4) F. occidentalis + 75 A. swirskii m−2 and (5) B. tabaci + F. occidentalis + 75 A. swirskii m−2. This rate of A. swirskii controlled whiteflies and thrips either alone or together. Therefore, 75 A. swirskii m−2 should be an adequate rate for controlling both pests either alone or simultaneously in cucumber greenhouses.  相似文献   

16.
Western flower thrips, Frankliniella occidentalis, and onion thrips, Thrips tabaci, are both important polyphagous pests of vegetables and ornamentals in greenhouses. Difficulties in biological control of these pests have prompted a search for new natural enemies. Most recently, the predatory mite Amblyseius swirskii has been commercialised as biological control agent of whiteflies and thrips. However, little is known about the suitability of thrips as prey for A. swirskii. We therefore assessed prey acceptance and life history of A. swirskii when feeding on F. occidentalis and T. tabaci at 25±1°C. Amblyseius swirskii juveniles preyed upon first larval instars of both F. occidentalis and T. tabaci but suffered from high mortality (67 and 78%). Developmental time (egg to adult) of A. swirskii was 7.8 days with either prey species. Adult A. swirskii females readily accepted first larval instars of both thrips species, which were attacked in <20 min on a leaf and <10 min in an artificial cage. Oviposition rates (0.92 and 0.99 eggs/female/day) and offspring sex ratios (63 and 70% females) were similar with F. occidentalis and T. tabaci as prey. Less than one-third of juveniles reaching adulthood and oviposition rates below one egg/female per day resulted in relatively low intrinsic rates of increase (r m) (0.056 and 0.024 per day with F. occidentalis and T. tabaci, respectively). Altogether, our study suggests that the recently reported superiority of A. swirskii to the widely used Neoseiulus cucumeris in suppression of thrips is due to other traits than its population growth capacity with thrips as prey.  相似文献   

17.
D. R. Gillespie 《BioControl》1989,34(2):185-192
The predatory miteAmblyseius cucumeris (Oudemans) [Acarina: Phytoseiidae] was evaluated as a biological control forThrips tabaci Lindeman andFrankliniella occidentalis (Pergande) [Thysanoptera: Thripidae] on greenhouse grown seedless cucumber.A. cucumeris spread throughout the greenhouses and provided control of both species of thrips.A. cucumeris adults persisted on plants for 7 weeks in the virtual absence of prey, and increased numerically in response to increases in prey population. On the basis of these resultsA. cucumeris is recommended as a useful biological control forT. tabaci andF. occidentalis on greenhouse cucumber. Publication No. 361, Agassiz Research Station, Agriculture Canada, Agassiz, B.C. Canada VOM 1AO.  相似文献   

18.
Discussion about thrips (Thysanoptera) as main pollinators has been controversial in the past because thrips do not fit the preconception of an effective pollinator. In this study, we present evidence for thrips pollination in the dioecious pioneer tree genus Macaranga (Euphorbiaceae). Macaranga hullettii is pollinated predominantly by one thrips species, Neoheegeria sp. (Phlaeothripidae, Thysanoptera). As a reward for pollinators, the protective floral bracteoles function as breeding sites for thrips and trichomal nectaries on the adaxial surface of the floral bracteoles provide alimentation. Flowering phenology of both staminate and pistillate trees was highly synchronized within 3-4 wk periods. In contrast to pistillate trees, staminate trees start to breed the thrips inside the developing inflorescences ~2 wk before anthesis. Breeding of Neoheegeria sp. in the laboratory indicates that the thrips development is completed within ~17 d. Thus, staminate trees offer breeding sites for one thrips generation until the onset of pollen presentation. Intraspecific pollen transfer by thrips was proved by pollen loads of thrips taken from receptive pistillate inflorescences of M. hullettii. Bagging experiments of different mesh sizes showed that seed set reached almost the level of open-pollinated flowers when exclusively tiny insects like thrips were able to enter the net bags, but no apomictic seed set occurred when no insect access was given to the flowers.  相似文献   

19.
Like other flower thrips, Frankliniella schultzei Trybom (Thysanoptera: Thripidae) feeds on pollen. However, the influence of a pollen diet on the life history of F. schultzei may not be as significant as reported for other thrips species. Frankliniella schultzei was reared successfully and with low mortalities (20%) on Wax Mallow, (Malvaviscus arboreus Cav.) plant part diets. Development times and fecundity on a petal diet were not significantly different from that on a pollen diet. Fecundity on a diet combining M. arboreus pollen, petal and leaf tissues was significantly higher than those individually containing these tissues. In laboratory choice tests, F. schultzei females encountered petal most often of the three plant parts. Pollen and leaf were encountered with similar frequencies. A significantly higher proportion of petal encounters (0.8) resulted in feeding than did pollen encounters (0.5). Few leaf encounters (0.1) were followed by feeding. Adult and larval F. schultzei were found in M. arboreus flowers but not on leaves. All parts of the flower were inhabited and not just the pollen-bearing petal apices and anthers. We propose that feeding on pollen within M. arboreus flowers is just one of many influences on the life history of F. schultzei and suggest that this may extend to other thrips species/host-plant combinations.  相似文献   

20.
Herbivore‐induced changes in plants have been widely viewed as defensive responses against further insect attack. However, changes in plants as a consequence of herbivore feeding can elicit various responses in herbivores; these are variable, context dependent, and often unpredictable. In this laboratory study, the responses of Thrips tabaci Lindeman (Thysanoptera: Thripidae) to volatiles emitted by intact and herbivore‐damaged or mechanically damaged cotton seedlings [Gossypium hirsutum L. (Malvaceae)] were investigated in dual‐choice olfactometer assays. Thrips tabaci showed increased attraction to seedlings subject to foliar mechanical damage and those with foliar damage inflicted by conspecifics or Tetranychus urticae Koch (Acari: Tetranychidae), upon which it preys. However, T. tabaci did not discriminate between intact seedlings and those with foliar damage inflicted by Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), two other species of thrips, Frankliniella schultzei Trybom and Frankliniella occidentalis Pergrande (Thysanoptera: Thripidae), or those with root damage inflicted by Tenebrio molitor L. (Coleoptera: Tenebrionidae). Attraction of T. tabaci was also affected by herbivore density on damaged plants. That is, seedlings damaged by higher densities of T. urticae or T. tabaci were more attractive than seedlings damaged by lower densities of the corresponding arthropod. Although attracted to plants damaged by conspecifics or T. urticae, T. tabaci showed greater attraction to seedlings damaged by T. urticae than to seedlings damaged by conspecifics. Results are discussed in the context of the responses of F. schultzei and F. occidentalis to herbivore‐induced cotton seedlings, highlighting the complexity, variability, and unpredictability of the responses of even closely related species of insects to plants under herbivore attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号