首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human olfactory receptor, hOR17-210, is identified as a pseudogene in the human genome. Experimental data has shown however, that the gene product of frame-shifted, cloned hOR17-210 cDNA was able to bind an odorant-binding protein and is narrowly tuned for excitation by cyclic ketones. Supported by experimental results, we used the bioinformatics methods of sequence analysis (genome-wide and pair-wise), computational protein modeling and docking, to show that functionality in this receptor is retained due to sequence-structure features not previously observed in mammalian ORs. This receptor does not possess the first two transmembrane helical domains (of seven typically seen in GPCRs). It however, possesses an additional TM that has not been observed in other human olfactory receptors. By incorporating these novel structural features, we created two putative models for this receptor. We also docked odor ligands that were experimentally shown to bind hOR17-210. We show how and why structural modifications of OR17-210 do not hinder this receptor's functionality. Our studies reveal that novel gene rearrangements that result in sequence and structural diversity may have a bearing on OR and GPCR function and evolution.  相似文献   

2.
The first step in the perception of an odor is the activation of one or more olfactory receptors (ORs) following binding of the odorant molecule to the OR. In order to initiate the process of determining how the molecular level receptor-odorant interactions are related to odor perception, we used the MembStruk computational method to predict the three-dimensional (3-D) structure of the I7 OR for both mouse and rat. We then used the HierDock ligand docking computational method to predict the binding site and binding energy for the library of 56 odorants to these receptors for which experiment response data are now available. We find that the predicted 3-D structures of the mouse and rat I7 OR lead to predictions of odorant binding that are in good agreement with the experimental results, thus validating the accuracy of both the 3-D structure and the predicted binding site. In particular we predict that heptanal and octanal both bind strongly to both mouse and rat I7 ORs, which conflicts with the older literature but agrees with recent experiments. To provide the basis of additional validations of our 3-D structures, we also report the odorant binding site for a new odorant (8-hydroxy-octanal) with a novel functionality designed to bind strongly to mouse I7. Such validated computational methods should be very useful in predicting the structure and function of many other ORs.  相似文献   

3.
4.
Odorant-binding proteins (OBPs) represent a highly abundant class of proteins secreted in the nasal mucus by the olfactory neuroepithelium. These proteins display binding affinity for a variety of odorant molecules, thereby assuming the role of carrier during olfactory perception. However, no specific interaction between OBP and olfactory receptors (ORs) has yet been shown and early events in olfaction remain so far poorly understood at a molecular level. Two human ORs, OR 17-209 and OR 17-210, were fused to a Green Fluorescent Protein and stably expressed in COS-7 cell lines. Interaction with OBP was investigated using a highly purified radioiodinated porcine OBP (pOBP) preparation, devoid of any ligand in its binding cavity. No specific binding of the pOBP tracer could be detected with OR 17-209. In contrast, OR 17-210 exhibited specific saturable binding (K(d) = 9.48 nM) corresponding to the presence of a single class of high-affinity binding sites (B(max) = 65.8 fmol/mg prot). Association and dissociation kinetics further confirmed high-affinity interaction between pOBP and OR 17-210. Autoradiographic studies of labeled pOBP to newborn mouse slices revealed the presence of multiple specific binding sites located mainly in olfactory tissue but also in several other peripheral tissues. Our data thus demonstrate a high-affinity interaction between OBP and OR, indicating that under physiological conditions, ORs may be specifically associated with an OBP partner in the absence of odorant. This provides further evidence of a novel role for OBP in the mechanism of olfactory perception.  相似文献   

5.
For the development of a biomimetic odor-sensing system, we investigated the effects of replacing the N-terminus of an olfactory receptor (OR) on its functional expression in the budding yeast, Saccharomyces cerevisiae. Using the mouse olfactory receptor OR226 (mOR226), three types of chimeric ORs were constructed by replacing N-terminal regions of mOR226 with the corresponding regions of the rat I7 receptor, which is known to be functionally expressed in yeast. The replacement of the N-terminal region of mOR226 dramatically affected the expression and localization of the receptor and improved the sensing ability of the yeast cells for the odorant. Furthermore, the replacement of the endogenous yeast G-protein α subunit (Gpa1) by the OR-specific G(olf) drastically elevated the odorant-sensing ability of the yeast cells and caused the cells to display a dose-dependent responsiveness to the odorant. Because of the suitability of yeast cells for screening large-scale libraries, the strategy presented here would be useful for the establishment of advanced biomimetic odor-sensing systems.  相似文献   

6.
Single-walled carbon nanotubes (swCNTs) hold great promise for use as molecular wires because they exhibit high electrical conductivity and chemical stability. However, constructing swCNT-based transducer devices requires controlled strategies for assembling biomolecules on swCNTs. In this study, we proposed a chemically modified swCNT. The swCNT was functionalized with 1,5-diaminonaphthalene via π-stacking, for reliable attachment of the human olfactory receptor 2AG1 (hOR2AG1). The human olfactory receptor was then anchored. We investigated the use of this functionalized CNT in the fabrication of a highly sensitive and selective bioelectronic nose. For the bioelectronic nose, the swCNT-field effect transistor (FET) platform was composed of polyethylene glycol (PEG)-coated regions to prevent non-specific absorption and chemically modified swCNTs regions containing hOR2AG1, which can bind to the specific odorant. This approach allowed us to create well-defined micron-scale patterns of hOR2AG1 on the swCNTs. Our bioelectronic nose displayed ultrahigh sensitivity down to concentrations as low as 1fM due to the enhanced hOR2AG1-odorant interaction through the tight binding of hOR2AG1 on the chemically modified swCNTs. In addition, the approach described here may provide an alternative route for multiplexed detection of diverse odorants and to improve the sensitivity of sensor devices.  相似文献   

7.
We used the MembStruk first principles computational technique to predict the three-dimensional (3-D) structure of six mouse olfactory receptors (S6, S18, S19, S25, S46 and S50) for which experimental odorant recognition profiles are available for a set of 24 odorants (4-9 carbons aliphatic alcohols, acids, bromo-acids and diacids). We used the HierDock method to scan each predicted OR structure for potential odorant binding site(s) and to calculate binding energies of each odorant in these binding sites. The calculated binding affinity profiles are in good agreement with experimental activation profiles, validating the predicted 3-D structures and the predicted binding sites. For each of the six ORs, the binding site is located between trans-membrane domains (TMs) 3-6, with contributions from extracellular loops 2 and 3. In particular, we find six residue positions in TM3 and TM6 to be consistently involved in the binding modes of the odorants. Indeed, the differences in the experimental recognition profiles can be explained on the basis of these critical residues alone. These predictions are also consistent with mutation data on ligand binding for catecholamine receptors and sequence hypervariability studies for ORs. Based on this analysis, we defined amino acid patterns associated with the recognition of short aliphatic alcohols and mono-acids. Using these two sequence fingerprints to probe the alignment of 869 OR sequences from the mouse genome, we identified 34 OR sequences matching the fingerprint for aliphatic mono-acids and 36 corresponding to the recognition pattern for aliphatic alcohols. We suggest that these two sets of ORs might function as basic arrays for uniquely recognizing aliphatic alcohols and acids. We screened a library of 89 additional molecules against the six ORs and found that this set of ORs is likely to respond to aldehydes and esters with longer carbon chains than their currently known agonists. We also find that compounds associated with the flavor in foods are often among the best calculated binding affinities. This suggests that physiologic ligands for these ORs may be found among aldehydes and esters associated with flavor.  相似文献   

8.
Olfactory receptors (ORs) are the largest member of the G-protein-coupled receptors which mediate early olfactory perception in discriminating among thousands of odorant molecules. Assigning odorous ligands to ORs is a prerequisite to gaining an understanding of the mechanisms of odorant recognition. The functional expression of ORs represents a critical step in addressing this issue. Due to limitations in heterologous expression, very few mammal ORs have been characterized, and so far only one is from human origin. Consequently, OR function still remains poorly understood, especially in humans, whose genome encodes a restricted chemosensory repertoire compared with most mammal species. In this study, we have designed cassette baculovirus vectors to coexpress human OR 17-209 or OR 17-210 with either G(alpha olf) or G(alpha16) proteins in Sf9 cells. Each OR was found to be expressed at the cell surface and colocalized with both G(alpha) proteins. Using Ca2+ imaging, we showed that OR 17-209 and OR 17-210 proteins are activated by esters and ketones respectively. Odorant-induced calcium response was increased when ORs were coexpressed with G(alpha16) protein, whereas coexpression with G(alpha olf) abolished calcium signaling. This strategy has been found to overcome most of the limitations encountered when expressing an OR protein and has permitted odorant screening of functional ORs. Our approach could thus be of interest for further expression and ligand assignment of other orphan receptor proteins.  相似文献   

9.
10.
NaNa Kang  JaeHyung Koo 《BMB reports》2012,45(11):612-622
Olfactory receptors (ORs) detect volatile chemicals that lead to the initial perception of smell in the brain. The olfactory receptor (OR) is the first protein that recognizes odorants in the olfactory signal pathway and it is present in over 1,000 genes in mice. It is also the largest member of the G protein-coupled receptors (GPCRs). Most ORs are extensively expressed in the nasal olfactory epithelium where they perform the appropriate physiological functions that fit their location. However, recent whole-genome sequencing shows that ORs have been found outside of the olfactory system, suggesting that ORs may play an important role in the ectopic expression of non-chemosensory tissues. The ectopic expressions of ORs and their physiological functions have attracted more attention recently since MOR23 and testicular hOR17-4 have been found to be involved in skeletal muscle development, regeneration, and human sperm chemotaxis, respectively. When identifying additional expression profiles and functions of ORs in non-olfactory tissues, there are limitations posed by the small number of antibodies available for similar OR genes. This review presents the results of a research series that identifies ectopic expressions and functions of ORs in non-chemosensory tissues to provide insight into future research directions. [BMB Reports 2012; 45(11): 612-622]  相似文献   

11.
The role of the coreceptor Orco in insect olfactory transduction   总被引:1,自引:0,他引:1  
Insects sense odorants with specialized odorant receptors (ORs). Each antennal olfactory receptor neuron expresses one OR with an odorant binding site together with a conserved coreceptor called Orco which does not bind odorants. Orco is necessary for localization of ORs to dendritic membranes and, thus, is essential for odorant detection. It forms a spontaneously opening cation channel, activated via phosphorylation by protein kinase C. Thereafter, Orco is also activated via cyclic adenosine monophosphate (cAMP). Orco forms homo—as well as heteromers with ORs with unknown stoichiometry. Contradictory publications suggest different mechanisms of olfactory transduction. On the one hand, evidence accumulates for the employment of more than one G protein-coupled olfactory transduction cascade in different insects. On the other hand, results from other studies suggest that the OR–Orco complex functions as an odorant-gated cation channel mediating ionotropic signal transduction. This review analyzes conflicting hypotheses concerning the role of Orco in insect olfactory transduction. In conclusion, in situ studies in hawkmoths falsify the hypothesis that Orco underlies odorant-induced ionotropic signal transduction in all insect species. Instead, Orco forms a metabotropically gated, slow cation channel which controls odorant response threshold and kinetics of the sensory neuron.  相似文献   

12.
To test the hypothesis that olfactory receptors (ORs) recognize different molecular features of odor molecules termed "odotypes", we studied receptor-ligand interactions of two human and two mouse ORs, recognizing (-)citronellal. Structurally similar receptors provide identical binding pockets (OLFR43, OR1A1, and OR1A2), and have comparable EC(50) values. Other ORs with lower sequence identity bind (-)citronellal in a different way, leading to different EC(50) values.  相似文献   

13.
Human sperm chemotaxis is a critical component of the fertilization process, but the molecular basis for this behavior remains unclear. Recent evidence shows that chemotactic responses depend on activation of the sperm olfactory receptor, hOR17-4. Certain floral scents, including bourgeonal, activate hOR17-4, trigger pronounced Ca(2+) fluxes, and evoke chemotaxis. Here, we provide evidence that hOR17-4 activation is coupled to a cAMP-mediated signaling cascade. Multidimensional protein identification technology was used to identify potential components of a G-protein-coupled cAMP transduction pathway in human sperm. These products included various membrane-associated adenylate cyclase (mAC) isoforms and the G(olf)-subunit. Using immunocytochemistry, specific mAC isoforms were localized to particular cell regions. Whereas mAC III occurred in the sperm head and midpiece, mAC VIII was distributed predominantly in the flagellum. In contrast, G(olf) was found mostly in the flagellum and midpiece. The observed spatial distribution patterns largely correspond to the spatiotemporal character of hOR17-4-induced Ca(2+) changes. Behavioral and Ca(2+) signaling responses of human sperm to bourgeonal were bioassayed in the presence, or absence, of the adenylate cyclase antagonist SQ22536. This specific agent inhibits particulate AC, but not soluble AC, activation. Upon incubation with SQ22536, cells ceased to exhibit Ca(2+) signaling, chemotaxis, and hyperactivation (faster swim speed and flagellar beat rate) in response to bourgeonal. Particulate AC is therefore required for induction of hOR17-4-mediated human sperm behavior and represents a promising target for future design of contraceptive drugs.  相似文献   

14.
Cook BL  Ernberg KE  Chung H  Zhang S 《PloS one》2008,3(8):e2920
In order to begin to study the structural and functional mechanisms of olfactory receptors, methods for milligram-scale purification are required. Here we demonstrate the production and expression of a synthetically engineered human olfactory receptor hOR17-4 gene in a stable tetracycline-inducible mammalian cell line (HEK293S). The olfactory receptor gene was fabricated from scratch using PCR-based gene-assembly, which facilitated codon optimization and attachment of a 9-residue bovine rhodopsin affinity tag for detection and purification. Induction of adherent cultures with tetracycline together with sodium butyrate led to hOR17-4 expression levels of approximately 30 microg per 150 mm tissue culture plate. Fos-choline-based detergents proved highly capable of extracting the receptors, and fos-choline-14 (N-tetradecylphosphocholine) was selected for optimal solubilization and subsequent purification. Analysis by SDS-PAGE revealed both monomeric and dimeric receptor forms, as well as higher MW oligomeric species. A two-step purification method of immunoaffinity and size exclusion chromatography was optimized which enabled 0.13 milligrams of hOR17-4 monomer to be obtained at >90% purity. This high purity of hOR17-4 is not only suitable for secondary structural and functional analyses but also for subsequent crystallization trials. Thus, this system demonstrates the feasibility of purifying milligram quantities of the GPCR membrane protein hOR17-4 for fabrication of olfactory receptor-based bionic sensing device.  相似文献   

15.
Similar to the expression of antigen receptor genes in lymphocytes, the mammalian odorant receptor (OR) genes are expressed in a mutually exclusive and monoallelic manner in olfactory sensory neurons (OSNs). DNA rearrangement has long been regarded as a possible mechanism for the allelic exclusion of the OR genes. However, mice cloned from mature OSN nuclei expressed the full repertoire of ORs, and the possibility of irreversible gene translocation was excluded as a mechanism to activate a single OR gene in each OSN. How is allelic exclusion achieved in the olfactory system? Recent transgenic experiments indicated an inhibitory role of the OR protein in preventing further activation of other OR genes. Stochastic activation of an OR gene and negative-feedback regulation by the OR gene product might ensure the maintenance of the one neuron-one receptor rule in the mammalian olfactory system.  相似文献   

16.
Molecular properties of odorant compounds essential for activation of the human olfactory receptor hOR17-40 were investigated using a collection of 23 variants of its cognate ligand helional. Coupling receptor activation to an optically detectable intracellular Ca(2+) ion flux allowed dose-dependent screening of different odorant molecules in human embryonic kidney (HEK)293 cells. We found an extended collection of activating ligands and provide first evidence for hOR17-40-specific antagonists. The C-terminal fusion of enhanced green fluorescent protein to the hOR17-40 retained full receptor function and permitted the selection of cells with defined receptor expression levels, which was an essential step for optimizing our screening protocol. Interestingly, cells with a low EGFP fluorescence intensity exhibited efficient hOR17-40 cell surface targeting and odorant-evoked signal transduction; in contrast, highly fluorescent cells displayed mainly incorrectly targeted, intracellular receptors. Fluorescence-activated cell sorting was used to separate hOR17-40-expressing cells on the basis of their endogenous EGFP fluorescence intensity, thereby increasing the fraction of odorant-responsive cells to up to 80% of the total cell number.  相似文献   

17.
Olfactory receptors (ORs), which are involved in odorant recognition, form the largest mammalian protein superfamily. The genomic content of OR genes is considerably reduced in humans, as reflected by the relatively small repertoire size and the high fraction ( approximately 55%) of human pseudogenes. Since several recent low-resolution surveys suggested that OR genomic loci are frequently affected by copy-number variants (CNVs), we hypothesized that CNVs may play an important role in the evolution of the human olfactory repertoire. We used high-resolution oligonucleotide tiling microarrays to detect CNVs across 851 OR gene and pseudogene loci. Examining genomic DNA from 25 individuals with ancestry from three populations, we identified 93 OR gene loci and 151 pseudogene loci affected by CNVs, generating a mosaic of OR dosages across persons. Our data suggest that approximately 50% of the CNVs involve more than one OR, with the largest CNV spanning 11 loci. In contrast to earlier reports, we observe that CNVs are more frequent among OR pseudogenes than among intact genes, presumably due to both selective constraints and CNV formation biases. Furthermore, our results show an enrichment of CNVs among ORs with a close human paralog or lacking a one-to-one ortholog in chimpanzee. Interestingly, among the latter we observed an enrichment in CNV losses over gains, a finding potentially related to the known diminution of the human OR repertoire. Quantitative PCR experiments performed for 122 sampled ORs agreed well with the microarray results and uncovered 23 additional CNVs. Importantly, these experiments allowed us to uncover nine common deletion alleles that affect 15 OR genes and five pseudogenes. Comparison to the chimpanzee reference genome revealed that all of the deletion alleles are human derived, therefore indicating a profound effect of human-specific deletions on the individual OR gene content. Furthermore, these deletion alleles may be used in future genetic association studies of olfactory inter-individual differences.  相似文献   

18.
The canine olfactory subgenome   总被引:10,自引:0,他引:10  
We identified 971 olfactory receptor (OR) genes in the dog genome, estimated to constitute approximately 80% of the canine OR repertoire. This was achieved by directed genomic DNA cloning of olfactory sequence tags as well as by mining the Celera canine genome sequences. The dog OR subgenome is estimated to have 12% pseudogenes, suggesting a functional repertoire similar to that of mouse and considerably larger than for humans. No novel OR families were discovered, but as many as 34 gene subfamilies were unique to the dog. "Fish-like" Class I ancient ORs constituted 18% of the repertoire, significantly more than in human and mouse. A set of 122 dog-human-mouse ortholog triplets was identified, with a relatively high fraction of Class I ORs. The elucidation of a large portion of the canine olfactory receptor gene superfamily, with some dog-specific attributes, may help us understand the unique chemosensory capacities of this species.  相似文献   

19.
Extensive copy-number variation of the human olfactory receptor gene family   总被引:3,自引:0,他引:3  
As much as a quarter of the human genome has been reported to vary in copy number between individuals, including regions containing about half of the members of the olfactory receptor (OR) gene family. We have undertaken a detailed study of copy-number variation of ORs to elucidate the selective and mechanistic forces acting on this gene family and the true impact of copy-number variation on human OR repertoires. We argue that the properties of copy-number variants (CNVs) and other sets of large genomic regions violate the assumptions of statistical methods that are commonly used in the assessment of gene enrichment. Using more appropriate methods, we provide evidence that OR enrichment in CNVs is not due to positive selection but is because of OR preponderance in segmentally duplicated regions, which are known to be frequently copy-number variable, and because purifying selection against CNVs is lower in OR-containing regions than in regions containing essential genes. We also combine multiplex ligation-dependent probe amplification (MLPA) and PCR to assay the copy numbers of 37 candidate CNV ORs in a panel of ~50 human individuals. We confirm copy-number variation of 18 ORs but find no variation in this human-diversity panel for 16 other ORs, highlighting the caveat that reported intervals often overrepresent true CNVs. The copy-number variation we describe is likely to underpin significant variation in olfactory abilities among human individuals. Finally, we show that both homology-based and homology-independent processes have played a recent role in remodeling the OR family.  相似文献   

20.
Olfactory receptors (ORs) belong to the superfamily of G protein-coupled receptors (GPCRs), the second largest class of genes after those related to immunity, and account for about 3 % of mammalian genomes. ORs are present in all multicellular organisms and represent more than half the GPCRs in mammalian species (e.g., the mouse OR repertoire contains >1,000 functional genes). ORs are mainly expressed in the olfactory epithelium where they detect odorant molecules, but they are also expressed in a number of other cells, such as sperm cells, although their functions in these cells remain mostly unknown. It has recently been reported that ORs are present in tumoral tissues where they are expressed at different levels than in healthy tissues. A specific OR is over-expressed in prostate cancer cells, and activation of this OR has been shown to inhibit the proliferation of these cells. Odorant stimulation of some of these receptors results in inhibition of cell proliferation. Even though their biological role has not yet been elucidated, these receptors might constitute new targets for diagnosis and therapeutics. It is important to understand the activation mechanism of these receptors at the molecular level, in particular to be able to predict which ligands are likely to activate a particular receptor (‘deorphanization’) or to design antagonists for a given receptor. In this review, we describe the in silico methodologies used to model the three-dimensional (3D) structure of ORs (in the more general framework of GPCR modeling) and to dock ligands into these 3D structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号