首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Approximation of the total escape area of the xylem in an inbred line of tomato (Ly-copersicon escutentum Mill. cv. Tiny Tim) with help of the frequency distribution of xylem vessel radii provides the possibility to calculate realistic escape constant values from uptake experiments of several elements into tomato stem segments. Comparison of the lateral escape rates of 24Na+, 42K+, 86Rb+ and 134Cs+ indicate that Na+ escape is rate-limited by its uptake into a rather constant number of surrounding cells, regardless of changes in the total escape area of the xylem vessels. The escape of K+, Rb+ and Cs+ seems to be proportional to the surface area of the xylem vessels and their escape is apparently controlled by their transport across the cell walls of the transport channels. The calculated small values for the escape rate constants (apparent permeability of the xylem cell walls, ca 2–3 · 10−9 m s−7) are probably due to the presence of lignin in the xylem cell walls, the discrimination between ions as a result of differing affinities and selectivities and the presence of other solutes in the applied solution.  相似文献   

2.
SYNTHESIS AND RELEASE OF [14C]ACETYLCH0LINE IN SYNAPTOSOMES   总被引:4,自引:2,他引:2  
Abstract— Synaptosomes took up [14C]choline, about half or more of which was converted to [I4C]acetylcholine when incubated in an appropriate medium containing 1 to 5 μ M-[14C] choline and neostigmine. The amount of [14C]acetylcholine synthesized in synaptosomes increased in parallel with the increase of Na+ concentration in the incubation medium. The effect of Na+ on the uptake of [I4C]choline into synaptosomes was dependent on the concentration of choline in the incubation medium.
About 25 per cent of [14C]acetylcholine synthesized in synaptosomes was released rapidly into the medium by increasing the K+ concentration in the medium from 5 m m to 35 m m . The change of Na+ concentration hardly affected the release of [14C]acetylcholine. The effect of K+ on the release of [14C]choline was rather small compared to that on [14C] acetylcholine. Ouabain promoted the release of [14C]acetylcholine.  相似文献   

3.
Abstract. The effect of fusicoccin (FC) on the K+stimulated Na+ efflux in root cells of Na+ loaded barley roots was studied. FC (0.02 mM) stimulated Na+ efflux in the presence of K+ and its effect was synergistic with that of K+, in a similar way as its effect on proton extrusion. Decreasing the pH of the elution medium promoted Na+ efflux and partially replaced the effect of FC. As FC is known to increase the electrochemical proton gradient at the plasmalemma level, these results are consistent with the hypothesis that Na+ is extruded in exchange for H+. A further support to this view came from the finding that Na+ efflux was also promoted by a lipophilic cation, tributylbenzylammonium (TBBA +), which stimulates H + extrusion and is generally accepted not to enter the cells by means of the same carrier as K +.  相似文献   

4.
CATION MODULATION OF SYNAPTOSOMAL RESPIRATION   总被引:16,自引:14,他引:2  
Abstract— Synaptosomes were prepared from the cerebral cortex of the adult rat by a rapid technique, involving the use of centrifugation in a Ficoll-sucrose discontinuous gradient. Adequate respiratory control ratios were obtained with glutamate and succinate plus rotenone. The addition of Na+ to the incubation medium stimulated synaptosomal, State-4 respiration, with a half-maximal response at 15 mM Na+. The stimulation by Na+ was inhibited by atractylate, oligomycin, ouabain or EDTA. A cooperative interaction between Na+ and low concentrations of Mg2+ was observed. A significant proportion (39 per cent) of the total Na-K ATPase (EC 3.6.1.4) activity in the discontinuous gradient was localized in the synaptosomal fraction. In the absence of exogenous Mg2+, Na+ induced a 64 per cent stimulation of the synaptosomal ATPase activity which was sensitive to ouabain. Such stimulation of ATP hydrolysis would account for the formation of increased amounts of ADP, with consequent recycling to ATP through adequately controlled oxidative phosphorylation. These observations demonstrate a significant role for transmembrane cationic gradients in the control of synaptosomal respiration and mitochondrial oxidative phosphorylation. The preparation exhibits moderate respiratory control and should prove useful in studies of integrated mitochondrial oxidative metabolism and neuronal membrane function.  相似文献   

5.
Abstract: The present study reports the ion dependency of 2β-carbomethoxy-3β-(4-fluorophenyl)[3H]tropane ([3H]- CFT) binding to the dopamine transporter in the rat striaturn. The results indicate that [3H]CFT binding to synaptosomal P2 membranes requires low concentrations of Na+ (peak binding between 20 and 50 m M Na+), is stimulated by phosphate anion or l-, but is unaffected or only slightly affected by F-, Cl-, Br-, NO3-, or SO42-, Concentrations of Na+ of >50 m M become inhibitory except in the presence of l-, which shifts peak binding levels toward higher Na+ concentrations and also elevates the peak binding level. K+ strongly decreased [3H]CFT binding with a shallow inhibition curve, and Na+ could not overcome this effect. Saturation analysis of [3H]CFT binding revealed a single binding site changing its affinity for CFT depending on the concentration of sodium phosphate buffer (6, 10, 30, 50, 130, or 200 m M ; 1 mM plus 49 mM NaCIversus 10 m M plus 40 m M NaCI; or 1 mM plus 129 m M Nal versus 10 m M plus 120 m M Nal). No differences were observed in the density of CFT binding sites between any of the conditions examined.  相似文献   

6.
Abstract— Slices of cerebral cortex were incubated in medium containing 0·75 or 2·8 mM 45CaCl2, in the presence or absence of 0·01–0·1 m m -ouabain. Ouabain induced accumulation of calcium by slices to a maximum of 4 μmoles/g of tissue/hr (0·75 m m -CaCl2 in the medium) and to 8 μmoles/g of tissue/hr (2·8 m m -CaCl2 in the medium). Accumulation of Ca2+ occurred more slowly than loss of K+ from the slices and more closely resembled the pattern of Na+ uptake.
Mitochondrial fractions isolated from ouabain-treated slices contained significantly more calcium than controls. Inclusion of EDTA in the homogenization medium resulted in decreased amounts of particulate-bound calcium.
The effect of ouabain on accumulation of calcium is discussed with regard to possible relationships to processes of active and passive transport.  相似文献   

7.
Low-K+, high-Na+ cells of strain RL21a of Neurospora crassa , in steady state with 25 m M Na+, were used to study K+/Na+ exchanges in the presence or absence of Ca2+ and Mg2+. In the presence of Ca2+ and Mg2+, a low concentration of K+ (0.3 m M ) triggered a rapid exchange, but in the absence of the divalents, a high K+ concentration (30 m M ) was required to initiate the exchange at a rapid rate. In the absence of Ca2+ and Mg2+, K+ uptake did not occur at low K+ concentration, internal K+ did not regulate Na+ influx in the presence of external K+, and the efflux of Na+ proceeded at maximum activity at very low-K+ contents.  相似文献   

8.
Puccinellia tenuiflora is a useful monocotyledonous halophyte that might be used for improving salt tolerance of cereals. This current work has shown that P. tenuiflora has stronger selectivity for K+ over Na+ allowing it to maintain significantly lower tissue Na+ and higher K+ concentration than that of wheat under short- or long-term NaCl treatments. To assess the relative contribution of Na+ efflux and influx to net Na+ accumulation, unidirectional 22Na+ fluxes in roots were carried out. It was firstly found that unidirectional 22Na+ influx into root of P. tenuiflora was significantly lower (by 31–37%) than in wheat under 100 and 150 m m NaCl. P. tenuiflora had lower unidirectional Na+ efflux than wheat; the ratio of efflux to influx was similar between the two species. Leaf secretion of P. tenuiflora was also estimated, and found the loss of Na+ content from leaves to account for only 0.0006% of the whole plant Na+ content over 33 d of NaCl treatments. Therefore, it is proposed that neither unidirectional Na+ efflux of roots nor salt secretion by leaves, but restricting unidirectional Na+ influx into roots with a strong selectivity for K+ over Na+ seems likely to contribute to the salt tolerance of P. tenuiflora .  相似文献   

9.
Abstract— Mouse brain slices were depleted of K+ by three 10-min incubations-in oxygenated HEPES-buffered medium lacking glucose and K+. Addition of K+ or Rb+ (or Cs+, to a smaller degree) with glucose, or with succinate, malate, and pyruvate (SMP) before incubation at 37°C with 14C-amino acids restored active low-affinity transport of d -Glu, α-aminoisobutyrate (AIB), GABA, Gly, His, Val, Leu, Lys, and Orn. Ouabain at 1–2μ m with Rb+ was more inhibitory with SMP than with glucose, suggesting that the glycoside may affect specific energy coupling to transport. Valinomycin, in contrast, showed no specificity of inhibition of amino acid uptake with glucose or SMP and K+ or Rb+. Cs+ partially restored amino acid uptake, but Li+ was less effective than Cs +. NaF at 10 m m with SMP + Rb+, or SMP + K+ did not inhibit amino acid uptake. Therefore, it was possible to dissociate glycolysis and Na+, K + -ATPase activity from amino acid transport. The ion replacements for K + that supported active amino acid transport indicate that the specificity of ions in possible ionic gradients for transport energetics should be reexamined.  相似文献   

10.
Abstract— The loss of GABA, norepinephrine and serotonin and the uptake of GABA (in the presence of 1 mM-GABA) and the effect of GABA on the loss of norepinephrine and serotonin were investigated in rat midbrain slices incubated in media of various compositions. In a medium of low Na+ concentration the loss of serotonin from incubated slices was markedly inhibited while that of norepinephrine and GABA was significantly increased. Conversely the most pronounced loss of serotonin from slices was observed on the addition of ouabain to a medium of a balanced ionic composition. Whereas the loss of serotonin from slices increased in a medium of high K+ content, it was significantly reduced after 45 min incubation in a high K+-low Na+ medium. In all the modified media used, a significant loss of norepinephrine was observed while that of GABA was not affected by the omission of Ca2+ and was slightly reduced in the absence of K+. GABA enhanced the loss of norepinephrine and inhibited that of serotonin in a high-K+ medium and in one with a balanced ionic composition. A deficiency of Na+ in the medium had a differential effect on the loss of norepinephrine and serotonin similar to that observed with 1 mM-GABA. These results suggest that Na+ may be of crucial importance in the release of serotonin from midbrain slices and that an enhancement of the Na+ extrusion mechanism at the synaptosomal level may be involved in the effect of GABA on brain monoamines.  相似文献   

11.
Abstract The endogenous ATPase activity of rat brain mitochondria was stimulated 30-50 per cent by 15-50 m m concentrations of NaCl or Na acetate. The Na stimulation was completely abolished by small amounts of oligomycin but unaffected by ouabain. The differential effects of these inhibitors indicated that the Na-induced ATPase activity did not result from microsomal or synaptosomal contamination of mitochrondria. Sodium salts decreased the stimulatory effects of DNP, gramicidin, or Ca, but not that of Mg on the endogenous ATPase activity. These interactions were specific for Na+ as the corresponding salts of K+ did not affect the endogenous ATPase or inhibit the DNP-stimulated ATPase activity except at high concentrations. The Na-induced increases in ATPase activity and respiration were more sensitive to aging of the mitochondria than were ADP/O and respiratory control ratios, or the DNP-induced ATPase activity. These results suggest that Na+ may interact in brain mitochondria with the same high-energy intermediate of oxidative phosphorylation proposed for DNP and Ca.  相似文献   

12.
Abstract: The effects of alcohol and Ca2+ transport inhibitors on depolarization-induced stimulation of oxidative phosphorylation and free-Ca2+ concentrations in rat synaptosomes were investigated. Glucose oxidation was stimulated by depolarization with K+ or veratridine and by the Ca2+ ionophore ionomycin. The stimulation by K+, veratridine, and ionomycin was correlated with elevation of synaptosomal free Ca2+. Depolarization-stimulated respiration was inhibited by verapamil, Cd2+, and ruthenium red but not by diltiazem. Synaptosomal Ca2+ elevation was inhibited by verapamil but not by ruthenium red. These results indicate that the stimulation depends on elevation of mitochondrial free Ca2+. Ethanol, at pharmacological concentrations (50–200 m M ), inhibited the Ca2+-dependent stimulation of oxidative phosphorylation. This inhibition resulted, in part, from the inhibition of voltage-gated Ca2+ channels, which inhibited the elevation of synaptosomal free Ca2+, and, in part, from the stimulation of the mitochondrial Ca2+/Na+ antiporter, which inhibited the elevation of the mitochondrial matrix free Ca2+. The inhibition by ethanol of the excitation-induced stimulation of oxidative phosphorylation in the synapse may contribute to the depressant and narcotic effects of alcohol and enhance excitotoxicity.  相似文献   

13.
Abstract— The rate of efflux of 45Ca2+ from slices of rat cerebral cortex was resolved into two exponential curves which were attributed to an extracellular component and an intracellular or bound component. Electrical stimulation increased efflux of 45Ca2+ from the more stable pool and the time course for the redistribution of Na+ and K+ paralleled that for the increased efflux of Ca2+. This effect of stimulationwas dependent on the presence of Na+ in the incubation medium. Lack of Na+ in the medium during loading of the slices with 45Ca2+ increased uptake but on subsequent transfer to a medium containing Na+, electrical pulses failed to increase the rate of efflux of 45Ca2+. In unstimulated slices, the rate of efflux of 45Ca2+ was dependent upon the concentration ratio of Na+ to Ca2+ in the incubation medium. Saxitoxin and tetrodotoxin inhibited the increased efflux of 45Ca2+ that occurred during electrical stimulation but exerted no effect on Ca2+-Ca2+ exchange. Our results suggest that there is a Na+-dependent turnover of Ca2+ in brain slices which may involve changes in affinity at a common binding site. The possible involvement of such a Na+-Ca2+ interaction in the regulation of neurotransmitter function is discussed.  相似文献   

14.
Abstract: The kinetics of synaptosomal [3H]glutamate release were measured on a subsecond time scale to study the relationship between the length of depolarization and the duration of the secretory event. The time course of release evoked by elevated K+ was complex, proceeding for several seconds after a 200-ms depolarization. We developed a protocol for depolarizing excitable membranes on a millisecond time scale to deliver brief depolarizations, termed the synthetic action potential, by using batrachotoxin to activate Na+ channels. Depolarization is achieved by superfusing with solutions containing elevated concentrations of Na+, and the duration of the depolarization is limited by including tetrodotoxin (TTX) in the superfusion solution to block Na+ entry. Direct measurements of the time courses of Na+ current and membrane depolarizations were made in batrachotoxin-treated sensory neurons using patch clamp recording methods. Rapid increases in Na+ and TTX concentrations produced transient increases in inward Na+ current that decayed with a time course proportional to TTX concentration. Current clamp measurements indicated that, with 10 µ M TTX, depolarizations last ∼30 ms. Nonetheless, synaptosomal release of [3H]glutamate triggered by the synthetic action potential remained prolonged. Brief neuronal action potentials at some synapses may trigger transmitter release that persists for several seconds.  相似文献   

15.
Abstract. Kosteletzkya virginica (L.) Presl., a dicot halophyte native to brackish tidal marshes, was grown on nutrient solution containing 0. 85, 170 or 255 mol m 3 NaCl, and the effects of external salinity on root growth, ion and water levels, and lipid content were examined in successive harvests. Root growth paralleled shoot growth trends, with some enhancement observed at 85 mol m 3 NaCl and a reduction noted at the higher salinities. Root Na+ content increased with increasing external NaCl, but remained constant with time for each treatment. K+ content, although lower in salt-grown plants after 14 d salinization, subsequently increased to levels comparable to unsalinized plants. A strong K+ affinity was reflected in the increased K+/Na+ selectivity of salt-grown plants and by their low Na+/K+ ratios. Cl levels rose in salinized plants and values were double or more those for Na+, indicating the possibility of a sodium-excluding mechanism in roots. Root phospholipids and sterols, principal membrane constituents, were maintained or elevated and the free sterol/phospholipids ratio increased in salinized K. virginica plants, suggesting retention of overall membrane structure and decreased permeability. This response, considered in light of root calcium maintenance and high potassium levels, suggests that salinity-induced changes in membrane lipid composition may be important in preventing K+ leakage from cells.  相似文献   

16.
RELEASE AND EXCHANGE STUDIES RELATING TO THE SYNAPTOSOMAL UPTAKE OF GABA   总被引:19,自引:15,他引:4  
Abstract— Synaptosomal release and exchange of [3H]GABA were studied by a superfusion technique which minimizes reuptake. The release of [3H]GABA was increased by depolarizing concentrations of KCl and showed calcium-dependence. Superfusion with 1-1000 μ m unlabelled GABA caused a dose dependent, saturable increase in the release of radioactivity by homoexchange. The exchange process showed high substrate specificity: among the various amino acids and putative neurotransmitters tested, only γ-amino-β-hydroxybutyric acid was a good stimulator of [3H]GABA release. Superfusion with sodium-free medium (NaCl replaced by sucrose) virtually abolished homoexchange. Ouabain also increased the release of [3H]GABA, and its action was additive to that of unlabelled GABA.
The presence of exchange at concentrations that are in the range of the high affinity uptake system, the apparent similarity between calculated rates of exchange and initial uptake rates, the non-detectability of exchange in a condition (Na+ deprivation) which inhibits high affinity uptake, and the lack of decrease of actual GABA concentration in incubation media used for uptake experiments, all suggest that homoexchange accounts for a substantial part of the synaptosomal accumulation of [3H]GABA generally interpreted as high affinity uptake.  相似文献   

17.
Abstract— Desheathed rat dorsal root ganglia were incubated in a medium containing amino-oxyacetic acid and [3H]GABA. Under these conditions, [3H]GABA is taken up exclusively by the satellite glial cells in the ganglia. Efflux of [3H]GABA from the tissue was measured after passing the ganglia through a series of wash solutions. The spontaneous efflux of radioactivity, mostly [3H]GABA, was more rapid in the absence of amino-oxyacetic acid in the incubation and wash media.
Raising the potassium concentration in the wash media caused an increase in the efflux of [3H]GABA. This increase was sigmoidally related to the potassium concentration in the wash media, reaching a maximum at 64 m m -K+. The releasing effect of K+ was inhibited by removing calcium from the media. Reducing the calcium and raising the magnesium concentration in the wash solutions inhibited the increased efflux of [3H]GABA due to 64 m m -K+ by 48 per cent, while 5 mM-La3+ and diphenylhydantoin (0·005 and 0·5 m m ) had no effect on this increase.
Only a small increase in the efflux of [14C]glutamate was produced by 64 m m -K+ and it had no effect upon the effluxes of [3H]glycine, [3H]alanine or [3H]leucine. The efflux of lactate dehydrogenase was similarly unaffected by 64 mM-K+. The results suggest that glial cells in spinal ganglia can respond to depolarizing concentrations of potassium by releasing GABA in a calcium-dependent process.  相似文献   

18.
In the present study, glass eels Anguilla anguilla in the Minho River estuary (41·5° N, 8·5° W) decreased in size (standard length, L S and mass, M ) from the beginning (autumn) to the end of the sampling season (summer). On the other hand elvers increased in L S and M from spring to summer and were significantly larger than glass eels in paired comparisons. Branchial Na+/K+-ATPase and vacuolar (V-type) proton ATPase ( in vitro activities), two important ion transporting pumps, did not show significant seasonal changes in either glass eels or elvers although in glass eels Na+/K+-ATPase (activity) expression was significantly higher than in elvers. In a single month comparison Na+/K+-ATPase branchial mRNA expression was also higher in glass eels as was the protein level expression of both Na+/K+-ATPase and NKCC (Na+:K+:2Cl co-transporter). Immunofluorescence microscopy indicated apical CFTR Cl channel labelling in Na+/K+-ATPase positive chloride cell in glass eels which was absent in elvers. Whole body sodium concentration and percentage water did not show significant seasonal differences in either glass eels or elvers although there were significant differences between these two groups during some months.  相似文献   

19.
In this paper we begin our study of factors controlling Na+ and K+ uptake in the halophyte Spergularia marina (L.) Griseb., with emphasis on plants growing at moderate salinity (0.2x sea water). The involvement of transpiration was considered first because of its potential to account for much or all of the transport of ions, and particularly of Na+, to the shoot under these growth conditions. Transpiration was constant with time through most of the light period, quickly dropping to 6% of the day time rate at night. 22Na+ uptake, on the other hand, showed much less day/night variation, and relative transport to the shoot was constant. After establishing that transpiration was linearly related to leaf weight, possible transpiration effects were further considered as correlations between leaf weight and transport to the shoot. Under constant, day-time conditions, with linear effects of time and plant size removed, total transport of 22Na+ to the shoot (per plant) was not correlated to leaf weight. A similar result was found when transport was expressed per gram of root, and when partitioning of total label to the shoot was considered. Finally, the correlation was considered between leaf weight and a Na+/K+ enrichment factor defined as the Na+/K+ ratio in the leaves divided by that in the roots. This correlation was also insignificant. The results indicate that analysis of control of Na+ and K+ uptake and transport in this experimental system need not consider effects of transpiration.  相似文献   

20.
Abstract: During K+ -induced depolarization of isolated rat brain nerve terminals (synaptosomes), 1 m M Ba2+ could substitute for 1 m M Ca2+ in evoking the release of endogenous glutamate. In addition, Ba2+ was found to evoke glutamate release in the absence of K+-induced depolarization. Ba2+ (1–10 m M ) depolarized synaptosomes, as measured by voltage-sensitive dye fluorescence and [3H]-tetraphenylphosphonium cation distribution. Ba2+ partially inhibited the increase in synaptosomal K+ efflux produced by depolarization, as reflected by the redistribution of radiolabeled 86Rb+. The release evoked by Ba2+ was inhibited by tetrodotoxin (TTX). Using the divalent cation indicator fura-2, cytosolic [Ca2+] increased during stimulation by approximately 200 n M , but cytosolic [Ba2+] increased by more than 1 μ M . Taken together, our results indicate that Ba2+ initially depolarizes synaptosomes most likely by blocking a K+ channel, which then activates TTX-sensitive Na+ channels, causing further depolarization, and finally enters synaptosomes through voltage-sensitive Ca2+channels to evoke neurotransmitter release directly. Though Ba2+-evoked glutamate release was comparable in level to that obtained with K+-induced depolarization in the presence of Ca2+, the apparent intrasynaptosomal level of Ba2+ required for a given amount of glutamate release was found to be several-fold higher than that required of Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号