首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DC) are able to capture, process, and present exogenous Ag to CD8(+) T lymphocytes through MHC class I, a process referred to as cross-presentation. In this study, we demonstrate that CD103(+) (CD11c(high)CD11b(low)) and CD103(-) (CD11c(int)CD11b(high)) DC residing in the lung-draining bronchial lymph node (brLN) have evolved to acquire opposing functions in presenting innocuous inhaled Ag. Thus, under tolerogenic conditions, CD103(-) DC are specialized in presenting innocuous Ag to CD4(+) T cells, whereas CD103(+) DC, which do not express CD8alpha, are specialized in presenting Ag exclusively to CD8(+) T cells. In CCR7-deficient but not in plt/plt mice, Ag-carrying CD103(+) DC are largely absent in the brLN, although CD103(+) DC are present in the lung of CCR7-deficient mice. As a consequence, adoptively transferred CD8(+) T cells can be activated under tolerizing conditions in plt/plt but not in CCR7-deficient mice. These data reveal that CD103(+) brLN DC are specialized in cross-presenting innocuous inhaled Ag in vivo. Because these cells are largely absent in CCR7(-/-) mice, our findings strongly suggest that brLN CD103(+) DC are lung-derived and that expression of CCR7 is required for their migration from the lung into its draining lymph node.  相似文献   

2.
Increases in numbers of lung dendritic cells (DC) observed during respiratory viral infections are assumed to be due to recruitment from bone marrow precursors. No local production has been demonstrated. In this study, we isolated defined populations of murine lung cells based on CD11c and MHC class II (MHC II) expression. After culture for 12 days with GM-CSF, we analyzed cell numbers, DC surface markers, and Ag-presenting capacity. Only CD11c+ MHC II- cells from naive mice proliferated, yielding myeloid DC, which induced Ag-specific proliferation of naive T cells. After respiratory syncytial virus (RSV) infection, numbers of pulmonary CD11c+ MHC II- precursor cells were significantly reduced and DC could not be generated. Moreover, RSV infection prevented subsequent in vivo expansion of pulmonary DC in response to influenza infection or LPS treatment. These results provide direct evidence of local generation of fully functional myeloid DC in the lung from CD11c+ MHC II(-) precursor cells that are depleted by RSV infection, leading to an inability to expand lung DC numbers in response to subsequent viral infection or exposure to bacterial products. This depletion of local DC precursors in respiratory viral infections may be important in explaining complex interactions between multiple and intercurrent pulmonary infections.  相似文献   

3.
Idiopathic pneumonia syndrome (IPS) is a significant cause of mortality post-bone marrow transplant (BMT) in humans. In our murine model, lethal pre-BMT conditioning and allogeneic T cells result in the recruitment of host antigen-presenting cells (APC) and donor T cells into the lung post-BMT concomitant with development of severe lung dysfunction. CCL2 induction is found in bronchoalveolar lavage fluid (BALF) before host monocyte influx. The major receptor for CCL2 is CCR2 present on monocytes; this interaction can play a crucial role in monocyte recruitment in inflammation. To determine whether blockade of the CCL2/CCR2 pathway could hinder host monocyte influx, lethally conditioned wild-type (WT), CCL2(-/-), or CCR2(-/-) mice were transplanted with allogeneic marrow and spleen cells. WT and (-/-) recipients exhibited equivalent lung dysfunction post-BMT. The frequencies of host macrophages as well as donor CD4(+) and CD8(+) T cells in lungs post-BMT did not differ between WT and (-/-) recipients. However, the T cell dependency of the host CD11b(+) major histocompatibility complex class II(+) cell influx was lost in CCR2(-/-) recipients. In CCR2(-/-) mice, this influx was accompanied by elevated levels of CCL20. Post-BMT BALF and sera of (-/-) mice did not reveal any decrease in cytokines or chemokines compared with WT mice. CCL2(-/-) mice had a deficiency of CCL2 in their BALF and sera post-BMT, confirming our hypothesis that CCL2 is predominantly host derived. Therefore, IPS can occur independently of host expression of CCL2 or CCR2, and compensatory mechanisms exist for regulating APC recruitment into the lung during the early post-BMT period.  相似文献   

4.
In the present study, we investigated the effects of in vivo Flt3L administration on the generation, phenotype, and function of lung dendritic cells (DCs) to evaluate whether Flt3L favors the expansion and maturation of a particular DC subset. Injection of Flt3L into mice resulted in an increased number of CD11c-expressing lung DCs, preferentially in the alveolar septa. FACS analysis allowed us to quantify a 19-fold increase in the absolute numbers of CD11c-positive, CD45R/B220 negative DCs in the lungs of Flt3L-treated mice over vehicle-treated mice. Further analysis revealed a 90-fold increase in the absolute number of myeloid DCs (CD11c positive, CD45R/B220 negative, and CD11b positive) and only a 3-fold increase of lymphoid DCs (CD11c positive, CD45R/B220 negative, and CD11b negative) from the lungs of Flt3L-treated mice over vehicle-treated mice. Flt3L-treated lung DCs were more mature than vehicle-treated lung DCs as demonstrated by a significantly higher percentage of cells expressing MHC class II, CD86, and CD40. Freshly isolated Flt3L lung DCs were not fully mature, because after an overnight culture they continued to increase accessory molecule expression. Functionally, Flt3L-treated lung DCs were more efficient than vehicle-treated DCs at stimulating naive T cell proliferation. Our data show that administration of Flt3L favors the expansion of myeloid lung DCs over lymphoid DCs and enhanced their ability to stimulate naive lymphocytes.  相似文献   

5.
Chemoattractant receptors regulate leukocyte accumulation at sites of inflammation. In allergic airway inflammation, although a chemokine receptor CCR2 was implicated in mediating monocyte-derived dendritic cell (DC) recruitment into the lung, we previously also discovered reduced accumulation of DCs in the inflamed lung in mice deficient in formylpeptide receptor Fpr2 (Fpr2−/−). We therefore investigated the role of Fpr2 in the trafficking of monocyte-derived DCs in allergic airway inflammation in cooperation with CCR2. We report that in allergic airway inflammation, CCR2 mediated the recruitment of monocyte-derived DCs to the perivascular region, and Fpr2 was required for further migration of the cells into the bronchiolar area. We additionally found that the bronchoalveolar lavage liquid from mice with airway inflammation contained both the CCR2 ligand CCL2 and an Fpr2 agonist CRAMP. Furthermore, similar to Fpr2−/− mice, in the inflamed airway of CRAMP−/− mice, DC trafficking into the peribronchiolar areas was diminished. Our study demonstrates that the interaction of CCR2 and Fpr2 with their endogenous ligands sequentially mediates the trafficking of DCs within the inflamed lung.  相似文献   

6.
Subcutaneous implantation of polyvinyl sponges represents a suitable model for studying the mechanisms of acute and chronic inflammation, granulomatous foreign-body reaction, as well as wound healing. Using such a model in rats, we studied the phenotypic and functional characteristics of dendritic cells (DC). DC were purified from the sponge exudate using a combination of separation gradients, adherence to plastics, and immunomagnetic sorting. We have shown that the number of DC progressively increased in the sponges, reaching maximal values at day 10 after implantation, followed by their decrease thereafter. Inflammatory DC expressed MHC class II molecules and myeloid markers CD11b, CD11c, and CD68. A subset of DC expressed CD4, R-MC46, DEC-205, R-MC17, and CCR1. Compared to DC isolated in the early phase of inflammation (day 6 DC), DC in the late stage of inflammation (day 14 DC) had a lower capability to stimulate the proliferation of allogeneic lymphocytes and CD4(+) T cells. This finding correlated with the downregulation of CD80, CD86, and CD54 expression and the increased proportion of plasmacytoid MHC class II(+) His 24(+) His 48(+) DC. The suppression of allogeneic lymphocyte proliferation was abrogated by the treatment of DC with lipopolysaccharide. In addition, day 14 DC exerted tolerogenic capability in co-culture with allogenic CD4(+) T cells. These results correlated with the increased levels of IL-10 and TGF-beta in culture supernatants and the sponge exudate.  相似文献   

7.
Current immunological opinion holds that myeloid dendritic cell (mDC) precursors migrate from the blood to the tissues, where they differentiate into immature dermal- and Langerhans-type dendritic cells (DC). Tissue DC require appropriate signals from pathogens or inflammatory cytokines to mature and migrate to secondary lymphoid tissue. We show that purified blood mDC cultured in vitro with GM-CSF and IL-4, but in the absence of added exogenous maturation stimuli, rapidly differentiate into two maturational and phenotypically distinct populations. The major population resembles immature dermal DC, being positive for CD11b, CD1a, and DC-specific ICAM-3-grabbing nonintegrin. They express moderate levels of MHC class II and low levels of costimulatory molecules. The second population is CD11b(-/low) and lacks CD1a and DC-specific ICAM-3-grabbing nonintegrin but expresses high levels of MHC class II and costimulatory molecules. Expression of CCR7 on the CD11b(-/low) population and absence on the CD11b(+) cells further supports the view that these cells are mature and immature, respectively. Differentiation into mature and immature populations was not blocked by polymyxin B, an inhibitor of LPS. Neither population labeled for Langerin, E-cadherin, or CCR6 molecules expressed by Langerhans cells. Stimulation of 48-h cultured DC with LPS, CD40L, or poly(I:C) caused little increase in MHC or costimulatory molecule expression in the CD11b(-/low) DC but caused up-regulated expression in the CD11b(+) cells. In HIV-infected individuals, there was a marked decrease in the viability of cultured blood mDC, a failure to differentiate into the two populations described for normal donors, and an impaired ability to stimulate T cell proliferation.  相似文献   

8.
Asthma is characterized by infiltration of the airway wall with eosinophils. Although eosinophils are considered to be effector cells, recent studies have reported their ability to activate primed Th2 cells. In this study, we investigated whether eosinophils are capable of presenting Ag to unprimed T cells in draining lymph nodes (DLN) of the lung and compared this capacity with professional dendritic cells (DC). During development of eosinophilic airway inflammation in OVA-sensitized and challenged mice, CCR3(+) eosinophils accumulated in the DLN. To study their function, eosinophils were isolated from the bronchoalveolar lavage fluid of mice by sorting on CCR3(+)B220(-)CD3(-)CD11c(dim) low autofluorescent cells, avoiding contamination with other APCs, and were intratracheally injected into mice that previously received CFSE-labeled OVA TCR-transgenic T cells. Eosinophils did not induce divisions of T cells in the DLN, whereas DC induced on average 3.7 divisions in 45.7% of T cells. To circumvent the need for Ag processing or migration in vivo, eosinophils were pulsed with OVA peptide and were still not able to induce T cell priming in vitro, whereas DC induced vigorous proliferation. This lack of Ag-presenting ability was explained by the very weak expression of MHC class II on fresh eosinophils, despite expression of the costimulatory molecules CD80 and ICAM-1. This investigation does not support any role for airway eosinophils as APCs to naive T cells, despite their migration to the DLN at times of allergen exposure. DC are clearly superior in activating T cells in the DLN of the lung.  相似文献   

9.
Chronic obstructive pulmonary disease (COPD) is mainly caused by cigarette smoking, and is characterized by an increase in inflammatory cells in the airways and pulmonary tissue. The chemokine receptor CCR6 and its ligand MIP-3alpha/CCL20 may be involved in the recruitment of these inflammatory cells. To investigate the role of CCR6 in the pathogenesis of COPD, we analyzed the inflammatory responses of CCR6 knockout (KO) and wild-type mice upon cigarette smoke (CS) exposure. Both subacute and chronic exposure to CS induced an increase in cells of the innate and adaptive immune system in the bronchoalveolar lavage, both in CCR6 KO and wild-type mice. However, the accumulation of dendritic cells, neutrophils, and T lymphocytes, which express CCR6, was significantly attenuated in the CCR6 KO mice, compared with their wild-type littermates. In the lung tissue of CCR6 KO mice, there was an impaired increase in dendritic cells, activated CD8(+) T lymphocytes, and granulocytes. Moreover, this attenuated inflammatory response in CCR6 KO mice offered a partial protection against pulmonary emphysema, which correlated with an impaired production of MMP-12. Importantly, protein levels of MIP-3alpha/CCL20, the only chemokine ligand of the CCR6 receptor, and MCP-1/CCL2 were significantly increased upon CS exposure in wild-type, but not in CCR6 KO mice. In contrast, CCR6 deficiency had no effect on the development of airway wall remodeling upon chronic CS exposure. These results indicate that the interaction of CCR6 with its ligand MIP-3alpha contributes to the pathogenesis of CS-induced pulmonary inflammation and emphysema in this murine model of COPD.  相似文献   

10.
Pulmonary clearance of the encapsulated yeast Cryptococcus neoformans requires the development of T1-type immunity. CCR2-deficient mice infected with C. neoformans develop a non-protective T2 immune response and persistent infection. The mechanisms responsible for this aberrant response are unknown. The objective of this study was to define the number, phenotype, and microanatomic location of dendritic cells (DC) residing within the lung of CCR2+/+ or CCR2-/- mice throughout a time course following infection with C. neoformans. Results demonstrate the CCR2-mediated recruitment of conventional DC expressing modest amounts of costimulatory molecules. DC recruitment was preceded by the up-regulation in the lung of the CCR2 ligands CCL2 and CCL7. Colocalization of numerous DC and CD4+ T cells within bronchovascular infiltrates coincided with increased expression of IL-12 and IFN-gamma. By contrast, in the absence of CCR2, DC recruitment was markedly impaired, bronchovascular infiltrates were diminished, and mice developed features of T2 responses, including bronchovascular collagen deposition and IL-4 production. Our results demonstrate that CCR2 is required for the recruitment of large numbers of conventional DC to bronchovascular infiltrates in mice mounting a T1 immune response against a fungal pathogen. These findings shed new insight into the mechanism(s) by which DC recruitment alters T cell polarization in response to an infectious challenge within the lung.  相似文献   

11.
Allergic airway diseases such as asthma are caused by a failure of the immune system to induce tolerance against environmental Ags. The underlying molecular and cellular mechanisms that initiate tolerance are only partly understood. In this study, we demonstrated that a CCR7-dependent migration of both CD103+ and CD103- lung dendritic cells (DC) to the bronchial lymph node (brLN) is indispensable for this process. Although inhaled Ag is amply present in the brLN of CCR7-deficient mice, T cells cannot be tolerized because of the impaired migration of Ag-carrying DC and subsequent transport of Ag from the lung to the draining lymph node. Consequently, the repeated inhalation of Ag protects wild-type but not CCR7-deficient mice from developing allergic airway diseases. Thus, the continuous DC-mediated transport of inhaled Ag to the brLN is critical for the induction of tolerance to innocuous Ags.  相似文献   

12.
Dendritic cells (DC) were purified by flow cytometry from rat tracheal mucosa; they exhibited the phenotypic characteristics of immature DC including high endocytic activity, low CD80/86 expression, and in vitro responsiveness to a broad range of CC chemokines. Daily treatment of adult rats with the selective CCR1 and CCR5 antagonist Met-RANTES reduced baseline numbers of tracheal intraepithelial DC by 50-60%, and pretreatment of animals with Met-RANTES before inhalation of aerosol containing heat-killed bacteria abolished the rapid DC influx into the epithelium that occurred in untreated controls, implicating CCR1 and CCR5 and their ligands in recruitment of immature DC precursors into resting airway tissues and during acute bacterial-induced inflammation. Comparable levels of DC recruitment were observed during airway mucosal Sendai virus infection and after aerosol challenge of sensitized animals with the soluble recall Ag OVA. However, Met-RANTES did not affect these latter responses, indicating the use of alternative chemokine receptors/ligands for DC recruitment, or possibly attraction of different DC subsets, depending on the nature of the eliciting stimulus.  相似文献   

13.
14.
Flt3 ligand (FL) is a potent hemopoietic growth factor that strikingly enhances stem cells and dendritic cells (DC) in vivo. We examined the impact of infusing FL-mobilized bone marrow (BM) cells on microchimerism and anti-donor reactivity in normal and tacrolimus-immunosuppressed, noncytoablated allogeneic recipients. BM from B10 (H2b) mice given FL (10 microg/day; days 0-8; FL-BM) contained a 7-fold higher incidence of potentially tolerogenic immature CD11c+ DC (CD40low, CD80low, CD86low, MHC IIlow) that induced alloantigen-specific T cell hyporesponsiveness in vitro. C3H (H2k) mice received 50 x 106 normal or FL-BM cells (day 0) and tacrolimus (2 mg/kg/day; days 0-12). On day 15, enhanced numbers of donor (IAb+) cells were detected in the thymi and spleens of FL-BM recipients. Tacrolimus markedly enhanced microchimerism, which declined as a function of time. Ex vivo splenocyte proliferative and CTL responses and Th1 cytokine (IFN-gamma) production in response to donor alloantigens were augmented by FL-BM infusion, but reduced by tacrolimus. Systemic infusion of purified FL-BM immature DC, equivalent in number to that in corresponding whole BM, confirmed their capacity to sensitize, rather than tolerize, recipient T cells in vivo. In vitro, tacrolimus suppressed GM-CSF-stimulated growth of myeloid DC from normal BM much more effectively than from FL-BM without affecting MHC class II or costimulatory molecule expression. Infusion of normal B10 BM cells at the time of transplant prolonged C3H heart allograft survival, whereas FL-BM cells did not. A therapeutic effect of tacrolimus on graft survival was observed in combination with normal, but not FL-BM cells. These findings suggest the need for alternative immunosuppressive strategies to calcineurin inhibition to enable the engraftment, survival, and immunomodulatory function of FL-enhanced, immature donor DC.  相似文献   

15.
Recent genome-wide association studies of pediatric inflammatory bowel disease have implicated the 17q12 loci, which contains the eosinophil-specific chemokine gene CCL11, with early-onset inflammatory bowel disease susceptibility. In the current study, we employed a murine model of experimental colitis to define the molecular pathways that regulate CCL11 expression in the chronic intestinal inflammation and pathophysiology of experimental colitis. Bone marrow chimera experiments showed that hematopoietic cell-derived CCL11 is sufficient for CCL11-mediated colonic eosinophilic inflammation. We show that dextran sodium sulfate (DSS) treatment promotes the recruitment of F4/80(+)CD11b(+)CCR2(+)Ly6C(high) inflammatory monocytes into the colon. F4/80(+)CD11b(+)CCR2(+)Ly6C(high) monocytes express CCL11, and their recruitment positively correlated with colonic eosinophilic inflammation. Phenotypic analysis of purified Ly6C(high) intestinal inflammatory macrophages revealed that these cells express both M1- and M2-associated genes, including Il6, Ccl4, Cxcl2, Arg1, Chi3l3, Ccl11, and Il10, respectively. Attenuation of DSS-induced F4/80(+)CD11b(+)CCR2(+)Ly6C(high) monocyte recruitment to the colon in CCR2(-/-) mice was associated with decreased colonic CCL11 expression, eosinophilic inflammation, and DSS-induced histopathology. These studies identify a mechanism for DSS-induced colonic eosinophilia mediated by Ly6C(high)CCR2(+) inflammatory monocyte/macrophage-derived CCL11.  相似文献   

16.
Chemokines are key mediators of leukocyte recruitment during pathogenic insult and also play a prominent role in homeostasis. While most chemokine receptors bind to multiple chemokines, CCR6 is unique in that this receptor is one of only a few that can bind only a single chemokine ligand, CCL20. CCR6 is an important receptor that is involved in regulating several aspects of mucosal immunity, including the ability to mediate the recruitment of immature dendritic cells (DCs) and mature DCs, and professional antigen presenting cells (APCs) to the sites of epithelial inflammation. Further, CCR6 mediates the homing of both CD4+ T (T-helper; Th) cells and DCs to the gut mucosal lymphoid tissue. DCs, which are known to be essential immune cells in innate immunity and in the initiation of adaptive immunity, play a central role in initiating a primary immune response. Herein, we summarize the role of CCR6 in immune responses at epithelial and mucosal sites in both the lung and gut based on a review of the current literature.  相似文献   

17.
Small intestinal cryptopatches (CP) are the major anatomic site for extrathymic differentiation by precursors destined to become intestinal intraepithelial T lymphocytes (IEL). We found that mice deficient in CCR6 exhibited a 2.7-fold increase in the number of alphabeta TCR IEL, but little or no expansion of gammadelta TCR IEL. Among the alphabeta TCR IEL subsets, the CD4- CD8alphaalpha+ and CD4+ CD8alphaalpha+ subsets were preferentially expanded in CCR6 null mice. Because some CD8alphaalpha+ IEL can arise through extrathymic differentiation in CP, we investigated CCR6 expression by T lymphocyte precursors undergoing extrathymic differentiation in intestinal CP. In sections of CP, 50-60% of c-kit+ precursors were CCR6+. CD11c(+) cells concentrated at the periphery of CP did not express CCR6. A subset of c-kit+, Lin- cells in lamina propria suspensions was CCR6+, but CCR6 was absent from c-kit+ precursors in bone marrow. CCR6 was absent from the vast majority of mature IEL. CCR6 is present on lymphocyte precursors in cryptopatches, expressed transiently during extrathymic IEL development, and is required for homeostatic regulation of intestinal IEL.  相似文献   

18.
Myeloid cell recruitment is a characteristic feature of bacterial meningitis. However, the cellular mechanisms important for the control of Streptococcus pneumoniae infection remain largely undefined. Previous pharmacological or genetic studies broadly depleted many myeloid cell types within the meninges, which did not allow defining the function of specific myeloid subsets. Herein we show that besides CD11b(+)Ly-6G(+)CCR2(-) granulocytes, also CD11b(+)Ly-6C(high)CCR2(+) but not Ly-6C(low)CCR2(-) monocytes were recruited in high numbers to the brain as early as 12 h after bacterial challenge. Surprisingly, CD11b(+)Ly-6C(high)CCR2(+) inflammatory monocytes modulated local CXCL2 and IL-1beta production within the meninges but did not provide protection against bacterial infection. Consistent with these results, CCR2 deficiency strongly impaired monocyte recruitment to the infected brains but was redundant for disease pathogenesis. In contrast, specific depletion of polymorphonuclear granulocytes caused elevated local bacterial titer within the brains, led to an aggravated clinical course, and enhanced mortality. These findings demonstrate that Ly-6C(high)CCR2(+) inflammatory monocytes play a redundant role for the host defense during bacterial meningitis and that predominantly CD11b(+)Ly-6G(+)CCR2(-) myeloid cells are involved in the restriction of the extracellular bacteria.  相似文献   

19.
Increased numbers of pulmonary dendritic cells (DCs) are recruited to the lungs during allergic airway inflammation and contribute to the maintenance of the inflammatory immune response. The chemokine receptors that directly control DC accumulation into the lungs are largely unknown. To explore this issue, we generated mixed bone marrow chimeric mice containing both wild-type and knockout cells for a given chemokine receptor. After induction of allergic airway inflammation, we specifically tracked and compared chemokine receptor knockout vs wild-type DC populations through various lung compartments. Using this approach, we show that CCR2, but not CCR5 or CCR6, directly controls the accumulation of DCs into allergic lungs. Furthermore, the size of inflammatory monocyte populations in peripheral blood was strikingly CCR2 dependent, suggesting that CCR2 primarily mediates the release of monocytic DC precursors into the bloodstream.  相似文献   

20.
We previously reported that CCR2(-/-) mice are susceptible to Mycobacterium tuberculosis infection. Susceptibility was associated with an early and sustained macrophage trafficking defect, followed by delayed recruitment of dendritic cells (DCs) and T cells to the lungs. However, the relative importance of the lack of CCR2 expression by macrophages and DCs vs T cells in susceptibility to infection was unclear. In this study, we used mixed bone marrow transplantation to create mice in which the genotype of the T cells was either CCR2(+/+) or CCR2(-/-) while maintaining the genotype of the myeloid cells as CCR2(+/+). After infection with M. tuberculosis, we found that the genotype of the macrophages and/or DCs, but not that of the T cells, was critical for both T cell and myeloid cell migration to the lungs. Further investigation revealed a critical role for CCR2 in the recruitment of F4/80(dim) macrophages and CD11c(dim/intermediate) DCs to the infected lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号