首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
以在L 酪氨酸诱导下高效表达酪氨酸酚解酶的菌株Citrobacterfreundii 4 80 0 3 3的休止细胞为生物催化剂 ,以邻苯二酚、丙酮酸钠、醋酸铵为前体 ,选择性合成L DOPA。研究了反应温度、pH和前体浓度等对合成L DOPA的影响。最优反应条件下 ,反应 1 2h ,L DOPA的量可达到 9 5g/L。  相似文献   

2.
以L-酪氨酸和苯甲醇为原料合成一种新型的L-酪氨酸衍生物——L-酪氨酸苄酯。首先用苯甲醇与氯化亚砜反应生成氯化亚硫酸酯,合成物再与L-酪氨酸发生酯化反应得到L-酪氨酸苄酯,其结构经质谱(MS)分析法确证。在此基础上研究了影响该合成工艺的主要因素,即原料配比、反应温度、反应时间、pH值。结果显示合成L-酪氨酸苄酯的较佳工艺条件为:物料摩尔比mol(SOCl2)∶mol(L-酪氨酸)=1.3∶1.0,室温下反应3h,120℃下反应2h,后处理溶液pH为7.5。本工艺适宜于工业化大规模生产。  相似文献   

3.
以欧文氏菌(Erwinia herbicola)来源的酪氨酸酚裂解酶的重组大肠埃希菌Escherichia coli BL21为研究对象,研究固定化大肠埃希菌生产L-酪氨酸的条件。以海藻酸钠为载体,采用单因素实验分别考察了载体材料、明胶浓度、反应时间、苯酚浓度和辅助剂(二氧化硅、硅藻土和碳酸钙)等因素对L-酪氨酸生产的影响,发现明胶浓度、反应时间、苯酚和碳酸钙等因素的影响较为显著,进而通过正交实验探索最优条件。结果表明,生产L-酪氨酸的最优条件:载体为4%海藻酸钠与6%明胶的混合载体,苯酚浓度0.08 mol/L,反应时间8 h,于载体中添加0.6%碳酸钙。此条件下,连续反应9次后L-酪氨酸的产量达到64.5 g/L,比优化前提高了451.3%。  相似文献   

4.
在胀果甘草细胞悬浮体系中加入苯丙氨酸、酪氨酸、肉桂酸和乙酸钠来研究前体对甘草细胞生产甘草黄酮的影响。结果显示,4种前体在合适的浓度下对细胞的生长没有明显的抑制作用,而且均能促进细胞内甘草黄酮的生物合成,但高浓度的肉桂酸对细胞的生长有一定的抑制作用。苯丙氨酸的最佳添加浓度为20 mg/L,酪氨酸、肉桂酸、乙酸钠的最佳添加浓度都是5 mg/L。此时,均可使培养体系的甘草黄酮产量高达100 mg/L以上,其中酪氨酸的添加使得产量高达对照的1.43倍。苯丙氨酸、肉桂酸和乙酸钠3种前体的添加时间均以第10天为宜,酪氨酸添加时间以第5天为最佳。而且,在添加苯丙氨酸和乙酸钠后的第3天收获细胞,此时细胞的生物量和甘草黄酮产量最大。此外,苯丙氨酸、乙酸钠的添加可以增加黄酮合成的关键酶之一——苯丙氨酸裂解酶的活性。酪氨酸对苯丙氨酸裂解酶影响不大,而肉桂酸的添加却导致其活性显著降低。  相似文献   

5.
用合成的磷酸酪氨酸牛血清白蛋白(P-tyr-BSA)免疫家兔得抗血清,此抗血清与3种磷蛋白均有交叉反应.将 IgG 纯化并与辣根过氧化物酶偶联,经 Sephadex G-200纯化得酶标结合物.纯化的 IgG 只与载体牛血清白蛋白和磷酸酪氨酸蛋白有交叉反应.ELISA (酶联免疫吸附测定法)的最小检出量为2—4ng,与被检磷酸酪氨酸蛋白均有交叉反应,但与磷酸丝氨酸和磷酸苏氨酸蛋白及其他含磷酸物质无交叉反应.样品变异系数,批间和批内均小于5%.血清磷酸酪氨酸蛋白检测结果:20例正常人均阴性,20例急性淋巴细胞性白血病18例阳性,14例非急性淋巴细胞性白血病均阳性.  相似文献   

6.
前体促进紫杉醇生物合成的研究   总被引:17,自引:0,他引:17  
通过正交试验研究了紫杉醇生物合成途径中一些可能的前体对紫杉醇生物合成的促进作用,结果表明,对紫杉醇合成有明显促进作用的前体是苯丙氨酸(10mg/L)、乙酸铵(5mg/L)。酪氨酸也有一定的作用。  相似文献   

7.
目的探讨Fonsecaea monophora黑素的理化性质及其合成途径。方法通过化学分析、紫外光谱、红外光谱和电子顺磁共振波谱等明确F.monophora黑素的理化性质;通过比对F.monophora菌株在基础培养基(马铃薯葡萄糖琼脂(PDA)培养基、L-DOPA PDA培养基)和含黑素抑制剂培养基(DOPA黑素抑制剂培养基、DHN黑素抑制剂培养基)的菌落生长情况,采用BioTek酶标仪EON定量分析其黑素合成,以明确F.monophora的黑素合成途径。结果 F.monophora黑素与合成L-DOPA黑素的理化性质相似;菌株在含L-DOPA培养基较PDA培养基产生更多的黑素,且在含DOPA黑素抑制剂叠氮化钠及DHN黑素抑制剂苯肽、三环唑培养基中其黑素合成均明显降低。结论 F.monophora黑素主要为LDOPA黑素,可能共同存在DOPA黑素和DHN黑素合成途径。  相似文献   

8.
为考察绞股蓝皂苷及其硒配合物对酪氨酸酶的动力学参数和作用机理。本研究采用体外酶促反应,以L-酪氨酸和L-DOPA为底物,模拟了酪氨酸酶单酚和二酚酶的体外催化氧化过程。绞股蓝总皂苷在50%、70%乙醇洗脱段和50%、70%乙醇洗脱绞股蓝皂苷-硒配合物在酪氨酸酶上的Ki值分别为1. 533、1. 767、1. 312和1. 210 mmol/L。Ki值越低,对酪氨酸酶的抑制作用越强,单酚酶的氧化阶段越快,表明硒元素显著提高了绞股蓝皂苷对酪氨酸酶的抑制作用。酶反应动力学分析表明,四种绞股蓝皂苷及其硒配合物对酪氨酸的抑制作用均为混合竞争抑制。其独特的药理化学特性为绞股蓝及硒系美白化妆品的进一步研究开发提供了理论依据和参考。  相似文献   

9.
对香豆酸是黄酮类、芪类等天然活性化合物的重要前体,在生物医药、食品等行业应用广泛。与传统植物提取和化学合成相比,微生物合成对香豆酸因其具有生产周期短、转化效率高等优势而得到广泛关注。为构建高产对香豆酸酵母工程菌株,以酿酒酵母为出发菌,通过敲除酪氨酸合成竞争路径基因ARO10和PDC5,突变芳香族氨基酸合成调控基因ARO4~(K229L)与ARO7~(G141S)、解除酪氨酸负反馈抑制、并整合酪氨酸解氨酶FjTAL,获得的工程菌C001对香豆酸产量为296.73 mg/L。为进一步提高对香豆酸合成前体积累,分别敲除8个与氨基酸、糖类等转运相关基因并强化糖异生途径,分析其对对香豆酸积累的影响。结果表明,敲除GAL2及过表达EcppsA,对香豆酸产量提高至475.11 mg/L。最后,分析了FjTAL蛋白锚定至酵母液泡对产物积累的影响,结果表明其定位液泡后对香豆酸产量明显提升,达到593.04mg/L。通过强化前体物供应,阻断竞争旁路途径,利用亚细胞定位等策略有效提高对香豆酸产量,为后续黄酮类及芪类化合物的合成提供高效平台菌株,具有重要的应用前景。  相似文献   

10.
荷兰Groningen大学的N.Pras和Th.M.Malingre选择出能快速生长而且过氧化物酶活性高的绿色油麻藤愈伤组织。该酶催化L-酪氨酸转化成二羟-L-苯丙氨酸(L-DOPA,一种治疗帕金森病的药物)。他们报道,从这些愈伤组织获得的细胞悬浮培养物的生物转化活性比未经选择的愈伤组织培养物的活性高20倍。选择的细胞悬浮培养物含6%L-DOPA(干重)。将逆境因子如盐和硫酸铜加人培养基,pH为1~2时能使L-DOPA向培养基的完全  相似文献   

11.
左旋多巴的合成与提取   总被引:8,自引:0,他引:8  
左旋多巴 (L DOPA)是治疗帕金森病的有效药物。L DOPA的生产方法有化学合成、从植物中提取和微生酶物转化等 ,其中利用微生物的酪氨酸酚解酶以邻苯二酚、丙酮酸和氨为底物合成L DOPA被证明是一种最经济且最有前途的方法。应用基因工程技术构建高效菌株。左旋多巴的提取有多种方法 ,其中向反应体系中加入晶种使多巴从反应体系中析出 ,除去菌体和杂质 ,再进行重结晶可得到纯度较高的多巴是一种很好的方法。  相似文献   

12.
Incubation of the rat superior cervical ganglion in Na+-free or low-Na+ medium increased the rate of synthesis of 3,4-dihydroxyphenylalanine (DOPA) in the ganglion fourfold and caused a concomitant stable activation of tyrosine hydroxylase. DOPA synthesis was half-maximal in medium containing about 20 mM Na+. Low-Na+ medium also increased the incorporation of 32Pi into tyrosine hydroxylase; the dependence of tyrosine hydroxylase phosphorylation on the Na+ concentration resembled that of DOPA synthesis. The stimulatory effects of low-Na+ medium on DOPA production and on tyrosine hydroxylase activity in vitro were dependent on extra-cellular Ca2+. The stimulation of DOPA synthesis in low-Na+ medium was inhibited by methoxyverapamil, an inhibitor of Ca2+ uptake, and was partially blocked by tetrodotoxin, but it was not affected by the cholinergic antagonists hexamethonium and atropine. Ionomycin, a calcium ionophore, stimulated DOPA synthesis to about the same extent as low-Na+ medium and also increased the incorporation of 32Pi into tyrosine hydroxylase. 8-Bromo cyclic AMP (1 mM) also stimulated DOPA production in the ganglion, and this stimulation was more than additive with that produced by low-Na+ medium. These data support the hypothesis that low-Na+ medium stimulates DOPA synthesis by raising intracellular Ca2+, which then promotes the phosphorylation of tyrosine hydroxylase.  相似文献   

13.
Radioactive shikimic acid and l-tyrosine were shown to be efficient precursors of 3,4-dihydroxyphenylalanine (DOPA) in Vicia faba. [1-14C]Acetate and l[U-14C]phenylalanine were not incorporated into tyrosine or DOPA. Thus the synthesis of DOPA occurs via the shikimic acid pathway and tyrosine or a very closely related metabolise. Phenolase was present in etiolated plants in much larger quantities after a brief light exposure whereas DOPA concentration was relatively constant during all stages of plant growth. Partially purified phenolase did not catalyze the conversion of tyrosine to DOPA and does not appear to have a role in DOPA synthesis.  相似文献   

14.
Mechanisms of suppression of 3,4-dihydroxyphenylalanine (DOPA)accumulation were investigated in a callus culture of Stizolobiumhassjoo. DOPA was detected in the callus but in a much smalleramount than in the intact plant, and its content changed duringculture. Biosynthesis of DOPA from labeled tyrosine in callus was confirmedby obtaining the constant specific radioactivity of the formedDOPA after co-crystallizing it four times with an authenticspecimen. The variation in the percentage of radioactivity incorporatedfrom labeled tyrosine into the ethanol-insoluble fraction wasa mirror image of that of the DOPA content during culture. Theincrease in incorporation of radioactivity from labeled tyrosineinto DOPA preceded that of the DOPA content. The rate of incorporationof radioactivity from labeled tyrosine into the ethanol-insolublefraction was lower in etiolated seedlings than in callus atevery stage of growth. However, the rate of incorporation ofradioactivity from labeled tyrosine into DOPA was about thesame in etiolated seedlings as in 19-day-old callus, which showedthe highest activity of DOPA synthesis during culture. The results obtained here indicate that the biosynthetic pathwayof DOPA from tyrosine operates in callus at any growth stageand that the shift of the metabolic flow of tyrosine from DOPAsynthesis to other pathways, e.g., protein synthesis, can explainthe change in DOPA content during callus culture, and partiallythe suppression of DOPA accumulation in callus. (Received February 4, 1981; Accepted May 18, 1981)  相似文献   

15.
Although L‐tyrosine is well known for its melanogenic effect, the contribution of D‐tyrosine to melanin synthesis was previously unexplored. Here, we reveal that, unlike L‐tyrosine, D‐tyrosine dose‐dependently reduced the melanin contents of human MNT‐1 melanoma cells and primary human melanocytes. In addition, 500 μM of D‐tyrosine completely inhibited 10 μM L‐tyrosine‐induced melanogenesis, and both in vitro assays and L‐DOPA staining MNT‐1 cells showed that tyrosinase activity is reduced by D‐tyrosine treatment. Thus, D‐tyrosine appears to inhibit L‐tyrosine‐mediated melanogenesis by competitively inhibiting tyrosinase activity. Furthermore, we found that D‐tyrosine inhibited melanogenesis induced by α‐MSH treatment or UV irradiation, which are the most common environmental factors responsible for melanin synthesis. Finally, we confirmed that D‐tyrosine reduced melanin synthesis in the epidermal basal layer of a 3D human skin model. Taken together, these data suggest that D‐tyrosine negatively regulates melanin synthesis by inhibiting tyrosinase activity in melanocyte‐derived cells.  相似文献   

16.
In suspension cultures of Phytolacca americana , betacyanin accumulation was reduced when cell division was inhibited by treatment with various inhibitors of DNA synthesis or anti-microtubule drugs. Aphidicolin (APC), an inhibitor of DNA synthesis, reduced the incorporation of radioactivity from labeled tyrosine into betacyanin, but the incorporation of radioactivity from labeled 3,4-dihydroxyphenylalanine (DOPA) into betacyanin was not affected by similar treatments. Propyzamide, another anti-microtubule drug, reduced incorporation of radioactivity from tyrosine and DOPA into betacyanin. However, the rate of incorporation from DOPA was higher than that from tyrosine. The results suggest that inhibition of betacyanin accumulation in Phytolacca americana cells by APC and propyzamide is due to suppression of the reaction converting tyrosine to DOPA, which may be closely related to cell division.  相似文献   

17.
Entry of dihydroxyphenylalanine (DOPA) into plasma from specific organs may reflect regional activity of tyrosine hydroxylase, the enzyme responsible for the immediate synthesis of DOPA and rate-limiting for subsequent formation of catecholamines. Therefore, cardiac spillovers of DOPA, noradrenaline and the intraneuronal metabolite of noradrenaline, dihydroxyphenylglycol (DHPG), were examined during two periods of graded electrical stimulation of the sympathetic nerves to the heart in anesthetized dogs. Responses were examined before and after neuronal uptake blockade with desipramine. Cardiac spillover of DOPA increased by 1.8- and 4.4-fold during sympathetic stimulation before desipramine and by 1.6- and 3.3-fold after desipramine. Fold increases in cardiac spillover of DOPA were much lower than but positively related with fold increases in noradrenaline spillover (5.9- and 13.8-fold increases before and 9.0- and 15.8-fold increases after desipramine). Increases in cardiac spillover of DHPG (1.5- and 2.3-fold increases) were blocked by desipramine so that fold changes in spillover of DOPA were greater than and poorly related to changes in spillover of DHPG. Fold increases in cardiac spillover of DOPA showed a close one-to-one positive relationship with fold increases in the sum of cardiac spillovers of noradrenaline and dihydroxyphenylglycol before and after desipramine. For a given fold increase in noradrenaline release, transmitter turnover is increased fractionally and noradrenaline synthesis need also only increase fractionally to maintain transmitter stores constant. The close relationship between fold increases in cardiac spillover of DOPA and combined spillovers of noradrenaline and DHPG is consistent with regulation of tyrosine hydroxylase activity to match changes in noradrenaline synthesis with changes in noradrenaline turnover. Changes in cardiac spillover of DOPA appear to reflect local changes in tyrosine hydroxylase activity.  相似文献   

18.
Albinism, the reduction or loss of melanin pigment, is found in many diverse cave‐dwelling animals. The mechanisms responsible for loss of melanin pigment are poorly understood. In this study we use a melanogenic substrate assay to determine the position where melanin synthesis is blocked in independently evolved cave planthoppers from Hawaii and Croatia. In this assay, substrates of enzymes responsible for melanin biosynthesis are added to fixed specimens in vitro and their ability to rescue black melanin pigmentation is determined. L‐tyrosine, the first substrate in the pathway, did not produce melanin pigment, whereas L‐DOPA, the second substrate, restored black pigment. Substrates in combination with enzyme inhibitors were used to test the possibility of additional downstream defects in the pathway. The results showed that downstream reactions leading from L‐DOPA and dopamine to DOPA‐melanin and dopamine‐melanin, the two types of insect melanin, are functional. It is concluded that albinism is caused by a defect in the first step of the melanin synthesis pathway in cave‐adapted planthoppers from widely separated parts of the world. However, Western blots indicated that tyrosine hydroxylase (TH), the only enzyme shown to operate at the first step in insects, is present in Hawaiian cave planthoppers. Thus, an unknown factor(s) operating at this step may be important in the evolution of planthopper albinism. In the cavefish Astyanax mexicanus, a genetic defect has also been described at the first step of melanin synthesis suggesting convergent evolution of albinism in both cave‐adapted insects and teleosts.  相似文献   

19.
A possibility of using lactic acid as a precursor for the synthesis of L-tyrosine and L-3,4-dihydroxyphenylalanine (DOPA) by Citrobacter freundii 62 and 63 was established. The synthesis of tyrosine from lactic acid occurs at a phenol concentration of less than 0.6%. The conditions were found which enable C. freundii 62 and 63 to synthesize from lactic acid tyrosine and DOPA with the yield of 35-38 g/l and 32-33 g/l, respectively.  相似文献   

20.
Light stimulates the synthesis of amaranthin in Amaranthus caudatus var. viridis. Evidence suggests that this stimulation is markedly dependent on seedling age. Synthesis is controlled by both a “low-energy” red/far-red reversible phytochrome system and an HER at least partially under phytochrome control. In seedlings exposed to light, synthesis is promoted by exogenously applied DOPA and tyrosine. It is suggested that at least two light-promoted reactions occur in the biosynthetic pathway; one between tyrosine and DOPA and a second between DOPA and amaranthin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号