首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Nanoscale magnetite can facilitate microbial extracellular electron transfer that plays an important role in biogeochemical cycles, bioremediation and several bioenergy strategies, but the mechanisms for the stimulation of extracellular electron transfer are poorly understood. Further investigation revealed that magnetite attached to the electrically conductive pili of Geobacter species in a manner reminiscent of the association of the multi‐heme c‐type cytochrome OmcS with the pili of Geobacter sulfurreducens. Magnetite conferred extracellular electron capabilities on an OmcS‐deficient strain unable to participate in interspecies electron transfer or Fe(III) oxide reduction. In the presence of magnetite wild‐type cells repressed expression of the OmcS gene, suggesting that cells might need to produce less OmcS when magnetite was available. The finding that magnetite can compensate for the lack of the electron transfer functions of a multi‐heme c‐type cytochrome has implications not only for the function of modern microbes, but also for the early evolution of microbial electron transport mechanisms.  相似文献   

3.
Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface.  相似文献   

4.
The mechanisms for Fe(III) oxide reduction in Geobacter species are of interest because Fe(III) oxides are the most abundant form of Fe(III) in many soils and sediments and Geobacter species are prevalent Fe(III)-reducing microorganisms in many of these environments. Protein abundance in G. sulfurreducens grown on poorly crystalline Fe(III) oxide or on soluble Fe(III) citrate was compared with a global accurate mass and time tag proteomic approach in order to identify proteins that might be specifically associated with Fe(III) oxide reduction. A total of 2991 proteins were detected in G. sulfurreducens grown with acetate as the electron donor and either Fe(III) oxide or soluble Fe(III) citrate as the electron acceptor, resulting in 86% recovery of the genes predicted to encode proteins. Of the total expressed proteins 76% were less abundant in Fe(III) oxide cultures than in Fe(III) citrate cultures, which is consistent with the overall slower rate of metabolism during growth with an insoluble electron acceptor. A total of 269 proteins were more abundant in Fe(III) oxide-grown cells than in cells grown on Fe(III) citrate. Most of these proteins were in the energy metabolism category: primarily electron transport proteins, including 13 c-type cytochromes and PilA, the structural protein for electrically conductive pili. Several of the cytochromes that were more abundant in Fe(III) oxide-grown cells were previously shown with genetic approaches to be essential for optimal Fe(III) oxide reduction. Other proteins that were more abundant during growth on Fe(III) oxide included transport and binding proteins, proteins involved in regulation and signal transduction, cell envelope proteins, and enzymes for amino acid and protein biosynthesis, among others. There were also a substantial number of proteins of unknown function that were more abundant during growth on Fe(III) oxide. These results indicate that electron transport to Fe(III) oxide requires additional and/or different proteins than electron transfer to soluble, chelated Fe(III) and suggest proteins whose functions should be further investigated in order to better understand the mechanisms of electron transfer to Fe(III) oxide in G. sulfurreducens.  相似文献   

5.
The conductive pili of Geobacter species play an important role in electron transfer to Fe(III) oxides, in long-range electron transport through current-producing biofilms, and in direct interspecies electron transfer. Although multiple lines of evidence have indicated that the pili of Geobacter sulfurreducens have a metal-like conductivity, independent of the presence of c-type cytochromes, this claim is still controversial. In order to further investigate this phenomenon, a strain of G. sulfurreducens, designated strain PA, was constructed in which the gene for the native PilA, the structural pilin protein, was replaced with the PilA gene of Pseudomonas aeruginosa PAO1. Strain PA expressed and properly assembled P. aeruginosa PilA subunits into pili and exhibited a profile of outer surface c-type cytochromes similar to that of a control strain expressing the G. sulfurreducens PilA. Surprisingly, the strain PA pili were decorated with the c-type cytochrome OmcS in a manner similar to the control strain. However, the strain PA pili were 14-fold less conductive than the pili of the control strain, and strain PA was severely impaired in Fe(III) oxide reduction and current production. These results demonstrate that the presence of OmcS on pili is not sufficient to confer conductivity to pili and suggest that there are unique structural features of the G. sulfurreducens PilA that are necessary for conductivity.  相似文献   

6.
7.
8.
Previous studies have suggested that the conductive pili of Geobacter sulfurreducens are essential for extracellular electron transfer to Fe(III) oxides and for optimal long-range electron transport through current-producing biofilms. The KN400 strain of G. sulfurreducens reduces poorly crystalline Fe(III) oxide more rapidly than the more extensively studied DL-1 strain. Deletion of the gene encoding PilA, the structural pilin protein, in strain KN400 inhibited Fe(III) oxide reduction. However, low rates of Fe(III) reduction were detected after extended incubation (>30 days) in the presence of Fe(III) oxide. After seven consecutive transfers, the PilA-deficient strain adapted to reduce Fe(III) oxide as fast as the wild type. Microarray, whole-genome resequencing, proteomic, and gene deletion studies indicated that this adaptation was associated with the production of larger amounts of the c-type cytochrome PgcA, which was released into the culture medium. It is proposed that the extracellular cytochrome acts as an electron shuttle, promoting electron transfer from the outer cell surface to Fe(III) oxides. The adapted PilA-deficient strain competed well with the wild-type strain when both were grown together on Fe(III) oxide. However, when 50% of the culture medium was replaced with fresh medium every 3 days, the wild-type strain outcompeted the adapted strain. A possible explanation for this is that the necessity to produce additional PgcA, to replace the PgcA being continually removed, put the adapted strain at a competitive disadvantage, similar to the apparent selection against electron shuttle-producing Fe(III) reducers in many anaerobic soils and sediments. Despite increased extracellular cytochrome production, the adapted PilA-deficient strain produced low levels of current, consistent with the concept that long-range electron transport through G. sulfurreducens biofilms is more effective via pili.  相似文献   

9.
10.
Of all the terminal electron acceptors, Fe(III) is the most naturally abundant in many subsurface environments. Fe(III)-reducing microorganisms are phylogenetically diverse and have been isolated from a variety of sources. Unlike most electron acceptors, Fe(III) has a very low solubility and is usually present as insoluble oxides at neutral pH. The mechanisms by which microorganisms access and reduce insoluble Fe(III) are poorly understood. Initially, it was considered that microorganisms could only reduce insoluble Fe(III) through direct contact with the oxide. However, recent studies indicate that extracellular electron shuttling or Fe(III)-chelating compounds may alleviate the need for cell–oxide contact. These include microbially secreted compounds or exogenous electron shuttling agents, mainly from humic substances. Electron shuttling via humic substances is likely a significant process for Fe(III) reduction in subsurface environments. This paper reviews the various mechanisms by which Fe(III) reduction may be occurring in pure culture and in soils and sediments.  相似文献   

11.
Geobacter sulfurreducens contains a 9.6-kDa c-type cytochrome that was previously proposed to serve as an extracellular electron shuttle to insoluble Fe(III) oxides. However, when the cytochrome was added to washed-cell suspensions of G. sulfurreducens it did not enhance Fe(III) oxide reduction, whereas similar concentrations of the known electron shuttle, anthraquinone-2,6-disulfonate, greatly stimulated Fe(III) oxide reduction. Furthermore, analysis of the extracellular c-type cytochromes in cultures of G. sulfurreducens demonstrated that the dominant c-type cytochrome was not the 9.6-kDa cytochrome, but rather a 41-kDa cytochrome. These results and other considerations suggest that the 9.6-kDa cytochrome is not an important extracellular electron shuttle to Fe(III) oxides.  相似文献   

12.
Mechanisms for Fe(III) oxide reduction were investigated in Geothrix fermentans, a dissimilatory Fe(III)-reducing microorganism found within the Fe(III) reduction zone of subsurface environments. Culture filtrates of G. fermentans stimulated the reduction of poorly crystalline Fe(III) oxide by washed cell suspensions, suggesting that G. fermentans released one or more extracellular compounds that promoted Fe(III) oxide reduction. In order to determine if G. fermentans released electron-shuttling compounds, poorly crystalline Fe(III) oxide was incorporated into microporous alginate beads, which prevented contact between G. fermentans and the Fe(III) oxide. G. fermentans reduced the Fe(III) within the beads, suggesting that one of the compounds that G. fermentans releases is an electron-shuttling compound that can transfer electrons from the cell to Fe(III) oxide that is not in contact with the organism. Analysis of culture filtrates by thin-layer chromatography suggested that the electron shuttle has characteristics similar to those of a water-soluble quinone. Analysis of filtrates by ion chromatography demonstrated that there was as much as 250 microM dissolved Fe(III) in cultures of G. fermentans growing with Fe(III) oxide as the electron acceptor, suggesting that G. fermentans released one or more compounds capable of chelating and solubilizing Fe(III). Solubilizing Fe(III) is another strategy for alleviating the need for contact between cells and Fe(III) oxide for Fe(III) reduction. This is the first demonstration of a microorganism that, in defined medium without added electron shuttles or chelators, can reduce Fe(III) derived from Fe(III) oxide without directly contacting the Fe(III) oxide. These results are in marked contrast to those with Geobacter metallireducens, which does not produce electron shuttles or Fe(III) chelators. These results demonstrate that phylogenetically distinct Fe(III)-reducing microorganisms may use significantly different strategies for Fe(III) reduction. Thus, it is important to know which Fe(III)-reducing microorganisms predominate in a given environment in order to understand the mechanisms for Fe(III) reduction in the environment of interest.  相似文献   

13.
Mechanisms for Fe(III) oxide reduction were investigated in Geothrix fermentans, a dissimilatory Fe(III)-reducing microorganism found within the Fe(III) reduction zone of subsurface environments. Culture filtrates of G. fermentans stimulated the reduction of poorly crystalline Fe(III) oxide by washed cell suspensions, suggesting that G. fermentans released one or more extracellular compounds that promoted Fe(III) oxide reduction. In order to determine if G. fermentans released electron-shuttling compounds, poorly crystalline Fe(III) oxide was incorporated into microporous alginate beads, which prevented contact between G. fermentans and the Fe(III) oxide. G. fermentans reduced the Fe(III) within the beads, suggesting that one of the compounds that G. fermentans releases is an electron-shuttling compound that can transfer electrons from the cell to Fe(III) oxide that is not in contact with the organism. Analysis of culture filtrates by thin-layer chromatography suggested that the electron shuttle has characteristics similar to those of a water-soluble quinone. Analysis of filtrates by ion chromatography demonstrated that there was as much as 250 μM dissolved Fe(III) in cultures of G. fermentans growing with Fe(III) oxide as the electron acceptor, suggesting that G. fermentans released one or more compounds capable of chelating and solubilizing Fe(III). Solubilizing Fe(III) is another strategy for alleviating the need for contact between cells and Fe(III) oxide for Fe(III) reduction. This is the first demonstration of a microorganism that, in defined medium without added electron shuttles or chelators, can reduce Fe(III) derived from Fe(III) oxide without directly contacting the Fe(III) oxide. These results are in marked contrast to those with Geobacter metallireducens, which does not produce electron shuttles or Fe(III) chelators. These results demonstrate that phylogenetically distinct Fe(III)-reducing microorganisms may use significantly different strategies for Fe(III) reduction. Thus, it is important to know which Fe(III)-reducing microorganisms predominate in a given environment in order to understand the mechanisms for Fe(III) reduction in the environment of interest.  相似文献   

14.
The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism. Current was produced using a coculture of P. carbinolicus and Geobacter sulfurreducens with ethanol as the fuel. Ethanol consumption was associated with the transitory accumulation of acetate and hydrogen. G. sulfurreducens alone could not metabolize ethanol, suggesting that P. carbinolicus grew in the fuel cell by converting ethanol to hydrogen and acetate, which G. sulfurreducens oxidized with electron transfer to the anode. Up to 83% of the electrons available in ethanol were recovered as electricity and in the metabolic intermediate acetate. Hydrogen consumption by G. sulfurreducens was important for ethanol metabolism by P. carbinolicus. Confocal microscopy and analysis of 16S rRNA genes revealed that half of the cells growing on the anode surface were P. carbinolicus, but there was a nearly equal number of planktonic cells of P. carbinolicus. In contrast, G. sulfurreducens was primarily attached to the anode. P. carbinolicus represents the first Fe(III) oxide-reducing microorganism found to be unable to produce current in a microbial fuel cell, providing the first suggestion that the mechanisms for extracellular electron transfer to Fe(III) oxides and fuel cell anodes may be different.  相似文献   

15.
Iron-deficient Phaseolus vulgaris L. cv. Prelude developed a high reducing capacity for extracellular Fe(III) at the root surface. This reduction was competitively inhibited by Nitro-Blue Tetrazolium salt (Nitro-BT) which was deposited as a blue precipitate within the epidermis cells of the youngest root parts. Root respiration was not influenced by Nitro-BT. The intracellular reduction of Nitro-BT could largely be prevented by excess extracellular Fe(III)EDTA. Iron-sufficient control plants reduced both extracellular Fe(III)EDTA and intracellular Nitro-BT at a much slower rate. A role of cytosolic NADH or NADPH as direct electron donors for the enhanced Fe(III) reduction at the plasmalemma is indicated. NAD+-3-phosphate dehydrogenase activity was higher in preparations from iron-deficient root parts than in preparations from control root parts. Ferricyanide, dichlorophenolindophenol and phenazine methosulfate were also reduced at an increased rate by iron-deficient roots. We conclude that a trans-plasma membrane electron transfer, mediated by a membrane-bound reductase, is responsible for the reduction of extracellular Fe(III).  相似文献   

16.
In order to gain insight into the significance of biotic metal reduction and mineral formation in hyperthermophilic environments, metal mineralization as a result of the dissimilatory reduction of poorly crystalline Fe(III) oxide, and U(VI) reduction at 100 °C by Pyrobaculum islandicum was investigated. When P. islandicum was grown in a medium with poorly crystalline Fe(III) oxide as an electron acceptor and hydrogen as an electron donor, the Fe(III) oxide was reduced to an extracellular, ultrafine-grained magnetite with characteristics similar to that found in some hot environments and that was previously thought to be of abiotic origin. Furthermore, cell suspensions of P. islandicum rapidly reduced the soluble and oxidized form of uranium, U(VI), to extracellular precipitates of the highly insoluble U(IV) mineral, uraninite (UO2). The reduction of U(VI) was dependent on the presence of hydrogen as the electron donor. These findings suggest that microbes may play a key role in metal deposition in hyperthermophilic environments and provide a plausible explanation for such phenomena as magnetite accumulation and formation of uranium deposits at ca . 100 °C.  相似文献   

17.
It has recently been noted that a diversity of hyperthermophilic microorganisms have the ability to reduce Fe(III) with hydrogen as the electron donor, but the reduction of Fe(III) or other metals by these organisms has not been previously examined in detail. When Pyrobaculum islandicum was grown at 100 degrees C in a medium with hydrogen as the electron donor and Fe(III)-citrate as the electron acceptor, the increase in cell numbers of P. islandicum per mole of Fe(III) reduced was found to be ca. 10-fold higher than previously reported. Poorly crystalline Fe(III) oxide could also serve as the electron acceptor for growth on hydrogen. The stoichiometry of hydrogen uptake and Fe(III) oxide reduction was consistent with the oxidation of 1 mol of hydrogen resulting in the reduction of 2 mol of Fe(III). The poorly crystalline Fe(III) oxide was reduced to extracellular magnetite. P. islandicum could not effectively reduce the crystalline Fe(III) oxide minerals goethite and hematite. In addition to using hydrogen as an electron donor for Fe(III) reduction, P. islandicum grew via Fe(III) reduction in media in which peptone and yeast extract served as potential electron donors. The closely related species P. aerophilum grew via Fe(III) reduction in a similar complex medium. Cell suspensions of P. islandicum reduced the following metals with hydrogen as the electron donor: U(VI), Tc(VII), Cr(VI), Co(III), and Mn(IV). The reduction of these metals was dependent upon the presence of cells and hydrogen. The metalloids arsenate and selenate were not reduced. U(VI) was reduced to the insoluble U(IV) mineral uraninite, which was extracellular. Tc(VII) was reduced to insoluble Tc(IV) or Tc(V). Cr(VI) was reduced to the less toxic, less soluble Cr(III). Co(III) was reduced to Co(II). Mn(IV) was reduced to Mn(II) with the formation of manganese carbonate. These results demonstrate that biological reduction may contribute to the speciation of metals in hydrothermal environments and could account for such phenomena as magnetite accumulation and the formation of uranium deposits at ca. 100 degrees C. Reduction of toxic metals with hyperthermophilic microorganisms or their enzymes might be applied to the remediation of metal-contaminated waters or waste streams.  相似文献   

18.
Five methanogens (Methanosarcina barkeri MS, Methanosphaera cuniculi 1R7, Methanobacterium palustre F, Methanococcus voltaei A3 and Methanolobus vulcani PL-12/M) were investigated for their ability to reduce Fe(III) oxide and the soluble quinone anthraquinone-2,6-disulphonate (AQDS). Two species (M. barkeri and M. voltaei) reduced significant amounts of Fe(III) oxide using hydrogen as the electron donor, and 0.1 mM AQDS greatly accelerated Fe(III) reduction by these organisms. Although Fe(III) appeared to inhibit growth and methanogenesis of some strains, hydrogen partial pressures under donor-limited conditions were much lower (<0.5 Pa) in the presence of Fe(III) than in normal media (1-10 Pa) for all species except for M. vulcani. These results demonstrate that electrons were transferred to Fe(III) by hydrogen-utilizing methanogens even when growth and methanogenesis were inhibited. All species except the obligate methylotroph M. vulcani were able to reduce AQDS when their growth substrates were present as electron donors, and rates were highest when organisms used hydrogen as the electron donor. Purified soil humic acids could also be reduced by the AQDS-reducing methanogens. The ability of methanogens to interact with extracellular quinones, humic acids and Fe(III) oxides raises the possibility that this functional group of organ-isms contributes to Fe(III) and humic acid reduction under certain conditions in the environment and provides an alternative explanation for the inhibition of methanogenesis in some Fe(III)-containing ecosystems.  相似文献   

19.
Geobacter sulfurreducens is a well-studied representative of the Geobacteraceae, which play a critical role in organic matter oxidation coupled to Fe(III) reduction, bioremediation of groundwater contaminated with organics or metals, and electricity production from waste organic matter. In order to investigate G. sulfurreducens central metabolism and electron transport, a metabolic model which integrated genome-based predictions with available genetic and physiological data was developed via the constraint-based modeling approach. Evaluation of the rates of proton production and consumption in the extracellular and cytoplasmic compartments revealed that energy conservation with extracellular electron acceptors, such as Fe(III), was limited relative to that associated with intracellular acceptors. This limitation was attributed to lack of cytoplasmic proton consumption during reduction of extracellular electron acceptors. Model-based analysis of the metabolic cost of producing an extracellular electron shuttle to promote electron transfer to insoluble Fe(III) oxides demonstrated why Geobacter species, which do not produce shuttles, have an energetic advantage over shuttle-producing Fe(III) reducers in subsurface environments. In silico analysis also revealed that the metabolic network of G. sulfurreducens could synthesize amino acids more efficiently than that of Escherichia coli due to the presence of a pyruvate-ferredoxin oxidoreductase, which catalyzes synthesis of pyruvate from acetate and carbon dioxide in a single step. In silico phenotypic analysis of deletion mutants demonstrated the capability of the model to explore the flexibility of G. sulfurreducens central metabolism and correctly predict mutant phenotypes. These results demonstrate that iterative modeling coupled with experimentation can accelerate the understanding of the physiology of poorly studied but environmentally relevant organisms and may help optimize their practical applications.  相似文献   

20.
The dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens reduced and precipitated Tc(VII) by two mechanisms. Washed cell suspensions coupled the oxidation of hydrogen to enzymatic reduction of Tc(VII) to Tc(IV), leading to the precipitation of TcO(2) at the periphery of the cell. An indirect, Fe(II)-mediated mechanism was also identified. Acetate, although not utilized efficiently as an electron donor for direct cell-mediated reduction of technetium, supported the reduction of Fe(III), and the Fe(II) formed was able to transfer electrons abiotically to Tc(VII). Tc(VII) reduction was comparatively inefficient via this indirect mechanism when soluble Fe(III) citrate was supplied to the cultures but was enhanced in the presence of solid Fe(III) oxide. The rate of Tc(VII) reduction was optimal, however, when Fe(III) oxide reduction was stimulated by the addition of the humic analog and electron shuttle anthaquinone-2,6-disulfonate, leading to the rapid formation of the Fe(II)-bearing mineral magnetite. Under these conditions, Tc(VII) was reduced and precipitated abiotically on the nanocrystals of biogenic magnetite as TcO(2) and was removed from solution to concentrations below the limit of detection by scintillation counting. Cultures of Fe(III)-reducing bacteria enriched from radionuclide-contaminated sediment using Fe(III) oxide as an electron acceptor in the presence of 25 microM Tc(VII) contained a single Geobacter sp. detected by 16S ribosomal DNA analysis and were also able to reduce and precipitate the radionuclide via biogenic magnetite. Fe(III) reduction was stimulated in aquifer material, resulting in the formation of Fe(II)-containing minerals that were able to reduce and precipitate Tc(VII). These results suggest that Fe(III)-reducing bacteria may play an important role in immobilizing technetium in sediments via direct and indirect mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号